1
|
Massironi S, Pigoni A, Vegni EAM, Keefer L, Dubinsky MC, Brambilla P, Delvecchio G, Danese S. The Burden of Psychiatric Manifestations in Inflammatory Bowel Diseases: A Systematic Review With Meta-analysis. Inflamm Bowel Dis 2025; 31:1441-1459. [PMID: 39270637 DOI: 10.1093/ibd/izae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Psychiatric disorders in patients with inflammatory bowel disease (IBD) represent a significant but uncertain facet of the disease, with unsolved questions regarding their overall magnitude, their impact on intestinal disease, and the whole burden of psychiatric manifestations. AIM This systematic review summarizes the evidence on the prevalence and impact of psychiatric disorders, including depression, anxiety, bipolar disorder (BD), and schizophrenia, among patients with IBD. METHODS A systematic search across PubMed/MEDLINE, Embase, and Scopus databases from January 2010 to January 2023 was performed to identify relevant studies. The focus was on studies exploring the prevalence of specific psychiatric disorders in IBD patients compared to the general population and that reported specific outcome measures. A subsequent meta-analysis (MA) assessed the strength of the association between IBD and these psychiatric disorders, with data reliability ensured through rigorous extraction and quality assessment. RESULTS Out of 3,209 articles, 193 met the inclusion criteria and only 26 provided complete data for comprehensive analysis. These studies showed a significantly higher overall prevalence of psychiatric comorbidities in IBD patients compared to the general population. The MA showed a significant association between IBD and depression (pooled OR 1.42, 95% CI = 1.33-1.52, P < .0001) and anxiety (pooled OR 1.3, 95% CI = 1.22-1.44, P < .0001). The association between IBD and BD was significant (pooled OR 1.64, 95% CI = 1.20-2.24, P < .0001) but showed considerable heterogeneity (I2 = 94.01%). Only 3 studies examined the association between schizophrenia and IBD, providing widely heterogeneous results, with an inconclusive OR, estimated at 0.93 (95% CI = 0.62-1.39, P = .73). CONCLUSIONS This MA highlights the high prevalence of psychiatric disorders, particularly depression and anxiety, in IBD patients, which exceeds rates in the general population. BD in IBD is proving to be an important but under-researched area. The sparse and contradictory data on schizophrenia requires further investigation. These findings highlight the need for better understanding, early detection, and tailored mental health interventions in the management of IBD to significantly improve patients' quality of life.
Collapse
Affiliation(s)
- Sara Massironi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Anna Maria Vegni
- Department of Mental Health, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Laurie Keefer
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Marla C Dubinsky
- Division of Pediatric Gastroenterology and Nutrition, Icahn School of Medicine, New York, NY, USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Thomann AK, Schmitgen MM, Stephan JC, Ebert MP, Thomann PA, Szabo K, Reindl W, Wolf RC. Associations Between Brain Morphology, Inflammatory Markers, and Symptoms of Fatigue, Depression, or Anxiety in Active and Remitted Crohn's Disease. J Crohns Colitis 2024; 18:1767-1779. [PMID: 38757201 DOI: 10.1093/ecco-jcc/jjae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Fatigue and psychosocial impairments are highly prevalent in IBD, particularly during active disease. Disturbed brain-gut interactions may contribute to these symptoms. This study examined associations between brain structure, faecal calprotectin, and symptoms of fatigue, depression, and anxiety in persons with Crohn's disease [CD] in different disease states. METHODS In this prospective observational study, n = 109 participants [n = 67 persons with CD, n = 42 healthy controls] underwent cranial magnetic resonance imaging, provided stool samples for analysis of faecal calprotectin, and completed questionnaires to assess symptoms of fatigue, depression, and anxiety. We analysed differences in grey matter volume [GMV] between patients and controls, and associations between regional GMV alterations, neuropsychiatric symptoms, and faecal calprotectin. RESULTS Symptoms of fatigue, depression, and anxiety were increased in patients with CD compared with controls, with highest scores in active CD. Patients exhibited regionally reduced GMV in cortical and subcortical sensorimotor regions, occipitotemporal and medial frontal areas. Regional GMV differences showed a significant negative association with fatigue, but not with depression or anxiety. Subgroup analyses revealed symptom-GMV associations for fatigue in remitted but not in active CD, whereas fatigue was positively associated with faecal calprotectin in active but not in remitted disease. CONCLUSION Our findings support disturbed brain-gut interactions in CD which may be particularly relevant for fatigue during remitted disease. Reduced GMV in the precentral gyrus and other sensorimotor areas could reflect key contributions to fatigue pathophysiology in CD. A sensorimotor model of fatigue in CD could also pave the way for novel treatment approaches.
Collapse
Affiliation(s)
- Anne K Thomann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jule C Stephan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp A Thomann
- Department of Psychiatry and Psychotherapy, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Kristina Szabo
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - R Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Flinkenflügel K, Gruber M, Meinert S, Thiel K, Winter A, Goltermann J, Usemann P, Brosch K, Stein F, Thomas-Odenthal F, Wroblewski A, Pfarr JK, David FS, Beins EC, Grotegerd D, Hahn T, Leehr EJ, Dohm K, Bauer J, Forstner AJ, Nöthen MM, Jamalabadi H, Straube B, Alexander N, Jansen A, Witt SH, Rietschel M, Nenadić I, van den Heuvel MP, Kircher T, Repple J, Dannlowski U. The interplay between polygenic score for tumor necrosis factor-α, brain structural connectivity, and processing speed in major depression. Mol Psychiatry 2024; 29:3151-3159. [PMID: 38693319 PMCID: PMC11449800 DOI: 10.1038/s41380-024-02577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.
Collapse
Grants
- WI 3439/3-1, WI 3439/3-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- RI 908/11-1, RI 908/11-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- JA 1890/7-1, JA 1890/7-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- EP-C-16-015 EPA
- DA1151/5-1, DA1151/5-2, DA1151/11‑1 DA1151/6-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- NO 246/10-1, NO 246/10-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- HA7070/2-2, HA7070/3, HA7070/4 Deutsche Forschungsgemeinschaft (German Research Foundation)
- STR 1146/18-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- ERC-COG 101001062, VIDI-452-16-015 Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- KI 588/14-1, KI 588/14-2, KI 588/22-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- Interdisziplinäres Zentrum für Klinische Forschung, medizinische Fakultät, Münster (Dan3/012/17)
- Innovative medizinische Forschung Münster (IMF): RE111604, RE111722, RE 221707
Collapse
Affiliation(s)
- Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Eva C Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Radiology, University of Münster, Münster, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Polverino A, Troisi Lopez E, Minino R, Romano A, Miranda A, Facchiano A, Cipriano L, Sorrentino P. Brain network topological changes in inflammatory bowel disease: an exploratory study. Eur J Neurosci 2024; 60:4409-4420. [PMID: 38858102 DOI: 10.1111/ejn.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although the aetio-pathogenesis of inflammatory bowel diseases (IBD) is not entirely clear, the interaction between genetic and adverse environmental factors may induce an intestinal dysbiosis, resulting in chronic inflammation having effects on the large-scale brain network. Here, we hypothesized inflammation-related changes in brain topology of IBD patients, regardless of the clinical form [ulcerative colitis (UC) or Crohn's disease (CD)]. To test this hypothesis, we analysed source-reconstructed magnetoencephalography (MEG) signals in 25 IBD patients (15 males, 10 females; mean age ± SD, 42.28 ± 13.15; mean education ± SD, 14.36 ± 3.58) and 28 healthy controls (HC) (16 males, 12 females; mean age ± SD, 45.18 ± 12.26; mean education ± SD, 16.25 ± 2.59), evaluating the brain topology. The betweenness centrality (BC) of the left hippocampus was higher in patients as compared with controls, in the gamma frequency band. It indicates how much a brain region is involved in the flow of information through the brain network. Furthermore, the comparison among UC, CD and HC showed statistically significant differences between UC and HC and between CD and HC, but not between the two clinical forms. Our results demonstrated that these topological changes were not dependent on the specific clinical form, but due to the inflammatory process itself. Broader future studies involving panels of inflammatory factors and metabolomic analyses on biological samples could help to monitor the brain involvement in IBD and to clarify the clinical impact.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute for Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Roberta Minino
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Agnese Miranda
- Hepato-Gastroenterology Unit, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Angela Facchiano
- Gastroenterology and Digestive Endoscopy Unit, Umberto I General Hospital, Nocera Inferiore, Italy
| | - Lorenzo Cipriano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
5
|
Guo R, Wu J, Zheng Y, Lin X, Zhuang Z, Yin J, Lin Z, Xie L, Ma S. Graph Theory Further Revealed Visual Spatial Working Memory Impairment in Patients with Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2811-2823. [PMID: 38737113 PMCID: PMC11088826 DOI: 10.2147/jir.s462268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Background Inflammatory Bowel Disease (IBD) patients may experience cognitive impairments in Visuospatial Working Memory (VSWM), significantly impacting their quality of life. However, the mechanisms underlying these impairments remain poorly understood. Methods We studied functional MRI and graph theory analysis to investigate changes in functional connectivity networks during the Mental Rotation Task (MRT) in IBD patients. Twenty IBD patients (13 males, 7 females; mean age = 34.95 ± 13.80 years; mean disease duration = 2.43 ± 2.37 years) participated in the study. Exclusion criteria encompassed recent use of analgesics, 5-Aminosalicylate, corticosteroids, or immunosuppressants within the past three months. Additionally, we recruited 20 age-, gender-, and education-matched healthy controls for comparison. Results Compared to a control group, IBD patients exhibited significantly longer reaction times and reduced accuracy during the MRT. Our analysis revealed abnormalities in multiple nodal attributes within the functional connectivity network, particularly in regions such as the bilateral orbitofrontal cortex, right supplementary motor area, bilateral parahippocampal gyrus, and bilateral anterior temporal lobe. We observed that the nodal efficiency in the left temporal pole is negatively correlated with Red Blood Cell Distribution Width (RDW) and positively correlated with response time of MRT. Conclusion Our findings revealed notable abnormalities in multiple node attributes among IBD patients during MRT, providing evidence of cognitive impairments in VSWM in IBD patients. This study found RDW maybe can serve as a clinical indicator for predicting early VSWM impairment in patients with IBD.
Collapse
Affiliation(s)
- Ruiwei Guo
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Jin Wu
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yanmin Zheng
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Xiaona Lin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Zelin Zhuang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Jingjing Yin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Zhirong Lin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People’s Republic of China
| |
Collapse
|
6
|
Boles JS, Krueger ME, Jernigan JE, Cole CL, Neighbarger NK, Uriarte Huarte O, Tansey MG. A leaky gut dysregulates gene networks in the brain associated with immune activation, oxidative stress, and myelination in a mouse model of colitis. Brain Behav Immun 2024; 117:473-492. [PMID: 38341052 DOI: 10.1016/j.bbi.2024.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Maeve E Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E Jernigan
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cassandra L Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Hall CV, Radford-Smith G, Savage E, Robinson C, Cocchi L, Moran RJ. Brain signatures of chronic gut inflammation. Front Psychiatry 2023; 14:1250268. [PMID: 38025434 PMCID: PMC10661239 DOI: 10.3389/fpsyt.2023.1250268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Gut inflammation is thought to modify brain activity and behaviour via modulation of the gut-brain axis. However, how relapsing and remitting exposure to peripheral inflammation over the natural history of inflammatory bowel disease (IBD) contributes to altered brain dynamics is poorly understood. Here, we used electroencephalography (EEG) to characterise changes in spontaneous spatiotemporal brain states in Crohn's Disease (CD) (n = 40) and Ulcerative Colitis (UC) (n = 30), compared to healthy individuals (n = 28). We first provide evidence of a significantly perturbed and heterogeneous microbial profile in CD, consistent with previous work showing enduring and long-standing dysbiosis in clinical remission. Results from our brain state assessment show that CD and UC exhibit alterations in the temporal properties of states implicating default-mode network, parietal, and visual regions, reflecting a shift in the predominance from externally to internally-oriented attentional modes. We investigated these dynamics at a finer sub-network resolution, showing a CD-specific and highly selective enhancement of connectivity between the insula and medial prefrontal cortex (mPFC), regions implicated in cognitive-interoceptive appraisal mechanisms. Alongside overall higher anxiety scores in CD, we also provide preliminary support to suggest that the strength of chronic interoceptive hyper-signalling in the brain co-occurs with disease duration. Together, our results demonstrate that a long-standing diagnosis of CD is, in itself, a key factor in determining the risk of developing altered brain network signatures.
Collapse
Affiliation(s)
- Caitlin V. Hall
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Graham Radford-Smith
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Gut Health Research Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Gastroenterology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Emma Savage
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conor Robinson
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rosalyn J. Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
8
|
Rolls A. Immunoception: the insular cortex perspective. Cell Mol Immunol 2023; 20:1270-1276. [PMID: 37386172 PMCID: PMC10616063 DOI: 10.1038/s41423-023-01051-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
To define the systemic neuroimmune interactions in health and disease, we recently suggested immunoception as a term that refers to the existence of bidirectional functional loops between the brain and the immune system. This concept suggests that the brain constantly monitors changes in immune activity and, in turn, can regulate the immune system to generate a physiologically synchronized response. Therefore, the brain has to represent information regarding the state of the immune system, which can occure in multiple ways. One such representation is an immunengram, a trace that is partially stored by neurons and partially by the local tissue. This review will discuss our current understanding of immunoception and immunengrams, focusing on their manifestation in a specific brain region, the insular cortex (IC).
Collapse
Affiliation(s)
- Asya Rolls
- Department of Immunology, Department of Neuroscience, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Boles JS, Krueger ME, Jernigan JE, Cole CL, Neighbarger NK, Huarte OU, Tansey MG. A leaky gut dysregulates gene networks in the brain associated with immune activation, oxidative stress, and myelination in a mouse model of colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552488. [PMID: 37609290 PMCID: PMC10441416 DOI: 10.1101/2023.08.10.552488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Maeve E. Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E. Jernigan
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra L. Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K. Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
10
|
Ge L, Liu S, Li S, Yang J, Hu G, Xu C, Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front Immunol 2022; 13:1016578. [PMID: 36275694 PMCID: PMC9583867 DOI: 10.3389/fimmu.2022.1016578] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized by chronic inflammation and frequent recurrence. Accumulating evidence has confirmed that chronic psychological stress is considered to trigger IBD deterioration and relapse. Moreover, studies have demonstrated that patients with IBD have a higher risk of developing symptoms of anxiety and depression than healthy individuals. However, the underlying mechanism of the link between psychological stress and IBD remains poorly understood. This review used a psychoneuroimmunology perspective to assess possible neuro-visceral integration, immune modulation, and crucial intestinal microbiome changes in IBD. Furthermore, the bidirectionality of the brain–gut axis was emphasized in the context, indicating that IBD pathophysiology increases the inflammatory response in the central nervous system and further contributes to anxiety- and depression-like behavioral comorbidities. This information will help accurately characterize the link between psychological stress and IBD disease activity. Additionally, the clinical application of functional brain imaging, microbiota-targeted treatment, psychotherapy and antidepressants should be considered during the treatment and diagnosis of IBD with behavioral comorbidities. This review elucidates the significance of more high-quality research combined with large clinical sample sizes and multiple diagnostic methods and psychotherapy, which may help to achieve personalized therapeutic strategies for IBD patients based on stress relief.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangran Hu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wengang Song,
| |
Collapse
|
11
|
Qiu Y, Li Q, Wu D, Zhang Y, Cheng J, Cao Z, Zhou Y. Altered mean apparent propagator-based microstructure and the corresponding functional connectivity of the parahippocampus and thalamus in Crohn’s disease. Front Neurosci 2022; 16:985190. [PMID: 36203806 PMCID: PMC9530355 DOI: 10.3389/fnins.2022.985190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn’s disease (CD) is a chronic and relapsing inflammatory bowel disorder that has been shown to generate neurological impairments, which has the potential to signify disease activity in an underlying neurological manner. The objective of this study was to investigate the abnormalities of brain microstructure and the corresponding functional connectivity (FC) in patients with CD, as well as their associations with disease condition. Twenty-two patients with CD and 22 age-, gender-, and education-matched healthy controls (HCs) were enrolled in this study. All subjects underwent mean apparent propagator (MAP)-MRI and resting-state functional magnetic resonance imaging (MRI) (rs-fMRI) data collection. Each patient was evaluated clinically for the condition and duration of the disease. The MAP metrics were extracted and compared between two groups. Pearson’s correlation analysis was conducted to determine the relationship between disease characteristics and significantly abnormal MAP metrics in the CD group. Regions of interest (ROIs) for ROI-wise FC analysis were selected based on their correlation with MAP metrics. Results showed that multiple brain regions, including the parahippocampus and thalamus, exhibited statistically significant differences in MAP metrics between CD patients and HCs. Additionally, CD patients exhibited decreased FC between the left parahippocampus and bilateral thalamus, as well as the right parahippocampus and bilateral thalamus. The findings of this work provide preliminary evidence that structural abnormalities in the parahippocampal gyrus (PHG) and thalamus, as well as decreased FC between them, may reflect the degree of inflammatory of the disease and serve as brain biomarkers for evaluating CD activity.
Collapse
Affiliation(s)
- Yage Qiu
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingshang Li
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University School of Physics and Electronics Science, Shanghai, China
| | - Yiming Zhang
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijun Cao
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhijun Cao,
| | - Yan Zhou
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yan Zhou,
| |
Collapse
|
12
|
Zhang S, Xu X, Li Q, Chen J, Liu S, Zhao W, Cai H, Zhu J, Yu Y. Brain Network Topology and Structural–Functional Connectivity Coupling Mediate the Association Between Gut Microbiota and Cognition. Front Neurosci 2022; 16:814477. [PMID: 35422686 PMCID: PMC9002058 DOI: 10.3389/fnins.2022.814477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that gut microbiota can influence cognition via the gut–brain axis, and brain networks play a critical role during the process. However, little is known about how brain network topology and structural–functional connectivity (SC–FC) coupling contribute to gut microbiota-related cognition. Fecal samples were collected from 157 healthy young adults, and 16S amplicon sequencing was used to assess gut diversity and enterotypes. Topological properties of brain structural and functional networks were acquired by diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI data), and SC–FC coupling was further calculated. 3-Back, digit span, and Go/No-Go tasks were employed to assess cognition. Then, we tested for potential associations between gut microbiota, complex brain networks, and cognition. The results showed that gut microbiota could affect the global and regional topological properties of structural networks as well as node properties of functional networks. It is worthy of note that causal mediation analysis further validated that gut microbial diversity and enterotypes indirectly influence cognitive performance by mediating the small-worldness (Gamma and Sigma) of structural networks and some nodal metrics of functional networks (mainly distributed in the cingulate gyri and temporal lobe). Moreover, gut microbes could affect the degree of SC–FC coupling in the inferior occipital gyrus, fusiform gyrus, and medial superior frontal gyrus, which in turn influence cognition. Our findings revealed novel insights, which are essential to provide the foundation for previously unexplored network mechanisms in understanding cognitive impairment, particularly with respect to how brain connectivity participates in the complex crosstalk between gut microbiota and cognition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- *Correspondence: Jiajia Zhu,
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
- Yongqiang Yu,
| |
Collapse
|
13
|
Lyubashina OA, Sivachenko IB, Panteleev SS. Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2022; 42:389-417. [PMID: 33030712 PMCID: PMC11441296 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| |
Collapse
|
14
|
Zhang S, Chen F, Wu J, Liu C, Yang G, Piao R, Geng B, Xu K, Liu P. Altered structural covariance and functional connectivity of the insula in patients with Crohn's disease. Quant Imaging Med Surg 2022; 12:1020-1036. [PMID: 35111602 DOI: 10.21037/qims-21-509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Crohn's disease (CD) is a clinically chronic inflammatory bowel disease, which has been shown to be closely related to the brain-gut axis dysfunction. Although traditionally considered to be a limbic region, the insula has also been commonly identified as an abnormal brain region in previous CD-related studies. METHODS Structural magnetic resonance imaging (MRI) and resting-state functional MRI images were acquired from 45 CD patients in remission and 40 healthy controls (HCs). Three neuroimaging analysis methods including voxel-based morphometry (VBM), structural covariance, and functional connectivity (FC) were applied to investigate structural and functional alterations of the insulae between the CD patients and HCs. Pearson correlation was then used to examine the relationships between neuroimaging findings and clinical symptoms. RESULTS Compared with the HCs, CD patients exhibited decreased gray matter volume (GMV) in the left dorsal anterior insula (dAI) and bilateral posterior insula (PI). Taking these three areas including the left dAI, right PI, and left PI as regions of interest (ROIs), differences were observed in the structural covariance and FC of the ROI with several regions between the two groups. After controlling for psychological factors, the differences of several regions involved in emotional processing in GMV in the left dAI, the FC of the dAI, and the right PI were not significant. The FC of the parahippocampus/hippocampus with dAI and PI were negatively correlated with the CD activity index (CDAI). CONCLUSIONS We suggest that the insula-centered structural and/or functional changes may be associated with abnormal visceral sensory processing and related emotional responses in CD patients.
Collapse
Affiliation(s)
- Shuming Zhang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| | - Fenrong Chen
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayu Wu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| | - Chengxiang Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| | - Guang Yang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| | - Ruiqing Piao
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| | - Bowen Geng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| | - Ke Xu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, China
| |
Collapse
|
15
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
16
|
Thomann AK, Schmitgen MM, Kmuche D, Ebert MP, Thomann PA, Szabo K, Gass A, Griebe M, Reindl W, Wolf RC. Exploring joint patterns of brain structure and function in inflammatory bowel diseases using multimodal data fusion. Neurogastroenterol Motil 2021; 33:e14078. [PMID: 33368950 DOI: 10.1111/nmo.14078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND A growing number of neuroimaging studies suggest distinct neural changes in inflammatory bowel diseases (IBDs). Whether such changes may show similar spatial patterns across distinct neural features within and between specific IBD is unclear. To address this question, we used multivariate multimodal data fusion analysis to investigate structure/function modulation in remitted patients with Crohn's disease (CD) and ulcerative colitis (UC). METHODS Patients with IBD (n = 46; n = 31 with CD, n = 15 with UC) in stable remission and 17 healthy controls (HC) underwent structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI) as well as cognitive testing. Anxiety, depression, and fatigue were assessed using self-rating questionnaires. sMRI data were analyzed via voxel-based morphometry (VBM) and rs-fMRI data via amplitude of low-frequency fluctuations (ALFFs) and regional homogeneity (ReHo). Detection of cross-information between VBM, ALFF, and ReHo was conducted by means of a joint independent component analysis (jICA), followed by group-inference statistics. KEY RESULTS Joint independent component analysis detected structural alterations in middle frontal and temporal regions (VBM), and functional changes in the superior frontal gyrus (ReHo) and the medial as well as inferior frontal, inferior temporal, rectal, and subcallosal gyrus (ALFF). One joint component of extracted features of the three modalities differed significantly between IBD patients and controls (p = 0.03), and most distinctly between HC and patients with UC. CONCLUSIONS AND INFERENCES Using a multivariate data fusion technique, this study provides further evidence to brain alterations in IBD. The data suggest distinct neural differences between CD and UC, particularly in frontotemporal regions.
Collapse
Affiliation(s)
- Anne Kerstin Thomann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike Michael Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Dagny Kmuche
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Kristina Szabo
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Griebe
- Department of Neurology, University Medical Center Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Hopkins CWP, Powell N, Norton C, Dumbrill JL, Hayee B, Moulton CD. Cognitive Impairment in Adult Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J Acad Consult Liaison Psychiatry 2021; 62:387-403. [PMID: 34219654 DOI: 10.1016/j.psym.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND People living with inflammatory bowel disease (IBD) are exposed to multiple risk factors for cognitive impairment and frequently report cognitive difficulties. However, the presence of cognitive impairment in IBD has not been systematically reviewed. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we performed a systematic multidatabase search for cross-sectional and longitudinal studies comparing adults with IBD versus healthy controls for domain-specific cognitive function or scores on multidomain cognitive screening tools. For any domain reported by 3 or more studies, we conducted random-effects meta-analysis to calculate the standardized mean difference between groups; lower scores reflected poorer performance. Between-study heterogeneity was assessed using the I2 statistic and study quality assessed using an IBD-modified Newcastle-Ottawa scale. RESULTS Of 8302 articles screened, 12 studies (n = 687) were included in the qualitative synthesis and 11 in meta-analyses. All studies were cross-sectional. Studies generally excluded people with active IBD and older adults. Despite no significant differences on multidomain screening tools such as the Mini Mental State Examination (-0.27 [95% confidence interval -0.68, 0.08], P = 0.14), people with IBD showed significant deficits compared with healthy controls in attention (standardized mean difference -0.36 [-0.60, -0.12], P = 0.003, I2 = 0%), executive function (standardized mean difference -0.45 [-0.77, -0.13, P = 0.005, I2 = 42.5%), and specifically in working memory (standardized mean difference -0.58 [-0.85, -0.30], P < 0.001, I2 = 0%). Deficits in learning and recall were nonsignificant (P = 0.089) and other domains insufficient for meta-analysis. CONCLUSIONS People with IBD show deficits in attention and executive function, particularly in working memory, suggesting that cognitive impairment is a potential extraintestinal manifestation of IBD.
Collapse
Affiliation(s)
| | - Nick Powell
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Christine Norton
- Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, UK
| | | | - Bu'Hussain Hayee
- Department of Gastroenterology, King's College Hospital NHS Foundation Trust, London, UK
| | - Calum D Moulton
- Department of Psychological Medicine, King's College London, London, UK.
| |
Collapse
|
18
|
Atanasova K, Lotter T, Reindl W, Lis S. Multidimensional Assessment of Interoceptive Abilities, Emotion Processing and the Role of Early Life Stress in Inflammatory Bowel Diseases. Front Psychiatry 2021; 12:680878. [PMID: 34248716 PMCID: PMC8264143 DOI: 10.3389/fpsyt.2021.680878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Perception of internal bodily sensations includes three dissociable processes: interoceptive accuracy, interoceptive sensibility, and interoceptive awareness. Interoceptive abilities play a crucial role in emotion processing and impairments of these processes have been reported in several psychiatric disorders. Studies investigating interoceptive abilities and their role in emotional experience in individuals with somatic disorders such as inflammatory bowel diseases (IBD) are sparse. Recent findings suggested an association between adverse childhood experiences (ACE) and the development of gastrointestinal disorders. The aim of the current study was to investigate the associations between the different dimensions of interoception and emotional processing in IBD while taking ACE into account. We recruited IBD patients in clinical remission (n = 35) and 35 healthy control participants (HC) matched for age, education and IQ. Interoception was measured as a three-dimensional construct. Interoceptive accuracy was assessed with the heartbeat tracking task and interoceptive sensibility with a self-report measure (Multidimensional Assessment of Interoceptive Awareness questionnaire). Emotional processing was measured using an experimental task, where participants were asked to rate the subjectively perceived valence and arousal when presented with positive, neutral and negative visual stimuli. IBD patients significantly differed in two interoceptive sensibility domains, Emotional awareness and Not-distracting. Patients reported greater awareness of the connection between bodily sensations and emotional states, while showing a stronger tendency to use distraction from unpleasant sensations compared with HC. Higher emotional awareness was linked to higher perceived intensity and arousal of negative stimuli. The strength of this relation was dependent on the severity of ACE, with severer traumatization being associated with a stronger association between emotional awareness and perceived valence and arousal. Our findings suggest that it is the subjective component of interoception, especially the one assessing interoceptive abilities within the scope of emotional experience, which affects emotional processing in IBD. This is the first study providing evidence that IBD patients did not differ in their perception of visceral signals per se but only in the subjective ability to attribute certain physical sensations to physiological manifestations of emotions. Our findings support the hypothesis that ACE affect the association between interoception and emotional processing.
Collapse
Affiliation(s)
- Konstantina Atanasova
- Institute of Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Lotter
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychosomatic Medicine, Central Institute for Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Institute of Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
19
|
Thomann AK, Mak JWY, Zhang JW, Wuestenberg T, Ebert MP, Sung JJY, Bernstein ÇN, Reindl W, Ng SC. Review article: bugs, inflammation and mood-a microbiota-based approach to psychiatric symptoms in inflammatory bowel diseases. Aliment Pharmacol Ther 2020; 52:247-266. [PMID: 32525605 DOI: 10.1111/apt.15787] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/13/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Psychiatric co-morbidities including depression and anxiety are common in inflammatory bowel diseases (IBD). Emerging evidence suggests that interactions between the gut microbiota and brain may play a role in the pathogenesis of psychiatric symptoms in IBD. AIM To review the literature on microbiota-brain-gut interactions in gut inflammation, psychosocial stress and mental disorders and to discuss the putative mediating role of gut microbiota in the development of psychiatric symptoms or co-morbidities in IBD. METHODS A literature search was conducted on Ovid and Pubmed to select relevant animal and human studies reporting an association between IBD, mental disorders and gut microbiota. RESULTS Gut microbial alterations are frequently reported in subjects with IBD and with mental disorders. Both have been associated with reduced faecal bacterial diversity, decreased taxa within the phylum Firmicutes and increased Gammaproteobacteria. In animal studies, microbial perturbations induce behavioural changes and modulate inflammation in mice. Anxiety- and depression-like behaviours in animals can be transferred via faecal microbiota. In humans, modulation of the gut microbiota with probiotics is associated with behavioural and mood changes. Recent data show correlations in changes of faecal and mucosal microbiota and psychological distress in patients with IBD independent of disease activity. CONCLUSION Both IBD and mental disorders are associated with gut microbial alterations. Preclinical and preliminary human studies have shown a mediating role of the gut microbiota in intestinal inflammation and anxiety, depression and stress. Targeting the gut microbiota may represent a useful therapeutic approach for the treatment of psychiatric co-morbidities in IBD.
Collapse
Affiliation(s)
- Anne K Thomann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joyce W Y Mak
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Jing Wan Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Torsten Wuestenberg
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Charite, Berlin, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | | | - Wolfgang Reindl
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
20
|
Labanski A, Langhorst J, Engler H, Elsenbruch S. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge. Psychoneuroendocrinology 2020; 111:104501. [PMID: 31715444 DOI: 10.1016/j.psyneuen.2019.104501] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
The broad role of stress in the brain-gut axis is widely acknowledged, with implications for multiple prevalent health conditions that are characterized by chronic gastrointestinal symptoms. These include the functional gastrointestinal disorders (FGID), such as irritable bowel syndrome and functional dyspepsia, as well as inflammatory bowel diseases (IBD) like ulcerative colitis and Crohn's disease. Although the afferent and efferent pathways linking the gut and the brain are modulated by stress, the fields of neurogastroenterology and psychoneuroendocrinology (PNE)/ psychoneuroimmunology (PNI) remain only loosely connected. We aim to contribute to bringing these fields closer together by drawing attention to a fascinating, evolving research area, targeting an audience with a strong interest in the role of stress in health and disease. To this end, this review introduces the concept of the brain-gut axis and its major pathways, and provides a brief introduction to epidemiological and clinical aspects of FGIDs and IBD. From an interdisciplinary PNE/PNI perspective, we then detail current knowledge regarding the role of chronic and acute stress in the pathophysiology of FGID and IBD. We provide an overview of evidence regarding non-pharmacological treatment approaches that target central or peripheral stress mechanisms, and conclude with future directions, particularly those arising from recent advances in the neurosciences and discoveries surrounding the gut microbiota.
Collapse
Affiliation(s)
- Alexandra Labanski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jost Langhorst
- Chair for Integrative Medicine, University of Duisburg-Essen, Essen, Germany; Clinic for Internal and Integrative Medicine, Klinikum Bamberg, Bamberg, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|