1
|
Mao S, Chen L, Li Q, Zhang L, Zhao H, Lin Y. Unveiling hypoxia-related prognostic and immunotherapeutic biomarkers in lung adenocarcinoma through single-cell and bulk RNA sequencing: Including insights into PGF. Int J Biol Macromol 2025; 309:143056. [PMID: 40228772 DOI: 10.1016/j.ijbiomac.2025.143056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Hypoxia plays a crucial role in lung adenocarcinoma (LUAD) proliferation and metastasis. However, the mechanisms underlying the interaction between the hypoxic microenvironment and immune resistance remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) data from 15 LUAD patients were used to evaluate the complexity and heterogeneity of tumor microenvironment (TME). We identified new subtypes associated with advanced LUAD, including epithelial cells, fibroblasts, and myeloid cells. Furthermore, we found that the cell subtype module 3 (AGER, TIMP3) of epithelial cells exhibited higher hypoxia scores in advanced LUAD. Meanwhile, we also observed that RSG5 + fibroblast, AOPE+macrophage, S100B + macrophage, CCL17 + macrophage, and HLA-DRB5 + macrophage cells exhibited higher hypoxia scores in advanced LUAD patients. Moreover, spatial transcriptomic analysis revealed that with the gradual decrease of hypoxia score, the cell type score also gradually decreased. Cell communication analysis identified critical receptor-ligand pairs, which were associated with the activation of the PD-1/PD-L1 pathway. Finally, we developed a novel prognostic signature based on hypoxia-related molecular clusters, which possessed predictive power for both prognosis and immunotherapy response. The experimental results confirmed that hypoxia-related genes play a significant role in driving LUAD progression. In conclusion, our study provides valuable insights into the hypoxic and immunosuppressive tumor microenvironment, which serve as a potential prognostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Chen
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyan Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huachang Zhao
- Department of Respiratory and Critical Care Medicine, The Fourth People's Hospital of Chengdu, No.8 Huli-West 1st-Alley, Jin-Niu District, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, China.
| | - Yidan Lin
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Zhou RT, Luo XJ, Zhang XXR, Wu JF, Ni YR. The potential of miR-29 in modulating tumor angiogenesis: a comprehensive review. Discov Oncol 2025; 16:474. [PMID: 40189720 PMCID: PMC11973036 DOI: 10.1007/s12672-025-02246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They are associated with various biological processes related to tumors. Among the numerous miRNAs, miR-29 has garnered attention for its role in regulating tumor angiogenesis. In numerous human tumors, miR-29 has been demonstrated to negatively correlate with the capacity for angiogenesis and the degree of malignancy, as well as with the expression levels of pro-angiogenic factors such as vascular endothelial growth factor vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and matrix metalloproteinase (MMP)-2. Multiple studies, utilizing techniques like dual-luciferase reporter assays, have confirmed that miR-29 directly targets the 3'-untranslated region (UTR) of mRNAs for VEGF, PDGF, and MMP-2. Extensive investigations involving tumor cell lines and animal models have shown that the overexpression of miR-29, achieved through miRNA transfection or the introduction of miRNA mimics, effectively inhibits angiogenesis by upregulating these pro-angiogenic factors. Conversely, downregulation of miR-29 using specific inhibitors promotes angiogenesis. While small molecule inhibitors and antibodies targeting VEGF constitute a primary strategy in anti-angiogenesis therapies, miR-29's ability to target multiple pro-angiogenic molecules positions it as a promising candidate for future therapeutic interventions, especially with ongoing advancements in nucleic acid drug design and delivery systems.
Collapse
Affiliation(s)
- Rui-Ting Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Gastroenterology, The First College of Clinical Medical Science and Yichang Central People's Hospital, China Three Gorges University, Yichang, 443003, China
- Division of Gastroenterology and Hepatology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Xiao-Xin-Ran Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| | - Yi-Ran Ni
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| |
Collapse
|
3
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
4
|
Dixon L, Weld A, Bhagawati D, Patel N, Giannarou S, Grech-Sollars M, Lim A, Camp S. Intraoperative superb microvascular ultrasound imaging in glioma: novel quantitative analysis correlates with tumour grade. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.07.24318636. [PMID: 39677443 PMCID: PMC11643247 DOI: 10.1101/2024.12.07.24318636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Accurate grading of gliomas is critical to guide therapy and predict prognosis. The presence of microvascular proliferation is a hallmark feature of high grade gliomas which traditionally requires targeted surgical biopsy of representative tissue. Superb microvascular imaging (SMI) is a novel high resolution Doppler ultrasound technique which can uniquely define the microvascular architecture of whole tumours. We examined both qualitative and quantitative vascular features of gliomas captured with SMI, analysing flow signal density, vessel number, branching points, curvature, vessel angle deviation, fractal dimension, and entropy. Results indicate that high-grade gliomas exhibit significantly greater vascular complexity and disorganisation, with increased fractal dimension and entropy, correlating with known histopathological markers of aggressive angiogenesis. The integrated ROC model achieved high accuracy (AUC = 0.95), highlighting SMI's potential as a non-invasive diagnostic and prognostic tool. While further validation with larger datasets is required, this study opens avenues for SMI in glioma management, supporting intraoperative decision-making and informing future prognosis.
Collapse
|
5
|
Li H, Niu X, Cheng R. Prevalence, prognostic and clinicopathological value of HIF-1α in glioblastoma patients: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:860. [PMID: 39562395 DOI: 10.1007/s10143-024-03087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024]
Abstract
Several studies have investigated the role of HIF-1α in predicting the prognosis of patients with glioblastoma, yielding contradictory results. Therefore, we performed a meta-analysis to document the correlation between HIF-1α and glioblastoma in individuals diagnosed with glioblastoma. We searched the PubMed, Cochrane Library, EMBASE, and Web of Science by January 25, 2024. Hazard Ratio (HR) was used to evaluate the relationship between HIF-1α and survival outcome, and Odds Ratio (OR) was adopted for tumor features.There was incorporation of nine observational studies with 607 individuals. The total prevalence of HIF-1α (higher than cut-off values) among individuals with glioblastoma was 0.72 (95% confidence interval (CI) = 0.68-0.75, I2 = 95.1%). There is a strong association between increased levels of HIF-1α in tumour tissues and shorter Overall Survival (OS) (HR = 1.82, 95% CI = 1.41-2.34, I2 = 13.7%). Subgroup analysis also indicated a correlation between higher levels of HIF-1α and reduced OS, specifically in the Asian population (HR = 1.48, 95% CI = 1.13-1.83, I2 = 41.5%). In addition, there was a correlation between HIF-1α and age (older vs. younger, OR = 2.19, 95% CI = 1.25-3.86, P = 0.260). High levels of HIF-1α expression were associated with poorer survival outcomes and other clinicopathological characteristics of glioblastoma. Integrating HIF-1α into prognostic tools for glioblastoma aids in predicting survival, categorising risk, and advising patients on suitable treatment regimens.
Collapse
Affiliation(s)
- Hao Li
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China
| | - Rui Cheng
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Taiyuan, China.
- Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan, China.
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China.
| |
Collapse
|
6
|
Palavani LB, Camerotte R, Vieira Nogueira B, Ferreira MY, Oliveira LB, Pari Mitre L, Coelho Nogueira de Castro W, Canto Gomes GL, Fabrini Paleare LF, Batista S, Fim Andreão F, Bertani R, Dias Polverini A. Innovative solutions? Belzutifan therapy for hemangioblastomas in Von Hippel-Lindau disease: A systematic review and single-arm meta-analysis. J Clin Neurosci 2024; 128:110774. [PMID: 39128437 DOI: 10.1016/j.jocn.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Von Hippel-Lindau (VHL) disease is a rare autosomal dominant disorder that predisposes patients to develop multiple cysts and tumors, such as hemangioblastomas (HBs) and clear cell renal cell carcinoma (ccRCC), due to mutations in the VHL tumor suppressor gene. While treatment of HBs varies based on their characteristics and has improved patient survival, it still involves high morbidity and mortality, leading to ongoing debates and studies to refine therapy strategies. Recent developments include the emergence of Belzutifan, a novel inhibitor targeting hypoxia-inducible factor 2α (HIF-2α), which has shown promising results in ongoing trials, particularly for patients not immediately requiring surgery. METHODS This systematic review and meta-analysis aimed to comprehensively evaluate the efficacy and safety of Belzutifan for treating HBs associated with VHL disease. Search was conducted across Medline, Embase, Cochrane, and Web of Science databases. Statistical Analysis was performed, with proportions and 95 % confidence intervals. Statistical analyses were carried out using R Studio. RESULTS Ten studies were selected, comprising 553 patients. The population mean age was 40 (24-65), and 50 % of the population was formed by males. In terms of proportion, 6 analyses were performed: Disease Stability of 31 % [95 %CI:14 %-47 %; I2 = 2 %]; Disease Progression of 2 %[95 %CI:0 %-9 %; I2 = 0 %]; Partial Response of 75 % [95 %CI:54 %-96 %; I2 = 58 %]. Complete response of 1 % [95 %CI:0 %-7 %; I2 = 0 %];and Side effects, anemia 81 % rate [95 % CI:54 %-100 %; I2 = 94 %], and fatigue rate of 79 % [95 % CI:54 %-100 %;I2 = 94 %]. CONCLUSION Results indicate that Belzutifan effectively stabilizes disease, reduces tumor progression, and achieves significant therapeutic responses, although side effects like anemia and fatigue were noted.
Collapse
Affiliation(s)
| | | | | | - Márcio Yuri Ferreira
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA
| | - Leonardo B Oliveira
- Department of Neurosurgery, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Lucas Pari Mitre
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, Brazil
| | | | | | | | - Sávio Batista
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Raphael Bertani
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
7
|
Agarwal A, Edgar MA, Desai A, Gupta V, Soni N, Bathla G. Molecular GBM versus Histopathological GBM: Radiology-Pathology-Genetic Correlation and the New WHO 2021 Definition of Glioblastoma. AJNR Am J Neuroradiol 2024; 45:1006-1012. [PMID: 38438167 PMCID: PMC11383408 DOI: 10.3174/ajnr.a8225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Given the recent advances in molecular pathogenesis of tumors, with better correlation with tumor behavior and prognosis, major changes were made to the new 2021 World Health Organization (WHO) classification of CNS tumors, including updated criteria for diagnosis of glioblastoma (GBM). Diagnosis of GBM now requires absence of isocitrate dehydrogenase and histone 3 mutations (IDH-wild-type and H3-wild-type) as the basic cornerstone, with elimination of the IDH-mutant category. The requirements for diagnosis were conventionally histopathological, based on the presence of pathognomonic features such as microvascular proliferation and necrosis. However, even if these histologic features are absent, many lower-grade (WHO grade 2/3) diffuse astrocytic gliomas behave clinically similar to GBM (grade 4). The 2021 WHO classification introduced new molecular criteria that can be used to upgrade the diagnosis of such histologically lower-grade, IDH-wild-type, astrocytomas to GBM. The 3 molecular criteria include: concurrent gain of whole chromosome 7 and loss of whole chromosome 10 (+7/-10); telomerase reverse transcriptase promoter mutation; and epidermal growth factor receptor amplification. Given these changes, it is now strongly recommended to have molecular analysis of WHO grade 2/3 diffuse astrocytic, IDH-wild-type, gliomas in adult patients, as identification of any of the above mutations allows for upgrading the tumor to WHO grade 4 ("molecular GBM") with important prognostic implications. Despite an early stage, there is active ongoing research on the unique MR imaging features of molecular GBM. This paper highlights the differences between "molecular" and "histopathological" GBM, with the aim of providing a basic understanding about these changes.
Collapse
Affiliation(s)
- Amit Agarwal
- From the Department of Radiology (A.A., A.D., V.G., N.S.), Mayo Clinic, Jacksonville, Florida
| | - Mark A Edgar
- Department of Laboratory Medicine and Pathology (Neuropathology) (M.A.E.), Mayo Clinic, Jacksonville, Florida
| | - Amit Desai
- From the Department of Radiology (A.A., A.D., V.G., N.S.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- From the Department of Radiology (A.A., A.D., V.G., N.S.), Mayo Clinic, Jacksonville, Florida
| | - Neetu Soni
- From the Department of Radiology (A.A., A.D., V.G., N.S.), Mayo Clinic, Jacksonville, Florida
| | - Girish Bathla
- Department of Radiology (G.B.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Ceci C, Ruffini F, Falconi M, Atzori MG, Falzon A, Lozzi F, Iacovelli F, D'Atri S, Graziani G, Lacal PM. Pharmacological inhibition of PDGF-C/neuropilin-1 interaction: A novel strategy to reduce melanoma metastatic potential. Biomed Pharmacother 2024; 176:116766. [PMID: 38788599 DOI: 10.1016/j.biopha.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Activation of neuropilin-1 (NRP-1) by platelet derived growth factor (PDGF)-C sustains melanoma invasiveness. Therefore, in the search of novel agents capable of reducing melanoma spreading, PDGF-C/NRP-1 interaction was investigated as a potential druggable target. Since the PDGF-C region involved in NRP-1 binding is not yet known, based on the sequence and structural homology between PDGF-C and vascular endothelial growth factor-A (VEGF-A), we hypothesized that the NRP-1 b1 domain region involved in the interaction with VEGF-A might also be required for PDGF-C binding. Hence, this region was selected from the protein crystal structure and used as target in the molecular docking procedure. In the following virtual screening, compounds from a DrugBank database were used as query ligands to identify agents potentially capable of disrupting NRP-1/PDGF-C interaction. Among the top 45 candidates with the highest affinity, five drugs were selected based on the safety profile, lack of hormonal effects, and current availability in the market: the antipsychotic pimozide, antidiabetic gliclazide, antiallergic cromolyn sodium, anticancer tyrosine kinase inhibitor entrectinib, and antihistamine azelastine. Analysis of drug influence on PDGF-C in vitro binding to NRP-1 and PDGF-C induced migration of human melanoma cells expressing NRP-1, indicated gliclazide and entrectinib as the most specific agents that were active at clinically achievable and non-toxic concentrations. Both drugs also reverted PDGF-C ability to stimulate extracellular matrix invasion by melanoma cells resistant to BRAF inhibitors. The inhibitory effect on tumor cell motility involved a decrease of p130Cas phosphorylation, a signal transduction pathway activated by PDGF-C-mediated stimulation of NRP-1.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Andrea Falzon
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Lozzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
9
|
Sipos TC, Kövecsi A, Kocsis L, Nagy-Bota M, Pap Z. Evaluation of Microvascular Density in Glioblastomas in Relation to p53 and Ki67 Immunoexpression. Int J Mol Sci 2024; 25:6810. [PMID: 38928515 PMCID: PMC11204252 DOI: 10.3390/ijms25126810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most aggressive tumor in the central nervous system, with a survival rate of less than 15 months despite multimodal therapy. Tumor recurrence frequently occurs after removal. Tumoral angiogenesis, the formation of neovessels, has a positive impact on tumor progression and invasion, although there are controversial results in the specialized literature regarding its impact on survival. This study aims to correlate the immunoexpression of angiogenesis markers (CD34, CD105) with the proliferation index Ki67 and p53 in primary and secondary glioblastomas. This retrospective study included 54 patients diagnosed with glioblastoma at the Pathology Department of County Emergency Clinical Hospital Târgu Mureș. Microvascular density was determined using CD34 and CD105 antibodies, and the results were correlated with the immunoexpression of p53, IDH1, ATRX and Ki67. The number of neoformed blood vessels varied among cases, characterized by different shapes and calibers, with endothelial cells showing modified morphology and moderate to marked pleomorphism. Neovessels with a glomeruloid aspect, associated with intense positivity for CD34 or CD105 in endothelial cells, were observed, characteristic of glioblastomas. Mean microvascular density values were higher for the CD34 marker in all cases, though there were no statistically significant differences compared to CD105. Mutant IDH1 and ATRX glioblastomas, wild-type p53 glioblastomas, and those with a Ki67 index above 20% showed a more abundant microvascular density, with statistical correlations not reaching significance. This study highlighted a variety of percentage intervals of microvascular density in primary and secondary glioblastomas using immunohistochemical markers CD34 and CD105, respectively, with no statistically significant correlation between evaluated microvascular density and p53 or Ki67.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mureș, Romania
| | - Attila Kövecsi
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mureș, Romania
- Pathology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Monica Nagy-Bota
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
| |
Collapse
|
10
|
Shi Y, Kang X, Ge Y, Cao Y, Li Y, Guo X, Chen W, Guo S, Wang Y, Liu D, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Feng F, Wang Y, You H, Ma W. The molecular signature and prognosis of glioma with preoperative intratumoral hemorrhage: a retrospective cohort analysis. BMC Neurol 2024; 24:202. [PMID: 38877400 PMCID: PMC11177380 DOI: 10.1186/s12883-024-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yulu Ge
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Cao
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| |
Collapse
|
11
|
Begagić E, Bečulić H, Džidić-Krivić A, Kadić Vukas S, Hadžić S, Mekić-Abazović A, Šegalo S, Papić E, Muchai Echengi E, Pugonja R, Kasapović T, Kavgić D, Nuhović A, Juković-Bihorac F, Đuričić S, Pojskić M. Understanding the Significance of Hypoxia-Inducible Factors (HIFs) in Glioblastoma: A Systematic Review. Cancers (Basel) 2024; 16:2089. [PMID: 38893207 PMCID: PMC11171068 DOI: 10.3390/cancers16112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The study aims to investigate the role of hypoxia-inducible factors (HIFs) in the development, progression, and therapeutic potential of glioblastomas. METHODOLOGY The study, following PRISMA guidelines, systematically examined hypoxia and HIFs in glioblastoma using MEDLINE (PubMed), Web of Science, and Scopus. A total of 104 relevant studies underwent data extraction. RESULTS Among the 104 studies, global contributions were diverse, with China leading at 23.1%. The most productive year was 2019, accounting for 11.5%. Hypoxia-inducible factor 1 alpha (HIF1α) was frequently studied, followed by hypoxia-inducible factor 2 alpha (HIF2α), osteopontin, and cavolin-1. Commonly associated factors and pathways include glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) receptors, vascular endothelial growth factor (VEGF), phosphoinositide 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway, and reactive oxygen species (ROS). HIF expression correlates with various glioblastoma hallmarks, including progression, survival, neovascularization, glucose metabolism, migration, and invasion. CONCLUSION Overcoming challenges such as treatment resistance and the absence of biomarkers is critical for the effective integration of HIF-related therapies into the treatment of glioblastoma with the aim of optimizing patient outcomes.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina;
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Semir Hadžić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Alma Mekić-Abazović
- Department of Oncology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Sabina Šegalo
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emsel Papić
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emmanuel Muchai Echengi
- College of Health Sciences, School of Medicine, Kenyatta University, Nairobi 43844-00100, Kenya
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Dalila Kavgić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Adem Nuhović
- Department of General Medicine, School of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Fatima Juković-Bihorac
- Department of Pathology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Slaviša Đuričić
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, 35033 Marburg, Germany
| |
Collapse
|
12
|
Yasuda S, Yano H, Ikegame Y, Ikuta S, Maruyama T, Kumagai M, Muragaki Y, Iwama T, Shinoda J, Izumo T. Predicting Isocitrate Dehydrogenase Status in Non-Contrast-Enhanced Adult-Type Astrocytic Tumors Using Diffusion Tensor Imaging and 11C-Methionine, 11C-Choline, and 18F-Fluorodeoxyglucose PET. Cancers (Basel) 2024; 16:1543. [PMID: 38672625 PMCID: PMC11048577 DOI: 10.3390/cancers16081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to differentiate the isocitrate dehydrogenase (IDH) status among non-enhanced astrocytic tumors using preoperative MRI and PET. We analyzed 82 patients with non-contrast-enhanced, diffuse, supratentorial astrocytic tumors (IDH mutant [IDH-mut], 55 patients; IDH-wildtype [IDH-wt], 27 patients) who underwent MRI and PET between May 2012 and December 2022. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) values using diffusion tensor imaging. We evaluated the tumor/normal brain uptake (T/N) ratios using 11C-methionine, 11C-choline, and 18F-fluorodeoxyglucose PET; extracted the parameters with significant differences in distinguishing the IDH status; and verified their diagnostic accuracy. Patients with astrocytomas were significantly younger than those with glioblastomas. The following MRI findings were significant predictors of IDH-wt instead of IDH-mut: thalamus invasion, contralateral cerebral hemisphere invasion, location adjacent to the ventricular walls, higher FA value, and lower MD value. The T/N ratio for all tracers was significantly higher for IDH-wt than for IDH-mut. In a composite diagnosis based on nine parameters, including age, 84.4% of cases with 0-4 points were of IDH-mut; conversely, 100% of cases with 6-9 points were of IDH-wt. Composite diagnosis using all parameters, including MRI and PET findings with significant differences, may help guide treatment decisions for early-stage gliomas.
Collapse
Affiliation(s)
- Shoji Yasuda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Hirohito Yano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
- Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
| | - Soko Ikuta
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (S.I.); (T.M.); (Y.M.)
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (S.I.); (T.M.); (Y.M.)
| | - Morio Kumagai
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (S.I.); (T.M.); (Y.M.)
| | - Toru Iwama
- Department of Neurosurgery, Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo 505-0034, Japan; (H.Y.); (Y.I.); (M.K.); (J.S.)
- Department of Neurosurgery, Chubu Neurorehabilitation Hospital, Minokamo 505-0034, Japan
- Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| |
Collapse
|
13
|
Lozinski M, Lumbers ER, Bowden NA, Martin JH, Fay MF, Pringle KG, Tooney PA. Upregulation of the Renin-Angiotensin System Is Associated with Patient Survival and the Tumour Microenvironment in Glioblastoma. Cells 2024; 13:634. [PMID: 38607073 PMCID: PMC11012120 DOI: 10.3390/cells13070634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Eugenie R. Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Nikola A. Bowden
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer H. Martin
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael F. Fay
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
| | - Kirsty G. Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Paul A. Tooney
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
| |
Collapse
|
14
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
15
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
16
|
Zheng F, Chen B, Zhang L, Chen H, Zang Y, Chen X, Li Y. Radiogenomic Analysis of Vascular Endothelial Growth Factor in Patients With Glioblastoma. J Comput Assist Tomogr 2023; 47:967-972. [PMID: 37948373 PMCID: PMC10662586 DOI: 10.1097/rct.0000000000001510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/26/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES This article aims to predict the presence of vascular endothelial growth factor (VEGF) expression and to predict the expression level of VEGF by machine learning based on preoperative magnetic resonance imaging (MRI) of glioblastoma (GBM). METHODS We analyzed the axial T2-weighted images (T2WI) and T1-weighted contrast-enhancement images of preoperative MRI in 217 patients with pathologically diagnosed GBM. Patients were divided into negative and positive VEGF groups, with the latter group further subdivided into low and high expression. The machine learning models were established with the maximum relevance and minimum redundancy algorithm and the extreme gradient boosting classifier. The area under the receiver operating curve (AUC) and accuracy were calculated for the training and validation sets. RESULTS Positive VEGF in GBM was 63.1% (137/217), with a high expression ratio of 53.3% (73/137). To predict the positive and negative VEGF expression, 7 radiomic features were selected, with 3 features from T1CE and 4 from T2WI. The accuracy and AUC were 0.83 and 0.81, respectively, in the training set and were 0.73 and 0.74, respectively, in the validation set. To predict high and low levels, 7 radiomic features were selected, with 2 from T1CE, 1 from T2WI, and 4 from the data combinations of T1CE and T2WI. The accuracy and AUC were 0.88 and 0.88, respectively, in the training set and were 0.72 and 0.72, respectively, in the validation set. CONCLUSION The VEGF expression status in GBM can be predicted using a machine learning model. Radiomic features resulting from data combinations of different MRI sequences could be helpful.
Collapse
Affiliation(s)
| | - Baoshi Chen
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| | | | | | | | | | - Yiming Li
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
17
|
The Mutually Mediated Chloride Intracellular Channel Protein 1 (CLIC1) Relationship between Malignant Cells and Tumor Blood Vessel Endothelium Exhibits a Significant Impact on Tumor Angiogenesis, Progression, and Metastasis in Clear Cell Renal Cell Carcinoma (ccRCC). Cancers (Basel) 2022; 14:cancers14235981. [PMID: 36497464 PMCID: PMC9740861 DOI: 10.3390/cancers14235981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Overexpression of chloride intracellular channel protein 1 (CLIC1) in tumor cells has been confirmed, but it has received less attention in the tumor blood vessel endothelium. Aim: The assessment of CLIC1 expression in ccRCC tumor blood vessels and its relationship with TNM parameters and tumor cell CLIC1 expression. Methods: CLIC1 immunostaining in ccRCC was evaluated in 50 cases in both malignant cells and tumor blood vessels (CLIC1 microvessel density-CLIC1-MVD) and was correlated with TNM staging parameters. Results: CLIC1-MVD was observed in approximately 65% of cases, and CLIC1 co-localization in both tumor and endothelial cells was observed in 59% of cases. ccRCC was classified into four groups (Classes 0−3) based on the percentage of positive tumor cells, with each group including sub-groups defined by CLIC1 expression in the endothelium. Class 3 (60−100% positive tumor cells) had the highest CLIC1-MVD, with an impact on T and M parameters (p value = 0.007 for T, and p value = 0.006 for M). For cases with CLIC1 intracellular translocation, there was a strong correlation between CLIC1-MVD and M (p value < 0.001). Conclusions: Co-expression of ccRCC tumor and endothelial cells promotes tumor progression and metastasis and should be investigated further as a potential therapeutic target for ccRCC and other human malignancies.
Collapse
|
18
|
Laurentino TDS, Soares RDS, Marie SKN, Oba-Shinjo SM. Correlation of Matrisome-Associatted Gene Expressions with LOX Family Members in Astrocytomas Stratified by IDH Mutation Status. Int J Mol Sci 2022; 23:ijms23179507. [PMID: 36076905 PMCID: PMC9455728 DOI: 10.3390/ijms23179507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor cell infiltrative ability into surrounding brain tissue is a characteristic of diffusely infiltrative astrocytoma and is strongly associated with extracellular matrix (ECM) stiffness. Collagens are the most abundant ECM scaffolding proteins and contribute to matrix organization and stiffness. LOX family members, copper-dependent amine oxidases, participate in the collagen and elastin crosslinking that determine ECM tensile strength. Common IDH mutations in lower-grade gliomas (LGG) impact prognosis and have been associated with ECM stiffness. We analyzed the expression levels of LOX family members and matrisome-associated genes in astrocytoma stratified by malignancy grade and IDH mutation status. A progressive increase in expression of all five LOX family members according to malignancy grade was found. LOX, LOXL1, and LOXL3 expression correlated with matrisome gene expressions. LOXL1 correlations were detected in LGG with IDH mutation (IDHmut), LOXL3 correlations in LGG with IDH wild type (IDHwt) and strong LOX correlations in glioblastoma (GBM) were found. These increasing correlations may explain the increment of ECM stiffness and tumor aggressiveness from LGG-IDHmut and LGG-IDHwt through to GBM. The expression of the mechanosensitive transcription factor, β-catenin, also increased with malignancy grade and was correlated with LOXL1 and LOXL3 expression, suggesting involvement of this factor in the outside–in signaling pathway.
Collapse
|
19
|
Li L, Zhong L, Tang C, Gan L, Mo T, Na J, He J, Huang Y. CD105: tumor diagnosis, prognostic marker and future tumor therapeutic target. Clin Transl Oncol 2022; 24:1447-1458. [PMID: 35165838 DOI: 10.1007/s12094-022-02792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the diseases with the highest morbidity and mortality rates worldwide, and its therapeutic options are inadequate. The endothelial glycoprotein, also known as CD105, is a type I transmembrane glycoprotein located on the surface of the cell membranes and it is one of the transforming growth factor-β (TGF-β) receptor complexes. It regulates the responses associated with binding to transforming growth factor β1 egg (Activin-A), bone morphogenetic protein 2 (BMP-2), and bone morphogenetic protein 7 (BMP-7). Additionally, it is involved in the regulation of angiogenesis. This glycoprotein is indispensable in the treatment of tumor angiogenesis, and it also plays a leading role in tumor angiogenesis therapy. Therefore, CD105 is considered to be a novel therapeutic target. In this study, we explored the significance of CD105 in the diagnosis, treatment and prognosis of various tumors, and provided evidence for the effect and mechanism of CD105 on tumors.
Collapse
Affiliation(s)
- Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
20
|
Domènech M, Hernández A, Plaja A, Martínez-Balibrea E, Balañà C. Hypoxia: The Cornerstone of Glioblastoma. Int J Mol Sci 2021; 22:12608. [PMID: 34830491 PMCID: PMC8620858 DOI: 10.3390/ijms222212608] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is the most aggressive form of brain tumor in adults and is characterized by the presence of hypervascularization and necrosis, both caused by a hypoxic microenvironment. In this review, we highlight that hypoxia-induced factor 1 (HIF-1), the main factor activated by hypoxia, is an important driver of tumor progression in GB patients. HIF-1α is a transcription factor regulated by the presence or absence of O2. The expression of HIF-1 has been related to high-grade gliomas and aggressive tumor behavior. HIF-1 promotes tumor progression via the activation of angiogenesis, immunosuppression, and metabolic reprogramming, promoting cell invasion and survival. Moreover, in GB, HIF-1 is not solely modulated by oxygen but also by oncogenic signaling pathways, such as MAPK/ERK, p53, and PI3K/PTEN. Therefore, the inhibition of the hypoxia pathway could represent an important treatment alternative in a disease with very few therapy options. Here, we review the roles of HIF-1 in GB progression and the inhibitors that have been studied thus far, with the aim of shedding light on this devastating disease.
Collapse
Affiliation(s)
- Marta Domènech
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| | - Ainhoa Hernández
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| | - Andrea Plaja
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| | - Eva Martínez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), ProCURE Program, Catalan Institute of Oncology, 08916 Badalona, Spain;
| | - Carmen Balañà
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| |
Collapse
|
21
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
22
|
Tang X, Zuo C, Fang P, Liu G, Qiu Y, Huang Y, Tang R. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front Oncol 2021; 11:701291. [PMID: 34307170 PMCID: PMC8297686 DOI: 10.3389/fonc.2021.701291] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) remains the most lethal and common primary brain tumor, even after treatment with multiple therapies, such as surgical resection, chemotherapy, and radiation. Although great advances in medical development and improvements in therapeutic methods of GBM have led to a certain extension of the median survival time of patients, prognosis remains poor. The primary cause of its dismal outcomes is the high rate of tumor recurrence, which is closely related to its resistance to standard therapies. During the last decade, glioblastoma stem cells (GSCs) have been successfully isolated from GBM, and it has been demonstrated that these cells are likely to play an indispensable role in the formation, maintenance, and recurrence of GBM tumors, indicating that GSCs are a crucial target for treatment. Herein, we summarize the current knowledge regarding GSCs, their related signaling pathways, resistance mechanisms, crosstalk linking mechanisms, and microenvironment or niche. Subsequently, we present a framework of targeted therapy for GSCs based on direct strategies, including blockade of the pathways necessary to overcome resistance or prevent their function, promotion of GSC differentiation, virotherapy, and indirect strategies, including targeting the perivascular, hypoxic, and immune niches of the GSCs. In summary, targeting GSCs provides a tremendous opportunity for revolutionary approaches to improve the prognosis and therapy of GBM, despite a variety of challenges.
Collapse
Affiliation(s)
- Xuejia Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China.,Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chenghai Zuo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guojing Liu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Qiu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Department of Neurosurgery, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Investigation of the anti-tumor effects of bevacizumab on glioblastoma cells. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.934220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Zhang J, Zhang Y, Mo F, Patel G, Butterworth K, Shao C, Prise KM. The Roles of HIF-1α in Radiosensitivity and Radiation-Induced Bystander Effects Under Hypoxia. Front Cell Dev Biol 2021; 9:637454. [PMID: 33869184 PMCID: PMC8044822 DOI: 10.3389/fcell.2021.637454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced bystander effects (RIBE) may have potential implications for radiotherapy, yet the radiobiological impact and underlying mechanisms in hypoxic tumor cells remain to be determined. Using two human tumor cell lines, hepatoma HepG2 cells and glioblastoma T98G cells, the present study found that under both normoxic and hypoxic conditions, increased micronucleus formation and decreased cell survival were observed in non-irradiated bystander cells which had been co-cultured with X-irradiated cells or treated with conditioned-medium harvested from X-irradiated cells. Although the radiosensitivity of hypoxic tumor cells was lower than that of aerobic cells, the yield of micronucleus induced in bystander cells under hypoxia was similar to that measured under normoxia indicating that RIBE is a more significant factor in overall radiation damage of hypoxic cells. When hypoxic cells were treated with dimethyl sulfoxide (DMSO), a scavenger of reactive oxygen species (ROS), or aminoguanidine (AG), an inhibitor of nitric oxide synthase (NOS), before and during irradiation, the bystander response was partly diminished. Furthermore, when only hypoxic bystander cells were pretreated with siRNA hypoxia-inducible factor-1α (HIF-1α), RIBE were decreased slightly but if irradiated cells were treated with siRNA HIF-1α, hypoxic RIBE decreased significantly. In addition, the expression of HIF-1α could be increased in association with other downstream effector molecules such as glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), and carbonic anhydrase (CA9) in irradiated hypoxic cells. However, the expression of HIF-1α expression in bystander cells was decreased by a conditioned medium from isogenic irradiated cells. The current results showed that under hypoxic conditions, irradiated HepG2 and T98G cells showed reduced radiosensitivity by increasing the expression of HIF-1α and induced a syngeneic bystander effect by decreasing the expression of HIF-1α and regulating its downstream target genes in both the irradiated or bystander cells.
Collapse
Affiliation(s)
- Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Yuhong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Fang Mo
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Gaurang Patel
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Karl Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Wu Y, Du D, Chen J, Liu C. Preparation of PLGA microspheres loaded with 10-hydroxycamptothecin and arsenic trioxide and their treatment for rabbit hepatocellular carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:57-63. [PMID: 31907490 DOI: 10.5507/bp.2019.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE This study aims to study the preparation method of arsenic trioxide (As2O3) polylactic-co-glyconlic acid (PLGA) microspheres and 10-hydroxycamptothecin (HCPT) PLGA microspheres and explore their therapeutic effects as embolic agents for VX2 hepatocellular carcinoma in rabbits. METHODS As2O3 and HCPT PLGA microspheres were prepared by multiple emulsion solvent evaporation method. Scanning electron microscopy (SEM) and particle size distribution were used to analyze the morphology, the drug sustained release ability was observed by the release of microspheres in vitro. The rabbit model of VX2 hepatocellular carcinoma was established and the hepatocellular carcinoma was treated with combined microspheres. The therapeutic effects were detected by qPCR, western blotting, HE staining and immunohistochemical methods. RESULTS The PLGA microspheres loaded with As2O3 and HCPT were successfully prepared by optimizing the ratio. The particle size was between 30 and 50 μm. In vitro release results showed that PLGA microspheres loaded with As2O3 released completely in 10 days and PLGA microspheres loaded with HCPT released completely in 12 days. Western blotting and qPCR results showed that the expression of ALDH1A1 and Nanog decreased significantly in treatment group. HE staining and immunohistochemical analysis showed that the expression of CD31, HIF and VEGF decreased significantly and the apoptosis of tissues was obvious. CONCLUSION The combination of As2O3 and HCPT PLGA microspheres as embolization for VX2 hepatocellular carcinoma in rabbits has significant therapeutic effect.
Collapse
Affiliation(s)
- Yumin Wu
- Department of Interventional Therapy, Shenzhen Second People's Hospital. No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong 518035, P.R.China
| | - Duanming Du
- Department of Interventional Therapy, Shenzhen Second People's Hospital. No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong 518035, P.R.China
| | - Juanping Chen
- Department of Interventional Therapy, Shenzhen Second People's Hospital. No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong 518035, P.R.China
| | - Chunlin Liu
- Department of Interventional Therapy, Shenzhen Second People's Hospital. No. 3002 Sungang West Road, Futian District, Shenzhen, Guangdong 518035, P.R.China
| |
Collapse
|
26
|
Chédeville AL, Madureira PA. The Role of Hypoxia in Glioblastoma Radiotherapy Resistance. Cancers (Basel) 2021; 13:542. [PMID: 33535436 PMCID: PMC7867045 DOI: 10.3390/cancers13030542] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GB) (grade IV astrocytoma) is the most malignant type of primary brain tumor with a 16 months median survival time following diagnosis. Despite increasing attention regarding the development of targeted therapies for GB that resulted in around 450 clinical trials currently undergoing, radiotherapy still remains the most clinically effective treatment for these patients. Nevertheless, radiotherapy resistance (radioresistance) is commonly observed in GB patients leading to tumor recurrence and eventually patient death. It is therefore essential to unravel the molecular mechanisms underpinning GB cell radioresistance in order to develop novel strategies and combinational therapies focused on enhancing tumor cell sensitivity to radiotherapy. In this review, we present a comprehensive examination of the current literature regarding the role of hypoxia (O2 partial pressure less than 10 mmHg), a main GB microenvironmental factor, in radioresistance with the ultimate goal of identifying potential molecular markers and therapeutic targets to overcome this issue in the future.
Collapse
Affiliation(s)
- Agathe L. Chédeville
- INSERM, UMR 1287, Gustave Roussy, CEDEX 94805 Villejuif, France;
- Université Paris-Saclay, UMR 1287, Gustave Roussy, CEDEX 94805 Villejuif, France
- Gustave Roussy, UMR 1287, 114, Rue Edouard-Vaillant, CEDEX 94805 Villejuif, France
| | - Patricia A. Madureira
- Centre for Biomedical Research (CBMR), University of Algarve, Gambelas Campus, Building 8, Room 2.22, 9005-139 Faro, Portugal
| |
Collapse
|
27
|
Seyedmirzaei H, Shobeiri P, Turgut M, Hanaei S, Rezaei N. VEGF levels in patients with glioma: a systematic review and meta-analysis. Rev Neurosci 2020; 32:191-202. [PMID: 33125340 DOI: 10.1515/revneuro-2020-0062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
Vascular endothelial growth factor (VEGF) has a crucial role in the angiogenesis of various tumors, including glioma. As the levels of VEGF would change in patients with glioma, we conducted the current systematic review and meta-analysis to more clearly determine the VEGF level alterations in different grades of glioma. PubMed and Scopus databases were sensitively searched for all the possible keywords addressing glioma and VEGF. Case-control and cohort studies on human subjects, which measured VEGF levels were eligible to be included in the study. Out of a total number of 3,612 studies, 22 studies were included and 12 studies entered the meta-analysis. This review revealed that serum levels of VEGF in glioma patients were 1.56 pg/dL higher compared to healthy controls (P = 0.05). Besides, immunohistochemistry (IHC) measurement of VEGF in surgical biopsies indicated significant difference in these two groups as well (P = 0.02). Yet, there was not a significant difference between patients with low-grade gliomas (World Health Organization (WHO) grades I-II, LGG) and those with high-grade gliomas (WHO grades III-IV, HGG) (P = 0.43). The results of this systematic review and meta-analysis demonstrate that VEGF levels would significantly increase in glioma, and therefore, could be potentially considered as a biomarker for this cancer.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehmet Turgut
- Department of Neurosurgery, Aydın Adnan Menderes University Faculty of Medicine, Efeler, Aydın,Turkey.,Department of Histology and Embryology, Aydın Adnan Menderes University Health Sciences Institute, Efeler, Aydın, Turkey
| | - Sara Hanaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
28
|
de Mendonça RP, Balbinot KM, Martins BV, da Silva Kataoka MS, Mesquita RA, de Jesus Viana Pinheiro J, de Melo Alves Júnior S. Hypoxia and proangiogenic proteins in human ameloblastoma. Sci Rep 2020; 10:17567. [PMID: 33067558 PMCID: PMC7568536 DOI: 10.1038/s41598-020-74693-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022] Open
Abstract
Ameloblastomas are epithelial odontogenic tumours that, although benign, are locally invasive and may exhibit aggressive behaviour. In the tumour microenvironment, the concentration of oxygen is reduced, which leads to intratumoral hypoxia. Under hypoxia, the crosstalk between the HIF-1α, MMP-2, VEGF, and VEGFR-2 proteins has been associated with hypoxia-induced angiogenesis, leading to tumour progression and increased invasiveness. This work showcases 24 ameloblastoma cases, 10 calcifying odontogenic cysts, and 9 dental follicles, used to investigate the expression of these proteins by immunohistochemistry. The anti-HIF-1α, anti-MMP-2, anti-VEGF, and anti-VEGFR-2 primary antibodies are used in this work. The results have been expressed by the mean grey value after immunostaining in images acquired with an objective of 40×. The ameloblastoma samples showed higher immunoexpression of HIF-1α, MMP-2, VEGF, and VEGFR-2 when compared to the dental follicles and calcifying odontogenic cysts. Ameloblastomas show a higher degree of expression of proteins associated with intratumoral hypoxia and proangiogenic proteins, which indicates the possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
- Raíssa Pinheiro de Mendonça
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Karolyny Martins Balbinot
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Beatriz Voss Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil.
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
29
|
Xue N, Fu X, Zhu Y, Da N, Zhang J. Moxibustion Enhances Chemotherapy of Breast Cancer by Affecting Tumor Microenvironment. Cancer Manag Res 2020; 12:8015-8022. [PMID: 32943934 PMCID: PMC7481310 DOI: 10.2147/cmar.s249797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Chemotherapeutic drugs often cause obvious toxicity and side effects. Moxibustion can improve the immunity of cancer patients, enhance cellular immunity, and reduce the toxicity and adverse effects of radiotherapy and chemotherapy. In this study, the efficacy of moxibustion combined with paclitaxel on breast cancer was evaluated. Methods A breast cancer mouse model was established. Hematoxylin and eosin staining was used to analyze tumor necrosis in mouse tumors. Immunohistochemistry, Western blot, and qPCR were used to detect the expression of CD34, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor A(VEGFA), programmed death-1 (PD-1), and programmed death-1 ligand (PD-L1) in tumor tissues. Results Moxibustion combined with paclitaxel significantly inhibited weight loss in breast cancer-burdened mice and increased the survival rate. Moxibustion combined with paclitaxel increased the number of white blood cells, thymus index, and spleen index, and enhanced immune function by upregulating interferon-gamma and interleukin-2 and downregulating interleukin-10 and transforming growth factor-β1. Notably, moxibustion combined with paclitaxel inhibited the angiogenesis of tumors through the downregulation of CD34, HIF-1α, and VEGFA, and overcame the immunosuppressive microenvironment by inhibiting the PD-1/PD-L1 signaling pathway. Conclusion Moxibustion improves the body’s immune function and enhances the efficacy of chemotherapy by overcoming the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Ning Xue
- Department of Acupuncture, Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, People's Republic of China.,Department of Acupuncture, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang 212400, People's Republic of China
| | - Xingli Fu
- Jiangsu University Health Science Center, Zhenjiang 212001, People's Republic of China
| | - Yin Zhu
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang 212400, People's Republic of China
| | - Nili Da
- Department of Acupuncture, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang 212400, People's Republic of China
| | - Jianbin Zhang
- Department of Acupuncture, Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, People's Republic of China
| |
Collapse
|
30
|
Delen E, Doğanlar O. The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway. J Korean Neurosurg Soc 2020; 63:444-454. [PMID: 32492985 PMCID: PMC7365278 DOI: 10.3340/jkns.2019.0252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids.
Methods We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting.
Results Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway.
Conclusion Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.
Collapse
Affiliation(s)
- Emre Delen
- Department of Neurosurgery, Trakya University School of Medicine, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
31
|
Montgomery MK, Kim SH, Dovas A, Zhao HT, Goldberg AR, Xu W, Yagielski AJ, Cambareri MK, Patel KB, Mela A, Humala N, Thibodeaux DN, Shaik MA, Ma Y, Grinband J, Chow DS, Schevon C, Canoll P, Hillman EMC. Glioma-Induced Alterations in Neuronal Activity and Neurovascular Coupling during Disease Progression. Cell Rep 2020; 31:107500. [PMID: 32294436 PMCID: PMC7443283 DOI: 10.1016/j.celrep.2020.03.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption, and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we follow glioma progression in awake Thy1-GCaMP6f mice using in vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics. The bilateral synchrony of spontaneous neuronal activity gradually decreases in glioma-infiltrated cortical regions, while neurovascular coupling becomes progressively disrupted compared to uninvolved cortex. Over time, mice develop diverse patterns of high amplitude discharges and eventually generalized seizures that appear to originate at the tumors' infiltrative margins. Interictal and seizure events exhibit positive neurovascular coupling in uninfiltrated cortex; however, glioma-infiltrated regions exhibit disrupted hemodynamic responses driving seizure-evoked hypoxia. These results reveal a landscape of complex physiological interactions occurring during glioma progression and present new opportunities for exploring novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mary Katherine Montgomery
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Sharon H Kim
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Alexander R Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Alexis J Yagielski
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Morgan K Cambareri
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Kripa B Patel
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David N Thibodeaux
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Mohammed A Shaik
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Ying Ma
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel S Chow
- Department of Radiological Sciences, University of California, Irvine, Orange, CA 92868, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
32
|
Overexpression of Platelet-Derived Growth Factor and Its Receptor Are Correlated with Oral Tumorigenesis and Poor Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21072360. [PMID: 32235327 PMCID: PMC7177415 DOI: 10.3390/ijms21072360] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a cancerous disease with poor prognosis. According to the statistics, the 5-year survival rate has not improved significantly over the past 20 years. The platelet-derived growth factor (PDGF) and its signaling pathway is a key regulator of angiogenesis and tumorigenesis. High level of PDGF and its receptor (PDGFR) have been reported in several types of malignancies. In this study, we investigated the relationship of the molecular expression levels of PDGF and PDGFR with clinicopathological parameters in OSCC. To this end, we measured the mRNA and protein levels of PDGF and PDGFR by real-time quantitative PCR (qRT-PCR), immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA), respectively. We found positive correlations of the mRNA levels of PDGFA, PDGFB, and PDGFRB with lymph node metastasis and poor overall survival (OS). High expression of PDGF, PDGFRA, and PDGFRB were remarkably associated with lymph node metastasis and poor OS, as determined by immunohistochemistry. Preoperative serum levels of PDGF-AA and PDGF-BB had a positive correlation with preoperative platelet count. Elevated serum levels of PDGF-AA. PDGF-BB, and platelet count correlated with lymph node metastasis and an unfavorable outcome. In multivariate Cox regression analysis, PDGFA mRNA, PDGFB mRNA, PDGFRB mRNA, PDGF immunoexpression, PDGFRB immunoexpression, serum PDGF-AA, serum PDGF-BB, and platelet count emerged as significant independent prognostic factors for OS. In vitro, we found that elevated PDGF promotes colony formation, migration, and invasiveness of SAS and OECM-1 cancer cell lines. Our results suggest that the expression level of serum PDGF has the potential to become a useful diagnostic marker for the prognosis of OSCC. In addition, PDGFR should be considered as a potential therapeutic target for OSCC. Furthermore, research should be undertaken to elucidate the role of PDGF and PDGFR regarding the behavior of tumor cells in OSCC.
Collapse
|
33
|
Gonçalves CS, de Castro JV, Pojo M, Martins EP, Queirós S, Chautard E, Taipa R, Pires MM, Pinto AA, Pardal F, Custódia C, Faria CC, Clara C, Reis RM, Sousa N, Costa BM. WNT6 is a novel oncogenic prognostic biomarker in human glioblastoma. Theranostics 2018; 8:4805-4823. [PMID: 30279739 PMCID: PMC6160775 DOI: 10.7150/thno.25025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/06/2018] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma (GBM) is a universally fatal brain cancer, for which novel therapies targeting specific underlying oncogenic events are urgently needed. While the WNT pathway has been shown to be frequently activated in GBM, constituting a potential therapeutic target, the relevance of WNT6, an activator of this pathway, remains unknown. Methods: WNT6 protein and mRNA levels were evaluated in GBM. WNT6 levels were silenced or overexpressed in GBM cells to assess functional effects in vitro and in vivo. Phospho-kinase arrays and TCF/LEF reporter assays were used to identify WNT6-signaling pathways, and significant associations with stem cell features and cancer-related pathways were validated in patients. Survival analyses were performed with Cox regression and Log-rank tests. Meta-analyses were used to calculate the estimated pooled effect. Results: We show that WNT6 is significantly overexpressed in GBMs, as compared to lower-grade gliomas and normal brain, at mRNA and protein levels. Functionally, WNT6 increases typical oncogenic activities in GBM cells, including viability, proliferation, glioma stem cell capacity, invasion, migration, and resistance to temozolomide chemotherapy. Concordantly, in in vivo orthotopic GBM mice models, using both overexpressing and silencing models, WNT6 expression was associated with shorter overall survival, and increased features of tumor aggressiveness. Mechanistically, WNT6 contributes to activate typical oncogenic pathways, including Src and STAT, which intertwined with the WNT pathway may be critical effectors of WNT6-associated aggressiveness in GBM. Clinically, we establish WNT6 as an independent prognostic biomarker of shorter survival in GBM patients from several independent cohorts. Conclusion: Our findings establish WNT6 as a novel oncogene in GBM, opening opportunities to develop more rational therapies to treat this highly aggressive tumor.
Collapse
|
34
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
35
|
Zheng L, Zhao C, Du Y, Lin X, Jiang Y, Lee C, Tian G, Mi J, Li X, Chen Q, Ye Z, Huang L, Wang S, Ren X, Xing L, Chen W, Huang D, Gao Z, Zhang S, Lu W, Tang Z, Wang B, Ju R, Li X. PDGF-CC underlies resistance to VEGF-A inhibition and combinatorial targeting of both suppresses pathological angiogenesis more efficiently. Oncotarget 2018; 7:77902-77915. [PMID: 27788490 PMCID: PMC5363630 DOI: 10.18632/oncotarget.12843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Anti-VEGF-A therapy has proven to be effective for many neovascular diseases. However, drug resistance to anti-VEGF-A treatment can develop. Also, not all patients with neovascular diseases are responsive to anti-VEGF-A treatment. The mechanisms underlying these important issues remain unclear. In this study, using different model systems, we found that inhibition of VEGF-A directly upregulated PDGF-CC and its receptors in multiple cell types in pathological angiogenesis in vitro and in vivo. Importantly, we further revealed that combinatorial targeting of VEGF-A and PDGF-CC suppressed pathological angiogenesis more efficiently than monotherapy. Given the potent angiogenic activity of PDGF-CC, our findings suggest that the development of resistance to anti-VEGF-A treatment may be caused by the compensatory upregulation of PDGF-CC, and combined inhibition of VEGF-A and PDGF-CC may have therapeutic advantages in treating neovascular diseases.
Collapse
Affiliation(s)
- Lei Zheng
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Chen Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yuxiang Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yida Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Geng Tian
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Jia Mi
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Xianglin Li
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Qishan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhimin Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Delong Huang
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhiqin Gao
- Department of Cell Biology, Weifang Medical University, Weifang, 261053 P. R. China
| | - Shuping Zhang
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Bin Wang
- Medical Imaging Institute, Shandong Province Characteristical Key Subject, Medical Imaging and Nuclear Medicine, Binzhou Medical University, Yantai, 264003 P. R. China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xuri Li
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| |
Collapse
|
36
|
IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme. Oncotarget 2018; 9:16462-16476. [PMID: 29662659 PMCID: PMC5893254 DOI: 10.18632/oncotarget.24536] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/10/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction Glioblastoma multiforme (GBM) represents the most malignant primary brain tumor characterized by pathological vascularization. Mutations in isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) were observed in GBM. We aimed to assess the intra-tumor hypoxia, angiogenesis and microvessel formation in GBM and to find their associations with IDH1 mutation status and patients prognosis. Methods 52 patients with a diagnosis of GBM were included into the study. IDH1 R132H mutation was assessed by RT-PCR from FFPE tumor samples obtained during surgery. The expression of markers of hypoxia (HIF2α), angiogenesis (VEGF), tumor microvascularity (CD31, CD34, vWF, CD105), and proliferation (Ki-67) were assessed immunohistochemically (IHC). IDH1 mutation and IHC markers were correlated with the patient survival. Results 20 from 52 GBM tumor samples comprised IDH1 R132H mutation (38.5%). The majority of mutated tumors were classified as secondary glioblastomas (89.9%). Patients with IDH1 mutated tumors experienced better progression-free survival (P = 0.037) as well as overall survival (P = 0.035) compared with wild type tumors. The significantly lower expression of VEGF was observed in GBM with IDH1 mutation than in wild type tumors (P = 0.01). No such association was found for microvascular markers. The increased expression of newly-formed microvessels (ratio CD105/CD31) in tumor samples was associated with worse patient’s progression-free survival (P = 0.026). Summary No increase in HIF/VEGF-mediated angiogenesis was observed in IDH1-mutated GBM compared with IDH1 wild type tumors. The histological assessment of the portion of newly-formed microvessels in tumor tissue can be used for the prediction of GBM patient’s prognosis.
Collapse
|
37
|
Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Mol Aspects Med 2018; 62:63-74. [PMID: 29409855 DOI: 10.1016/j.mam.2018.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are expressed in several cell types including the brain cells such as neuronal progenitors, neurons, astrocytes, and oligodendrocytes. Emerging evidence shows that PDGF-mediated signaling regulates diverse functions in the central nervous system (CNS) such as neurogenesis, cell survival, synaptogenesis, modulation of ligand-gated ion channels, and development of specific types of neurons. Interestingly, PDGF/PDFGR signaling can elicit paradoxical roles in the CNS, depending on the cell type and the activation stimuli and is implicated in the pathogenesis of various neurodegenerative diseases. This review summarizes the role of PDGFs/PDGFRs in several neurodegenerative diseases such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, brain cancer, cerebral ischemia, HIV-1 and drug abuse. Understanding PDGF/PDGFR signaling may lead to novel approaches for the future development of therapeutic strategies for combating CNS pathologies.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
38
|
Huang S, Tong X, Rehman MU, Wang M, Zhang L, Wang L, Li J, Yang S. Oxygen Supplementation Ameliorates Tibial Development via Stimulating Vascularization in Tibetan Chickens at High Altitudes. Int J Biol Sci 2017; 13:1547-1559. [PMID: 29230103 PMCID: PMC5723921 DOI: 10.7150/ijbs.22670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022] Open
Abstract
Tibetan chickens (TBCs) living in high-altitude hypoxic environment, are characterized by delayed growth and small size as compared to low-altitude broiler chickens. Increasing evidences signify the beneficial effect of oxygen (O2) supplementation in animal's body for regulating their body growth and organ development. However, it is still unclear that whether O2 supplementation has an ameliorative and protective role in TBCs living at high altitude. In this study, we first found that O2 supplementation not only increased the survival rate but also promoted the growth of TBCs associated with bone development. Importantly, we observed that the increase of vascular distribution in the tibial hypertrophic zone could contribute to promote growth and development of the tibia, which is highly correlated with the up-regulated expression level of vascular endothelial growth factor (VEGF)-A and VEGF receptor-1 (VEGFR1). Additionally, hypoxia inducible factor (HIF)-1ɑ also has a stimulative elevation by O2 supplementation. These results were confirmed by histology, immunohistochemistry, qRT-PCR and Western blotting techniques. Altogether, these findings demonstrated that the up-regulation of VEGFA and its receptors are accompanied by proangiogeneic factor (HIF-1α) expression, which were required for angiogenesis to meliorate tibia development of TBCs in hypoxia-induced bone suppression that occurred during O2 supplementation. Thus, O2 supplementation may serve as a good applicant for promoting and meliorating bone development in juvenile high-altitude animals.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000 Tibet, People's Republic of China
| | - Shijin Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
39
|
Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The Role of Hypoxia in Glioblastoma Invasion. Cells 2017; 6:E45. [PMID: 29165393 PMCID: PMC5755503 DOI: 10.3390/cells6040045] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is the most common and deadly type of primary malignant brain tumor, with a patient's median survival rate ranging from 15 to 17 months. The current treatment for GBM involves tumor resection surgery based on MRI image analysis, followed by radiotherapy and treatment with temozolomide. However, the gradual development of tumor resistance to temozolomide is frequent in GBM patients leading to subsequent tumor regrowth/relapse. For this reason, the development of more effective therapeutic approaches for GBM is of critical importance. Low tumor oxygenation, also known as hypoxia, constitutes a major concern for GBM patients, since it promotes cancer cell spreading (invasion) into the healthy brain tissue in order to evade this adverse microenvironment. Tumor invasion not only constitutes a major obstacle to surgery, radiotherapy, and chemotherapy, but it is also the main cause of death in GBM patients. Understanding how hypoxia triggers the GBM cells to become invasive is paramount to developing novel and more effective therapies against this devastating disease. In this review, we will present a comprehensive examination of the available literature focused on investigating how GBM hypoxia triggers an invasive cancer cell phenotype and the role of these invasive proteins in GBM progression.
Collapse
Affiliation(s)
- Ana Rita Monteiro
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
| | - Richard Hill
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Patrícia A Madureira
- Centre for Biomedical Research (CBMR), University of Algarve, Campus of Gambelas, Building 8, Room 3.4, 8005-139 Faro, Portugal.
- Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
40
|
Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 2017; 3:FSO189. [PMID: 28883992 PMCID: PMC5583655 DOI: 10.4155/fsoa-2016-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion - both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed.
Collapse
|
41
|
Zhou F, Du J, Wang J. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells. Mol Cell Biochem 2017; 428:171-178. [PMID: 28063005 DOI: 10.1007/s11010-016-2927-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Oncology, Huaihe Hospital of Henan University, No. 8 Baobei Road, Kaifeng, 475000, China.
| | - Jin Du
- Department of Respiration, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Jianjun Wang
- Department of Oncology, Huaihe Hospital of Henan University, No. 8 Baobei Road, Kaifeng, 475000, China
| |
Collapse
|
42
|
Gong M, Yang H, Zhang S, Yang Y, Zhang D, Li Z, Zou L. Targeting T1 and T2 dual modality enhanced magnetic resonance imaging of tumor vascular endothelial cells based on peptides-conjugated manganese ferrite nanomicelles. Int J Nanomedicine 2016; 11:4051-63. [PMID: 27578974 PMCID: PMC4998025 DOI: 10.2147/ijn.s104686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor angiogenesis plays very important roles for tumorigenesis, tumor development, metastasis, and prognosis. Targeting T1/T2 dual modality magnetic resonance (MR) imaging of the tumor vascular endothelial cells (TVECs) with MR molecular probes can greatly improve diagnostic sensitivity and specificity, as well as helping to make an early diagnosis of tumor at the preclinical stage. In this study, a new T1 and T2 dual modality nanoprobe was successfully fabricated. The prepared nanoprobe comprise peptides CL 1555, poly(ε-caprolactone)-block-poly(ethylene glycol) amphiphilic copolymer shell, and dozens of manganese ferrite (MnFe2O4) nanoparticle core. The results showed that the hydrophobic MnFe2O4 nanoparticles were of uniform spheroidal appearance and narrow size distribution. Due to the self-assembled nanomicelles structure, the prepared probes were of high relaxivity of 281.7 mM−1 s−1, which was much higher than that of MnFe2O4 nanoparticles (67.5 mM 1 s−1). After being grafted with the targeted CD105 peptide CL 1555, the nanomicelles can combine TVECs specifically and make the labeled TVECs dark in T2-weighted MR imaging. With the passage on, the Mn2+ ions were released from MnFe2O4 and the size decreased gradually, making the signal intensity of the second and third passage of labeled TVECs increased in T1-weighted MR imaging. Our results demonstrate that CL-poly(ethylene glycol)-MnFe2O4 can conjugate TVECs and induce dark and bright contrast in MR imaging, and act as a novel molecular probe for T1- and T2-enhanced MR imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China; Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Song Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yan Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhaohui Li
- Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI, USA
| | - Liguang Zou
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
43
|
Differential propagation of stroma and cancer stem cells dictates tumorigenesis and multipotency. Oncogene 2016; 36:570-584. [PMID: 27345406 PMCID: PMC5290038 DOI: 10.1038/onc.2016.230] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022]
Abstract
Glioblastoma Multiforme (GBM) is characterized by high cancer cell heterogeneity and the presence of a complex tumor microenvironment. Those factors are a key obstacle for the treatment of this tumor type. To model the disease in mice, the current strategy is to grow GBM cells in serum-free non-adherent condition, which maintains their tumor-initiating potential. However, the so-generated tumors are histologically different from the one of origin. In this work, we performed high-throughput marker expression analysis and investigated the tumorigenicity of GBM cells enriched under different culture conditions. We identified a marker panel that distinguished tumorigenic sphere cultures from non-tumorigenic serum cultures (high CD56, SOX2, SOX9, and low CD105, CD248, αSMA). Contrary to previous work, we found that 'mixed cell cultures' grown in serum conditions are tumorigenic and express cancer stem cell (CSC) markers. As well, 1% serum plus bFGF and TGF-α preserved the tumorigenicity of sphere cultures and induced epithelial-to-mesenchymal transition gene expression. Furthermore, we identified 12 genes that could replace the 840 genes of The Cancer Genome Atlas (TCGA) used for GBM-subtyping. Our data suggest that the tumorigenicity of GBM cultures depend on cell culture strategies that retain CSCs in culture rather than the presence of serum in the cell culture medium.
Collapse
|
44
|
CD105 Over-expression Is Associated with Higher WHO Grades for Gliomas. Mol Neurobiol 2016; 53:3503-3512. [PMID: 26884265 DOI: 10.1007/s12035-015-9677-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022]
Abstract
CD105 is an ancillary receptor of transforming growth factor beta (TGF-β), which has been suggested as a suitable biomarker for cancer-related angiogenesis and neovascularization (Nassiri et al. in Anticancer Res 31:2283-2290, 2011). However, the clinical significance of CD105 in WHO grade was rarely reported and the effects of CD105 signal transduction pathway on gliomas remain controversial and unclear. To get a convincing conclusion, performing a meta-analysis is essential. Relevant literature studies were included via careful evaluation, and standard mean difference (SMD) and hazard ratio (HR) with 95 % confidence intervals (95 % CIs) was calculated. We also made funnel plots to test the heterogeneity. In the present meta-analysis, a total of 11 eligible literatures involving 796 patients were incorporated. They were all conducted in China, revealing that CD105 overexpression in glioma tissues was strongly linked to high WHO grading (III+IV) (SMD -1.785, 95 % CI -2.133, -1.437; p = 0.000). No significant associations between CD105 and age (SMD -0.505, 95 % CI -1.054, 0.043; p = 0. 071), CD105 and gender (SMD 0.101, 95 % CI -0.103, 0.305; p = 0.333), and CD105 and tumor size (SMD -0.433, 95 % CI -1.326, 0.459; p = 0. 341) were detected. Besides, CD105 expression was closely associated with glioma patients' 3-year overall survival (OS; n = 2; HR = 4.357, 95 % CI 1.412, 7.303; p = 0.004). On the basis of Begg's and Egger's test or funnel plot, no publication bias was detected. In a nutshell, this meta-analysis demonstrated that CD105 overexpression correlates to higher WHO grade and poor survival and could be indicated as a helpful prognostic and diagnostic marker, or a useful therapy target.
Collapse
|
45
|
Qian J, Bai H, Gao Z, Dong YU, Pei J, Ma M, Han B. Downregulation of HIF-1α inhibits the proliferation and invasion of non-small cell lung cancer NCI-H157 cells. Oncol Lett 2016; 11:1738-1744. [PMID: 26998070 PMCID: PMC4774571 DOI: 10.3892/ol.2016.4150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023] Open
Abstract
Lung cancer, specifically non-small cell lung cancer (NSCLC), is the leading cause of cancer-associated mortality in the world. In previous years, almost no significant advancements have been made towards the molecular characterization of NSCLC, which highlights the requirement for novel target genes. Hypoxia inducible factor-1α (HIF-1α) is known to be essential in tumorigenesis, as it regulates the expression of numerous factors that are involved in angiogenesis, cellular proliferation and apoptosis. However, no direct association between HIF-1α and NSCLC treatment has previously been established. The aim of the present study was to characterize the effect of HIF-1α on NSCLC and to explore the possible mechanism. Additionally, HIF-1α small interfering (si)RNA and diamminedichloroplatinum (DDP) were used in combination to explore the combined effects on NSCLC cells. Lung carcinoma NCI-H157 cells were treated with HIF-1α small interfering (si)RNA, 5 µg/ml DDP or a combination of the two, and the proliferation, apoptosis and invasion ability of the cells were detected using a cell counting kit-8 assay, Annexin V/propidium iodide staining and a Transwell assay, respectively. In addition, the protein levels of caspase-3/9, anti-apoptotic protein B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), phosphoinositide 3-kinase (PI3K), phosphorylated (p-)PI3K, protein kinase B (AKT), p-AKT, extracellular signal-regulated kinase (ERK) and p-ERK were detected using western blot analysis. Similar to DPP treatment, HIF-1α siRNA treatment may reduce cell proliferation and the invasiveness of tumor cells while promoting apoptosis. Additionally, HIF-1α siRNA may increase the levels of the apoptotic proteins caspases 3 and 9 and inhibit the expression of Bcl-2. These anti-tumor effects may be acting through the VEGF/PEDF, PI3K/AKT and Raf/mitogen-activated protein kinase kinase/ERK signaling pathways. The effects of HIF-1α siRNA may be strengthened by DDP. The present data indicated that HIF-1α siRNA is important in the inhibition of NSCLC cells. Additionally, the effects of HIF-1α siRNA may be strengthened by DDP, which suggests that HIF-1α siRNA may be combined with DDP for the treatment of tumors.
Collapse
Affiliation(s)
- Jialin Qian
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hao Bai
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Zhiqiang Gao
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Y U Dong
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jun Pei
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Meili Ma
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Baohui Han
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
46
|
A pilot study of bevacizumab-based therapy in patients with newly diagnosed high-grade gliomas and diffuse intrinsic pontine gliomas. J Neurooncol 2015; 127:53-61. [PMID: 26626490 DOI: 10.1007/s11060-015-2008-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/22/2015] [Indexed: 01/09/2023]
Abstract
Although bevacizumab has not proven effective in adults with newly diagnosed high-grade gliomas (HGG), feasibility in newly diagnosed children with diffuse intrinsic pontine gliomas (DIPG) or HGG has not been reported in a prospective study. In a safety and feasibility study, children and young adults with newly diagnosed HGG received radiotherapy (RT) with bevacizumab (10 mg/kg: days 22, 36) and temozolomide (75-90 mg/m(2)/day for 42 days) followed by bevacizumab (10 mg/kg, days 1, 15), irinotecan (125 mg/m(2), days 1, 15) and temozolomide (150 mg/m(2)/day days 1-5). DIPG patients did not receive temozolomide. Telomerase activity, quality of life (QOL), and functional outcomes were assessed. Among 27 eligible patients (15 DIPG, 12 HGG), median age 10 years (range 3-29 years), 6 discontinued therapy for toxicity: 2 during RT (grade 4 thrombocytopenia, grade 3 hepatotoxicity) and 4 during maintenance therapy (grade 3: thrombosis, hypertension, skin ulceration, and wound dehiscence). Commonest ≥grade 3 toxicities included lymphopenia, neutropenia and leukopenia. Grade 3 hypertension occurred in 2 patients. No intracranial hemorrhages occurred. For DIPG patients, median overall survival (OS) was 10.4 months. For HGG patients, 3-year progression free survival and OS were 33 % (SE ± 14 %) and 50 % (SE ± 14 %), respectively. All 3 tested tumor samples, demonstrated histone H3.3K27M (n = 2 DIPG) or G34R (n = 1 HGG) mutations. QOL scores improved over the course of therapy. A bevacizumab-based regimen is feasible and tolerable in newly diagnosed children and young adults with HGG and DIPG.
Collapse
|
47
|
Skjefstad K, Richardsen E, Donnem T, Andersen S, Kiselev Y, Grindstad T, Hald SM, Al-Shibli K, Bremnes RM, Busund LT, Al-Saad S. The prognostic role of progesterone receptor expression in non-small cell lung cancer patients: Gender-related impacts and correlation with disease-specific survival. Steroids 2015; 98:29-36. [PMID: 25668612 DOI: 10.1016/j.steroids.2015.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE Progesterone has been shown to impact the development of hormone-sensitive cancers, such as breast and ovarian cancers. Emerging evidence has revealed a possible role of progesterone in the tumorigenesis of other cancers, including lung cancer. Herein, we aimed to elucidate the prevalence and prognostic significance of progesterone receptor (PR) expression in non-small cell lung cancer (NSCLC) tissue. EXPERIMENTAL Tumor tissue samples were collected from our patient cohort consisting of 335 NSCLC patients with stage I-IIIA disease. Tissue microarrays (TMAs) were constructed, and immunohistochemical (IHC) analyses were performed to evaluate the PR expression in the tumor epithelial and stromal compartments. RESULTS In a univariate analysis, positive PR expression in the stromal tumor compartment (P=0.005) was significantly and independently associated with a favorable outcome for both genders. Furthermore, positive PR expression in tumor epithelial cells (P=0.003) correlated with a poor prognosis for female patients. In a multivariate analysis, positive PR expression in the tumor stroma (P=0.007) was an independent prognostic factor for improved disease-specific survival (DSS). Positive PR expression in tumor epithelial cells emerged as an independent prognostic factor in female patients (P=0.001) for poor DSS. CONCLUSIONS We show that PR expression in tumor-surrounding stromal cells is associated with improved DSS for both male and female patients. Additionally, we reveal that positive PR expression in tumor epithelial cells is an independent, unfavorable prognosticator for DSS in female patients, making PR expression a potential marker for prognostic stratification in NSCLC.
Collapse
Affiliation(s)
- Kaja Skjefstad
- Department of Medical Biology, University of Tromso, 9037 Tromso, Norway.
| | - Elin Richardsen
- Department of Medical Biology, University of Tromso, 9037 Tromso, Norway; Department of Clinical Pathology, University Hospital of North Norway, 9037 Tromso, Norway
| | - Tom Donnem
- Department of Clinical Medicine, University of Tromso, 9037 Tromso, Norway; Department of Oncology, University Hospital of North Norway, 9037 Tromso, Norway
| | - Sigve Andersen
- Department of Clinical Medicine, University of Tromso, 9037 Tromso, Norway; Department of Oncology, University Hospital of North Norway, 9037 Tromso, Norway
| | - Yury Kiselev
- Department of Medical Biology, University of Tromso, 9037 Tromso, Norway; Department of Pharmacy, University of Tromso, 9037 Tromso, Norway
| | - Thea Grindstad
- Department of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Sigurd M Hald
- Department of Clinical Medicine, University of Tromso, 9037 Tromso, Norway
| | - Khalid Al-Shibli
- Department of Medical Biology, University of Tromso, 9037 Tromso, Norway; Department of Pathology, Nordland Central Hospital, 8005 Bodo, Norway
| | - Roy M Bremnes
- Department of Clinical Medicine, University of Tromso, 9037 Tromso, Norway; Department of Oncology, University Hospital of North Norway, 9037 Tromso, Norway
| | - Lill-Tove Busund
- Department of Medical Biology, University of Tromso, 9037 Tromso, Norway; Department of Clinical Pathology, University Hospital of North Norway, 9037 Tromso, Norway
| | - Samer Al-Saad
- Department of Medical Biology, University of Tromso, 9037 Tromso, Norway; Department of Clinical Pathology, University Hospital of North Norway, 9037 Tromso, Norway
| |
Collapse
|
48
|
Li F, Zhang W. Role of traditional Chinese medicine and its chemical components in anti-tumor metastasis. J Cancer Res Ther 2015; 10 Suppl 1:20-6. [PMID: 25207886 DOI: 10.4103/0973-1482.139748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Tumor incidence has become higher and higher in recent years, and it has also become the first killer jeopardizing human health. Tumor metastasis is the major barrier for tumor treatment. Some metastases occur in 5 or 10 years and some even in 20 years after tumor is controlled, but the metastases are impossible to defend effectively till now. Therefore, controlling tumor metastasis is critical in determining tumor patients' outcomes. In consideration of the limitations, toxicity and side effects of chemotherapeutic drugs for antitumor metastasis at present stage, seeking for drugs among traditional Chinese medicines (TCM) that share high safety and can effectively prevent and control metastasis is being paid more and more attention. This article is to expound the mechanisms of tumor metastasis and summarize the researches on antitumor metastasis with TCM.
Collapse
Affiliation(s)
| | - Weisan Zhang
- Department of Geriatrics, Tianjin Geriatric Institute, Tianjin Medical University General Hospital, Tianjin - 300052, China
| |
Collapse
|
49
|
Sinha M, Ghatak S, Roy S, Sen CK. microRNA-200b as a Switch for Inducible Adult Angiogenesis. Antioxid Redox Signal 2015; 22:1257-72. [PMID: 25761972 PMCID: PMC4410303 DOI: 10.1089/ars.2014.6065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. RECENT ADVANCES Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. CRITICAL ISSUES In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. FUTURE DIRECTIONS New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257-1272.
Collapse
Affiliation(s)
- Mithun Sinha
- Center for Regenerative Medicine and Cell Based Therapies, Davis Heart and Lung Research Institute, Ohio State University , Columbus, Ohio
| | | | | | | |
Collapse
|
50
|
Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation. PLoS One 2015; 10:e0118864. [PMID: 25785932 PMCID: PMC4364962 DOI: 10.1371/journal.pone.0118864] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens’ effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue’s noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.
Collapse
|