1
|
Maratikyathanahalli Srikanta R, Wang L, Zhu T, Deal KR, Huo N, Gu YQ, McGuire PE, Dvorak J, Luo MC. Aegilops tauschii genome assembly v6.0 with improved sequence contiguity differentiates assembly errors from genuine differences with the D subgenome of Chinese Spring wheat assembly IWGSC RefSeq v2.1. G3 (BETHESDA, MD.) 2025; 15:jkaf042. [PMID: 40052782 PMCID: PMC12060248 DOI: 10.1093/g3journal/jkaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/19/2025] [Indexed: 05/09/2025]
Abstract
Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and a valuable genetic resource for wheat improvement. Several reference-quality genome sequences have been reported for A. tauschii accession AL8/78. A new genome sequence assembly (Aet v6.0) built from long Pacific Biosciences HiFi reads and employing an optical genome map constructed with a new technology is reported here for this accession. The N50 contig length of 31.81 Mb greatly exceeded that of the previous AL8/78 genome sequence assembly (Aet v5.0). Of 1,254 super-scaffolds, 92, comprising 98% of the total super-scaffold length, were anchored on a high-resolution genetic map, and pseudomolecules were assembled. The number of gaps in the pseudomolecules was reduced from 52,910 in Aet v5.0 to 351 in Aet v6.0. Gene models were transferred from the Aet v5.0 assembly into the Aet v6.0 assembly. A total of 40,447 putative orthologous gene pairs were identified between the Aet v6.0 and Chinese Spring wheat IWGSC RefSer v2.1 D-subgenome pseudomolecules. Orthologous gene pairs were used to compare the structure of the A. tauschii and wheat D-subgenome pseudomolecules. A total of 223 structural differences were identified. They included 44 large differences in sequence orientation and 25 differences in sequence location. A technique for discriminating between assembly errors and real structural variation between closely related genomes is suggested.
Collapse
Affiliation(s)
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Naxin Huo
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, CA 94710, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, CA 94710, USA
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Dal Martello R, Wang YV, Mir Makhamad B, Spengler RN, Fuller DQ. Contrasting diachronic regional trends in cereal grain evolution across Eurasia: a metadata analysis of linear morphometrics from the ninth millennium BCE to today. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240193. [PMID: 40370029 PMCID: PMC12079130 DOI: 10.1098/rstb.2024.0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 12/02/2024] [Indexed: 05/16/2025] Open
Abstract
The domestication of grain crops is among the most important phenomena to facilitate humanity's cultural development, and seed size increases are taken as one of the earliest domestication traits. Much remains unknown about the ecological drivers and cultural mechanisms surrounding this trait, but morphometric analyses have been crucial to investigate the topic for decades. Measurements on ancient cereal grains show that they evolved to produce larger seeds in their region of origin prior to dispersing beyond their progenitor range. This paper takes a transcontinental (Europe and Asia), long-term approach to comparative morphometric data. Unpublished measurements from over 10 sites of barley, free-threshing wheat, broomcorn millet, and foxtail millet from Central Asia and China have been collected for this study. We have contrasted these with published data from Europe, southwest and Central, East and South Asia. We investigate whether these cereals evolved in parallel or divergent ways across different lineages after they dispersed from their centres of origin; we trace seed size changes from initial cultivation through their spread and eventual adaptation to novel environments. This comparative analysis allows us to discuss rates of evolution and highlight evolutionary trends within some of the most important cereal crops across the Eurasian continent.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
- Rita Dal Martello
- Asian and North African Studies Department, Ca' Foscari University of Venice, Venezia, Italy
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
| | - Yiming V. Wang
- Anthropogenic Ecology Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
- Institute of Geosciences, Friedrich-Schiller-Universitat Jena, Jena, Thüringen, Germany
| | - Basira Mir Makhamad
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
| | - Robert N. Spengler
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, Thüringen, Germany
| | - Dorian Q Fuller
- Institute of Archaeology, UCL, London, UK
- School of Cultural Heritage, Northwest University, Xi'an, Shaanxi, People’s Republic of China
| |
Collapse
|
3
|
Li Z, Li C, Han P, Wang Y, Ren Y, Xin Z, Lin T, Lian Y, Wang Z. Propionic Acid Signalling Modulates Stomatal Opening and Drives Energy Metabolism to Enhance Drought Resistance in Wheat (Triticum aestivum L.). PLANT, CELL & ENVIRONMENT 2025. [PMID: 40298187 DOI: 10.1111/pce.15589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
Drought stress caused by global climate change severely imperils crop productivity and increases environmental deterioration. Wheat (Triticum aestivum L.) is an important worldwide food crop. Drought resistance in wheat encompasses functional gene transcription, metabolism, hormone signalling, and protein modifications. However, the underlying mechanisms by which these regulatory responses are coordinated remain unknown. Herein, we report a drought-resistance network in which wheat triggers a dynamic metabolic flux conversion from propionic acid (PA) to the tricarboxylic acid (TCA) cycle through beta-oxidation of fatty acids and stimulates crosstalk of various hormonal signals. It is also possible that P300/CREB regulates histone acetylation to confer drought resistance in wheat. Exogenous PA drives the TCA cycle and glycolysis and promotes stomatal closure through hormones crosstalk. From Aegilops tauschii Cosson (the diploid progenitor of common wheat) to wheat, this novel PA function serves as a survival strategy against environmental changes, and was validated in wheat field experiments. Our results highlight a new survival strategy that triggers the comprehensive and systemic effects of functional genes, metabolomics, hormone signalling, and protein modification on drought resistance to provide novel insights into improving the agroecological environment.
Collapse
Affiliation(s)
- Zongzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Chenxi Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Pengbin Han
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yihan Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yanhao Lian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
4
|
Nyine M, Davidson D, Adhikari E, Clinesmith M, Wang H, Akhunova A, Fritz A, Akhunov E. Genomic signals of ecogeographic adaptation in a wild relative are associated with improved wheat performance under drought stress. Genome Biol 2025; 26:35. [PMID: 39985084 PMCID: PMC11844086 DOI: 10.1186/s13059-025-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Prioritizing wild relative diversity for improving crop adaptation to emerging drought-prone environments is challenging. Here, we combine the genome-wide environmental scans (GWES) in wheat diploid ancestor Aegilops tauschii (Ae. tauschii) with allele testing in the genetic backgrounds of adapted cultivars to identify diversity for improving wheat adaptation to water-limiting conditions. RESULTS We evaluate the adaptive allele effects in Ae. tauschii-wheat introgression lines phenotyped for multiple traits under irrigated and water-limiting conditions using both unmanned aerial system-based imaging and conventional approaches. The GWES show that climatic gradients alone explain more than half of genomic variation in Ae. tauschii, with many alleles associated with climatic factors in Ae. tauschii being linked with improved performance of introgression lines under water-limiting conditions. We find that the most significant GWES signals associated with temperature annual range in the wild relative are linked with reduced canopy temperature in introgression lines and increased yield. CONCLUSIONS Our results suggest that introgression of climate-adaptive alleles from Ae. tauschii has the potential to improve wheat performance under water-limiting conditions, and that variants controlling physiological processes responsible for maintaining leaf temperature are likely among the targets of adaptive selection in a wild relative. Adaptive variation uncovered by GWES in wild relatives has the potential to improve climate resilience of crop varieties.
Collapse
Affiliation(s)
- Moses Nyine
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA
- Plantain Breeding Program, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dwight Davidson
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA
| | - Elina Adhikari
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- , Bayer, Chesterfield, USA
| | - Marshall Clinesmith
- Department of Agronomy, Kansas State University, Manhattan, USA
- , Syngenta, Junction City, USA
| | - Huan Wang
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Broad Institute, Cambridge, Boston, USA
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, USA
- Integrated Genomics Facility, Kansas State University, Manhattan, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, USA.
- Wheat Genetics Resource Center, Kansas State University, Manhattan, USA.
| |
Collapse
|
5
|
Liu Z, Yang F, Wan H, Deng C, Hu W, Fan X, Wang J, Yang M, Feng J, Wang Q, Yang N, Cai L, Liu Y, Tang H, Li S, Luo J, Zheng J, Wu L, Yang E, Pu Z, Jia J, Li J, Yang W. Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. PLANT COMMUNICATIONS 2025; 6:101131. [PMID: 39257004 PMCID: PMC11783901 DOI: 10.1016/j.xplc.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The allotetraploid wild grass Aegilops ventricosa (2n = 4x = 28, genome DvDvNvNv) has been recognized as an important germplasm resource for wheat improvement owing to its ability to tolerate biotic stresses. In particular, the 2NvS segment from Ae. ventricosa, as a stable and effective resistance source, has contributed greatly to wheat improvement. The 2NvS/2AS translocation is a prevalent chromosomal translocation between common wheat and wild relatives, ranking just behind the 1B/1R translocation in importance for modern wheat breeding. Here, we assembled a high-quality chromosome-level reference genome of Ae. ventricosa RM271 with a total length of 8.67 Gb. Phylogenomic analyses revealed that the progenitor of the Dv subgenome of Ae. ventricosa is Ae. tauschii ssp. tauschii (genome DD); by contrast, the progenitor of the D subgenome of bread wheat (Triticum aestivum L.) is Ae. tauschii ssp. strangulata (genome DD). The oldest polyploidization time of Ae. ventricosa occurred ∼0.7 mya. The Dv subgenome of Ae. ventricosa is less conserved than the D subgenome of bread wheat. Construction of a graph-based pangenome of 2AS/6NvL (originally known as 2NvS) segments from Ae. ventricosa and other genomes in the Triticeae enabled us to identify candidate resistance genes sourced from Ae. ventricosa. We identified 12 nonredundant introgressed segments from the Dv and Nv subgenomes using a large winter wheat collection representing the full diversity of the European wheat genetic pool, and 29.40% of European wheat varieties inherit at least one of these segments. The high-quality RM271 reference genome will provide a basis for cloning key genes, including the Yr17-Lr37-Sr38-Cre5 resistance gene cluster in Ae. ventricosa, and facilitate the full use of elite wild genetic resources to accelerate wheat improvement.
Collapse
Affiliation(s)
- Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Wenjing Hu
- Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Li Cai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Shizhao Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| |
Collapse
|
6
|
Gálvez-Galván A, Garrido-Ramos MA, Prieto P. The highly dynamic satellitomes of cultivated wheat species. ANNALS OF BOTANY 2024; 134:975-992. [PMID: 39212622 PMCID: PMC11687632 DOI: 10.1093/aob/mcae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Durum wheat, Triticum turgidum, and bread wheat, Triticum aestivum, are two allopolyploid species of very recent origin that have been subjected to intense selection programmes during the thousands of years they have been cultivated. In this paper, we study the durum wheat satellitome and establish a comparative analysis with the previously published bread wheat satellitome. METHODS We revealed the durum wheat satellitome using the satMiner protocol, which is based on consecutive rounds of clustering of Illumina reads by RepeatExplorer2, and we estimated abundance and variation for each identified satellite DNA (satDNA) with RepeatMasker v4.0.5. We also performed a deep satDNA family characterization including chromosomal location by fluorescence in situ hybridization (FISH) in durum wheat and its comparison with FISH patterns in bread wheat. BLAST was used for trailing each satDNA in the assembly of durum wheat genome through NCBI's Genome Data Viewer and the genome assemblies of both species were compared. Sequence divergence and consensus turnover rate between homologous satDNA families of durum and bread wheat were estimated using MEGA11. KEY RESULTS This study reveals that in an exceedingly short period, significant qualitative and quantitative changes have occurred in the set of satDNAs of both species, with expansions/contractions of the number of repeats and the loci per satellite, different in each species, and a high rate of sequence change for most of these satellites, in addition to the emergence/loss of satDNAs not shared between the two species analysed. These evolutionary changes in satDNA are common between species but what is truly remarkable and novel is that these processes have taken place in less than the last ~8000 years separating the two species, indicating an accelerated evolution of their satDNAs. CONCLUSIONS These results, together with the relationship of many of these satellites with transposable elements and the polymorphisms they generate at the level of centromeres and subtelomeric regions of their chromosomes, are analysed and discussed in the context of the evolutionary origin of these species and the selection pressure exerted by humans throughout the history of their cultivation.
Collapse
Affiliation(s)
- Ana Gálvez-Galván
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004 Córdoba, Spain
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004 Córdoba, Spain
| |
Collapse
|
7
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024; 17:1672-1686. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Badaeva ED, Davoyan RO, Tereshchenko NA, Lyalina EV, Zoshchuk SA, Goncharov NP. Cytogenetic features of intergeneric amphydiploids and genome-substituted forms of wheat. Vavilovskii Zhurnal Genet Selektsii 2024; 28:716-730. [PMID: 39722674 PMCID: PMC11668819 DOI: 10.18699/vjgb-24-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 12/28/2024] Open
Abstract
Synthetic intergeneric amphydiploids and genome-substituted wheat forms are an important source for transferring agronomically valuable genes from wild species into the common wheat (Triticum aestivum L.) genome. They can be used both in academic research and for breeding purposes as an original material for developing wheat-alien addition and substitution lines followed by translocation induction with the aid of irradiation or nonhomologous chromosome pairing. The chromosome sets and genome constitutions of allopolyploids are usually verified in early hybrid generations, whereas the subsequent fate of these hybrids remains unknown in most cases. Here we analyze karyotypes of five hexa- (2n = 6x = 42) and octoploid (2n = 8x = 56) amphydiploids of wheat with several species of the Aegilops, Haynaldia, and Hordeum genera, and six genome-substituted wheat-Aegilops forms, which were developed over 40 years ago and have been maintained in different gene banks. The analyses involve C-banding and fluorescence in situ hybridization (FISH) with pAs1 and pSc119.2 probes. We have found that most accessions are cytologically stable except for Avrodes (genome BBAASS, a hexaploid genome-substituted hybrid of wheat and Aegilops speltoides), which segregated with respect to chromosome composition after numerous reproductions. Chromosome analysis has not confirmed the presence of the N genome from Ae. uniaristata Vis. in the genome-substituted hybrid Avrotata. Instead, Avrotata carries the D genome. Our study shows that octoploid hybrids, namely AD 7, AD 7147 undergo more complex genome reorganizations as compared to hexaploids: the chromosome number of two presumably octoploid wheat-Aegilops hybrids were reduced to the hexaploid level. Genomes of both forms lost seven chromosome pairs, which represented seven homoeologous groups and derived from different parental subgenomes. Thus, each of the resulting hexaploids carries a synthetic/hybrid genome consisting of a unique combination of chromosomes belonging to different parental subgenomes.
Collapse
Affiliation(s)
- E D Badaeva
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - R O Davoyan
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - N A Tereshchenko
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - E V Lyalina
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - S A Zoshchuk
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Cavalet-Giorsa E, González-Muñoz A, Athiyannan N, Holden S, Salhi A, Gardener C, Quiroz-Chávez J, Rustamova SM, Elkot AF, Patpour M, Rasheed A, Mao L, Lagudah ES, Periyannan SK, Sharon A, Himmelbach A, Reif JC, Knauft M, Mascher M, Stein N, Chayut N, Ghosh S, Perovic D, Putra A, Perera AB, Hu CY, Yu G, Ahmed HI, Laquai KD, Rivera LF, Chen R, Wang Y, Gao X, Liu S, Raupp WJ, Olson EL, Lee JY, Chhuneja P, Kaur S, Zhang P, Park RF, Ding Y, Liu DC, Li W, Nasyrova FY, Dvorak J, Abbasi M, Li M, Kumar N, Meyer WB, Boshoff WHP, Steffenson BJ, Matny O, Sharma PK, Tiwari VK, Grewal S, Pozniak CJ, Chawla HS, Ens J, Dunning LT, Kolmer JA, Lazo GR, Xu SS, Gu YQ, Xu X, Uauy C, Abrouk M, Bougouffa S, Brar GS, Wulff BBH, Krattinger SG. Origin and evolution of the bread wheat D genome. Nature 2024; 633:848-855. [PMID: 39143210 PMCID: PMC11424481 DOI: 10.1038/s41586-024-07808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.
Collapse
Affiliation(s)
- Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea González-Muñoz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samuel Holden
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Adil Salhi
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Catherine Gardener
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Samira M Rustamova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Ahmed Fawzy Elkot
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- International Maize and Wheat Improvement Centre (CIMMYT), c/o CAAS, Beijing, China
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
| | - Sambasivam K Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
- Centre for Crop Health School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Amir Sharon
- Institute for Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Noam Chayut
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Dragan Perovic
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Alexander Putra
- Bioscience Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ana B Perera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chia-Yi Hu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guotai Yu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre d'anthropobiologie et de génomique de Toulouse (CAGT), Laboratoire d'Anthropobiologie et d'Imagerie de Synthèse, CNRS UMR 5288, Faculté de Médecine de Purpan, Toulouse, France
| | - Konstanze D Laquai
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis F Rivera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Renjie Chen
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - W John Raupp
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Eric L Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Robert F Park
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Yi Ding
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Deng-Cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Firuza Y Nasyrova
- Institute of Botany, Plant Physiology and Genetics, Tajik National Academy of Sciences, Dushanbe, Tajikistan
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mehrdad Abbasi
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Meng Li
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Naveen Kumar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Wilku B Meyer
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Surbhi Grewal
- Nottingham Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Harmeet Singh Chawla
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Ens
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Steven S Xu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Xianyang Xu
- Peanut and Small Grains Research Unit, USDA-ARS, Stillwater, OK, USA
| | | | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
10
|
Abdelrahman M, Gorafi YSA, Sulieman S, Jogaiah S, Gupta A, Tsujimoto H, Nguyen HT, Herrera-Estrella L, Tran LSP. Wild grass-derived alleles represent a genetic architecture for the resilience of modern common wheat to stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1685-1702. [PMID: 38935838 DOI: 10.1111/tpj.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Yasir Serag Alnor Gorafi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, 606-8502, Kyoto, Japan
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, 13314, Sudan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Henry T Nguyen
- Division of Plant Sciences and Technology, University of Missouri, Columbia, 65211, Missouri, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
- Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato, 36821, Mexico
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| |
Collapse
|
11
|
Wright TIC, Horsnell R, Love B, Burridge AJ, Gardner KA, Jackson R, Leigh FJ, Ligeza A, Heuer S, Bentley AR, Howell P. A new winter wheat genetic resource harbors untapped diversity from synthetic hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:73. [PMID: 38451354 PMCID: PMC10920491 DOI: 10.1007/s00122-024-04577-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
KEY MESSAGE The NIAB_WW_SHW_NAM population, a large nested association mapping panel, is a useful resource for mapping QTL from synthetic hexaploid wheat that can improve modern elite wheat cultivars. The allelic richness harbored in progenitors of hexaploid bread wheat (Triticum aestivum L.) is a useful resource for addressing the genetic diversity bottleneck in modern cultivars. Synthetic hexaploid wheat (SHW) is created through resynthesis of the hybridisation events between the tetraploid (Triticum turgidum subsp. durum Desf.) and diploid (Aegilops tauschii Coss.) bread wheat progenitors. We developed a large and diverse winter wheat nested association mapping (NAM) population (termed the NIAB_WW_SHW_NAM) consisting of 3241 genotypes derived from 54 nested back-cross 1 (BC1) populations, each formed via back-crossing a different primary SHW into the UK winter wheat cultivar 'Robigus'. The primary SHW lines were created using 15 T. durum donors and 47 Ae. tauschii accessions that spanned the lineages and geographical range of the species. Primary SHW parents were typically earlier flowering, taller and showed better resistance to yellow rust infection (Yr) than 'Robigus'. The NIAB_WW_SHW_NAM population was genotyped using a single nucleotide polymorphism (SNP) array and 27 quantitative trait loci (QTLs) were detected for flowering time, plant height and Yr resistance. Across multiple field trials, a QTL for Yr resistance was found on chromosome 4D that corresponded to the Yr28 resistance gene previously reported in other SHW lines. These results demonstrate the value of the NIAB_WW_SHW_NAM population for genetic mapping and provide the first evidence of Yr28 working in current UK environments and genetic backgrounds. These examples, coupled with the evidence of commercial wheat breeders selecting promising genotypes, highlight the potential value of the NIAB_WW_SHW_NAM to variety improvement.
Collapse
Affiliation(s)
- Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | - Richard Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Bethany Love
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Keith A Gardner
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - Robert Jackson
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Aleksander Ligeza
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Processors and Growers Research Organization (PGRO), The Research Station, Thornhaugh, Peterborough, PE8 6HJ, UK
| | - Sigrid Heuer
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Philip Howell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| |
Collapse
|
12
|
Li H, Zhu L, Fan R, Li Z, Liu Y, Shaheen A, Nie F, Li C, Liu X, Li Y, Liu W, Yang Y, Guo T, Zhu Y, Bu M, Li C, Liang H, Bai S, Ma F, Guo G, Zhang Z, Huang J, Zhou Y, Song CP. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc 2024; 19:281-312. [PMID: 38017137 DOI: 10.1038/s41596-023-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Can Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuqin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenjuan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingying Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tutu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengchen Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenglin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
13
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
14
|
Bokaei AS, Sofalian O, Sorkhilalehloo B, Asghari A, Pour-Aboughadareh A. Deciphering the level of genetic diversity in some aegilops species using CAAT box-derived polymorphism (CBDP) and start codon target polymorphism (SCoT) markers. Mol Biol Rep 2023:10.1007/s11033-023-08488-0. [PMID: 37219668 DOI: 10.1007/s11033-023-08488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Maintaining genetic diversity is of the most essential principle for a long-term conservation of plant genetic resources and could play a crucial role in their management. The genus Aegilops is one important member of wheat germplasm, and there are evidences that novel genes of this genus' species can be studied/utilized as ideal sources for the wheat cultivar improvement. The objective of this study was to dissect the genetic diversity and population structure among a set of Iranian Aegilops using two gene-based molecular markers. METHODS AND RESULTS This study investigated the level of genetic diversity among 157 Aegilops accessions consisting of Ae. tauschii Coss. (DD genome), Ae. crassa Boiss. (DDMM genome), and Ae. cylindrica Host. (CCDD genome) belonging to NPGBI using two sets of CBDP and SCoT markers. The SCoT and CBDP primers yielded 171 and 174 fragments, out of which 145 (90.23%) and 167 (97.66%) fragments were polymorphic, respectively. The average of polymorphism information content (PIC)/ marker index (MI)/resolving power (Rp) for SCoT and CBDP markers were 0.32/3.59/16.03 and 0.29/3.01/16.26, respectively. Results of AMOVA revealed the genetic variability within species was greater than the variation observed among them (SCoT: 88% vs. 12%; CBDP: 72% vs. 28%; SCoT + CBDP: 80% vs. 20%). Based on the information obtained from both markers, the higher level of genetic diversity was found in Ae. tauschii as compared to other species. The grouping patterns obtained by Neighbor-joining algorithms, principal coordinate analysis (PCoA), and Bayesian-model-based structure were consistent with each other and resulted in grouping all studied accessions according to their genomic constitutions. CONCLUSION The results of this study revealed a high level of genetic diversity among Iranian Aegilops germplasm. Moreover, SCoT and CBDP marker systems were efficient in deciphering DNA polymorphism and classification of Aegilops germplasm.
Collapse
Affiliation(s)
- Ali Sajjad Bokaei
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Omid Sofalian
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Behzad Sorkhilalehloo
- Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Asghari
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
15
|
Ma H, Lin J, Mei F, Mao H, Li QQ. Differential alternative polyadenylation of homoeologous genes of allohexaploid wheat ABD subgenomes during drought stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:499-518. [PMID: 36786697 DOI: 10.1111/tpj.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Because allohexaploid wheat genome contains ABD subgenomes, how the expression of homoeologous genes is coordinated remains largely unknown, particularly at the co-transcriptional level. Alternative polyadenylation (APA) is an important part of co-transcriptional regulation, which is crucial in developmental processes and stress responses. Drought stress is a major threat to the stable yield of wheat. Focusing on APA, we used poly(A) tag sequencing to track poly(A) site dynamics in wheat under drought stress. The results showed that drought stress led to extensive APA involving 37-47% of differentially expressed genes in wheat. Significant poly(A) site switching was found in stress-responsive genes. Interestingly, homoeologous genes exhibit unequal numbers of poly(A) sites, divergent APA patterns with tissue specificity and time-course dynamics, and distinct 3'-UTR length changes. Moreover, differentially expressed transcripts in leaves and roots used different poly(A) signals, the up- and downregulated isoforms had distinct preferences for non-canonical poly(A) sites. Genes that encode key polyadenylation factors showed differential expression patterns under drought stress. In summary, poly(A) signals and the changes in core poly(A) factors may widely affect the selection of poly(A) sites and gene expression levels during the response to drought stress, and divergent APA patterns among homoeologous genes add extensive plasticity to this responsive network. These results not only reveal the significant role of APA in drought stress response, but also provide a fresh perspective on how homoeologous genes contribute to adaptability through transcriptome diversity. In addition, this work provides information about the ends of transcripts for a better annotation of the wheat genome.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
16
|
Zhao X, Guo Y, Kang L, Yin C, Bi A, Xu D, Zhang Z, Zhang J, Yang X, Xu J, Xu S, Song X, Zhang M, Li Y, Kear P, Wang J, Liu Z, Fu X, Lu F. Population genomics unravels the Holocene history of bread wheat and its relatives. NATURE PLANTS 2023; 9:403-419. [PMID: 36928772 DOI: 10.1038/s41477-023-01367-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Deep knowledge of crop biodiversity is essential to improving global food security. Despite bread wheat serving as a keystone crop worldwide, the population history of bread wheat and its relatives, both cultivated and wild, remains elusive. By analysing whole-genome sequences of 795 wheat accessions, we found that bread wheat originated from the southwest coast of the Caspian Sea and underwent a slow speciation process, lasting ~3,300 yr owing to persistent gene flow from its relatives. Soon after, bread wheat spread across Eurasia and reached Europe, South Asia and East Asia ~7,000 to ~5,000 yr ago, shaping a diversified but occasionally convergent adaptive landscape in novel environments. By contrast, the cultivated relatives of bread wheat experienced a population decline by ~82% over the past ~2,000 yr due to the food choice shift of humans. Further biogeographical modelling predicted a continued population shrinking of many bread wheat relatives in the coming decades because of their vulnerability to the changing climate. These findings will guide future efforts in protecting and utilizing wheat biodiversity to enhance global wheat production.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daxing Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohan Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyue Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Ming Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Philip Kear
- International Potato Center-China Center for Asia and the Pacific, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Yang Y, Cui L, Lu Z, Li G, Yang Z, Zhao G, Kong C, Li D, Chen Y, Xie Z, Chen Z, Zhang L, Xia C, Liu X, Jia J, Kong X. Genome sequencing of Sitopsis species provides insights into their contribution to the B subgenome of bread wheat. PLANT COMMUNICATIONS 2023:100567. [PMID: 36855304 PMCID: PMC10363506 DOI: 10.1016/j.xplc.2023.100567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Wheat (Triticum aestivum, BBAADD) is an allohexaploid species that originated from two polyploidization events. The progenitors of the A and D subgenomes have been identified as Triticum urartu and Aegilops tauschii, respectively. Current research suggests that Aegilops speltoides is the closest but not the direct ancestor of the B subgenome. However, whether Ae. speltoides has contributed genomically to the wheat B subgenome and which chromosome regions are conserved between Ae. speltoides and the B subgenome remain unclear. Here, we assembled a high-quality reference genome for Ae. speltoides, resequenced 53 accessions from seven species (Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Ae. speltoides, Aegilops mutica [syn. Amblyopyrum muticum], and Triticum dicoccoides) and revealed their genomic contributions to the wheat B subgenome. Our results showed that centromeric regions were particularly conserved between Aegilops and Triticum and revealed 0.17 Gb of conserved blocks between Ae. speltoides and the B subgenome. We classified five groups of conserved and non-conserved genes between Aegilops and Triticum, revealing their biological characteristics, differentiation in gene expression patterns, and collinear relationships between Ae. speltoides and the wheat B subgenome. We also identified gene families that expanded in Ae. speltoides during its evolution and 789 genes specific to Ae. speltoides. These genes can serve as genetic resources for improvement of adaptability to biotic and abiotic stress. The newly constructed reference genome and large-scale resequencing data for Sitopsis species will provide a valuable genomic resource for wheat genetic improvement and genomic studies.
Collapse
Affiliation(s)
- Yuxin Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Licao Cui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guangyao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuizheng Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaoyu Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongxu Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Kou H, Zhang Z, Yang Y, Wei C, Xu L, Zhang G. Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040880. [PMID: 36840228 PMCID: PMC9966637 DOI: 10.3390/plants12040880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/02/2023]
Abstract
Aegilops tauschii is one of the malignant weeds that affect wheat production and is also the wild species ancestor of the D genome of hexaploid wheat (Triticum aestivum, AABBDD). It contains many disease resistance genes that have been lost in the long-term evolution of wheat and is an important genetic resource for the mining and utilization of wheat disease resistance genes. In recent years, the genome sequence of Aegilops tauschii has been preliminarily completed, which has laid a good foundation for the further exploration of wheat disease resistance genes in Aegilops tauschii. There are many studies on disease resistance genes in Aegilops tauschii; in order to provide better help for the disease resistance breeding of wheat, this paper analyzes and reviews the relationship between Aegilops tauschii and wheat, the research progress of Aegilops tauschii, the discovery of disease resistance genes from Aegilops tauschii, and the application of disease resistance genes from Aegilops tauschii to modern wheat breeding, providing a reference for the further exploration and utilization of Aegilops tauschii in wheat disease resistance breeding.
Collapse
Affiliation(s)
- Hongyun Kou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Zhenbo Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Yu Yang
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Changfeng Wei
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Lili Xu
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
- Shandong Shofine Seed Technology Co., Ltd., Jining 272400, China
| |
Collapse
|
19
|
Wan H, Yang F, Li J, Wang Q, Liu Z, Tang Y, Yang W. Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat. Genes (Basel) 2023; 14:283. [PMID: 36833210 PMCID: PMC9956247 DOI: 10.3390/genes14020283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Synthetic hexaploid wheat (SHW) is a useful genetic resource that can be used to improve the performance of common wheat by transferring favorable genes from a wide range of tetraploid or diploid donors. From the perspectives of physiology, cultivation, and molecular genetics, the use of SHW has the potential to increase wheat yield. Moreover, genomic variation and recombination were enhanced in newly formed SHW, which could generate more genovariation or new gene combinations compared to ancestral genomes. Accordingly, we presented a breeding strategy for the application of SHW-the 'large population with limited backcrossing method'-and we pyramided stripe rust resistance and big-spike-related QTLs/genes from SHW into new high-yield cultivars, which represents an important genetic basis of big-spike wheat in southwestern China. For further breeding applications of SHW-derived cultivars, we used the 'recombinant inbred line-based breeding method' that combines both phenotypic and genotypic evaluations to pyramid multi-spike and pre-harvest sprouting resistance QTLs/genes from other germplasms to SHW-derived cultivars; consequently, we created record-breaking high-yield wheat in southwestern China. To meet upcoming environmental challenges and continuous global demand for wheat production, SHW with broad genetic resources from wild donor species will play a major role in wheat breeding.
Collapse
Affiliation(s)
- Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Fan Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yonglu Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
20
|
Li S, Li X, Li S, Liu Y, Zang T, Hao M, Zhang L, Huang L, Jiang B, Yuan Z, Chen X, Chen X, Liu D, Ning S. Variation in the tonoplast cadmium transporter heavy metal ATPase 3 (HMA3) homolog gene in Aegilops tauschii. PLoS One 2023; 18:e0279707. [PMID: 36867624 PMCID: PMC9983875 DOI: 10.1371/journal.pone.0279707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/13/2022] [Indexed: 03/04/2023] Open
Abstract
The functionality of HMA3 is a key determinant controlling Cd accumulation in the shoots and grains of plants. Wild relatives of modern crop plants can serve as sources of valuable genetic variation for various traits. Here, resequencing of HMA3 homoeologous genes from Aegilops tauschii (the donor of the wheat D genome) was carried out to identify natural variation at both the nucleotide and polypeptide levels. HMA3 homoeologs are highly conserved, and 10 haplotypes were revealed based on 19 single nucleotide polymorphisms (eight induced single amino acid residue substitutions, including 2 altered amino acids in transmembrane domains) in 80 widely distributed Ae. tauschii accessions. The results provide genetic resources for low/no Cd concentration wheat improvement.
Collapse
Affiliation(s)
- Shengke Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shijie Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu’e Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianqing Zang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
21
|
Su C, Xu Z, Shan X, Cai B, Zhao H, Zhang J. Cell-type-specific co-expression inference from single cell RNA-sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.13.520181. [PMID: 36561173 DOI: 10.1101/2022.04.07.487499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The inference of gene co-expressions from microarray and RNA-sequencing data has led to rich insights on biological processes and disease mechanisms. However, the bulk samples analyzed in most studies are a mixture of different cell types. As a result, the inferred co-expressions are confounded by varying cell type compositions across samples and only offer an aggregated view of gene regulations that may be distinct across different cell types. The advancement of single cell RNA-sequencing (scRNA-seq) technology has enabled the direct inference of co-expressions in specific cell types, facilitating our understanding of cell-type-specific biological functions. However, the high sequencing depth variations and measurement errors in scRNA-seq data present significant challenges in inferring cell-type-specific gene co-expressions, and these issues have not been adequately addressed in the existing methods. We propose a statistical approach, CS-CORE, for estimating and testing cell-type-specific co-expressions, built on a general expression-measurement model that explicitly accounts for sequencing depth variations and measurement errors in the observed single cell data. Systematic evaluations show that most existing methods suffer from inflated false positives and biased co-expression estimates and clustering analysis, whereas CS-CORE has appropriate false positive control, unbiased co-expression estimates, good statistical power and satisfactory performance in downstream co-expression analysis. When applied to analyze scRNA-seq data from postmortem brain samples from Alzheimer’s disease patients and controls and blood samples from COVID-19 patients and controls, CS-CORE identified cell-type-specific co-expressions and differential co-expressions that were more reproducible and/or more enriched for relevant biological pathways than those inferred from other methods.
Collapse
|
22
|
Zeibig F, Kilian B, Frei M. The grain quality of wheat wild relatives in the evolutionary context. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4029-4048. [PMID: 34919152 PMCID: PMC9729140 DOI: 10.1007/s00122-021-04013-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat (Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAAmAm genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.
Collapse
Affiliation(s)
- Frederike Zeibig
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany.
| |
Collapse
|
23
|
Mahjoob MMM, Kamal NM, Gorafi YSA, Tsujimoto H. Genome-wide association study reveals distinct genetic associations related to leaf hair density in two lineages of wheat-wild relative Aegilops tauschii. Sci Rep 2022; 12:17486. [PMID: 36261481 PMCID: PMC9581923 DOI: 10.1038/s41598-022-21713-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Wild relatives of modern crops represent a promising source of genetic variation that can be mined for adaptations to climate change. Aegilops tauschii, the D-sub-genome progenitor of bread wheat (Triticum aestivum), constitutes a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Leaf hairiness plays an essential biological role in plant defense against biotic and abiotic stress. We investigated the natural variation in leaf hair density (LHD) among 293 Ae. tauschii accessions. Genome-wide association studies were performed for LHD with 2430 and 3880 DArTseq derived single nucleotide polymorphism (SNP) markers in two lineages of this species, TauL1 and TauL2, respectively. In TauL1, three marker-trait associations (MTAs) were located on chromosome 2D, whereas in TauL2, eight MTAs were identified, two associations were localized on each of the chromosomes 2D, 3D, 5D, and 7D. The markers explained phenotypic variation (R2) from 9 to 13% in TauL1 and 11 to 36% in TauL2. The QTLs identified in chromosomes 2D and 5D might be novel. Our results revealed more rapid and independent evolution of LHD in TauL2 compared to TauL1. The majority of LHD candidate genes identified are associated with biotic and abiotic stress responses. This study highlights the significance of intraspecific diversity of Ae. tauschii to enhance cultivated wheat germplasm.
Collapse
Affiliation(s)
- Mazin Mahjoob Mohamed Mahjoob
- United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
| | - Nasrein Mohamed Kamal
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Yasir Serag Alnor Gorafi
- Wheat Research Program, Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
24
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
25
|
Wang A, Baskin CC, Baskin JM, Ding J. Seed position in spikelet as a contributing factor to the success of the winter annual invasive grass Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2022; 13:916451. [PMID: 35991416 PMCID: PMC9390215 DOI: 10.3389/fpls.2022.916451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/06/2022] [Indexed: 05/29/2023]
Abstract
Seed position - dependent effects on seed dormancy/germination are well documented at the inflorescence/infructescence level, but less is known about seeds at different positions within a dispersal unit. For the invasive winter annual grass Aegilops tauschii, we quantified morphology, mass and dormancy/germination of seeds from basal (1), middle (2), and distal (3) positions in two spikelet types (Left and Right). We also investigated seedling emergence, survival, plant size and seed production of plants from seeds in different spikelet positions of two spikelet types under different soil nutrient and water conditions. We found that these seed, seedling and plant traits performed as mirror images between the Left and Right spikelet types. The middle seed was significantly the longest and had the maximum mass, while the basal seed was the shortest and had medium mass. Middle seeds had the highest increase in mass during imbibition and the highest germination percentages and rates, while basal seeds had the lowest. Seedling emergence and survival, plant size and seed production for each position of seeds were highest in the added fertilizer combined with regular watering treatment and lowest in the no fertilizer combined with natural moisture, while height of plants derived from the middle and the distal seeds was significantly higher than that of plants derived from the basal seeds under all soil nutrient and water conditions. Seedling survival, number of tillers per plant and seed production per plant from the middle and distal seeds were significantly lower than those from basal seeds under all soil nutrient and water treatments. The considerable variation in seedling emergence and survival, plant size and seed production between seeds in different positions in the spikelet results in much flexibility in all stages of the life cycle, thereby likely contributing to the invasiveness of A. tauschii.
Collapse
Affiliation(s)
- AiBo Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Carol C. Baskin
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Jerry M. Baskin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
26
|
Minaei S, Mohammadi SA, Sabouri A, Dadras AR. High genetic diversity in Aegilops tauschii Coss. accessions from North Iran as revealed by IRAP and REMAP markers. J Genet Eng Biotechnol 2022; 20:86. [PMID: 35696009 PMCID: PMC9192835 DOI: 10.1186/s43141-022-00363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Aegilops tauschii Coss. as a donor of wheat D genome has an important role in wheat breeding programs. Genetic and phylogeographic diversity of 79 Ae. tauschii accessions collected from north and northwest of Iran were analyzed based on retroelement insertional polymorphisms using inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers. RESULTS In total, 306 and 151 polymorphic bands were amplified in IRAP and REMAP analyses, respectively. As a result, a high level of polymorphism was observed among the studied accessions as revealed by an average of 25.5 bands per primer/primer combination and mean PIC value of 0.47 in IRAP and an average of 25.16 bands per primer combination and mean PIC value of 0.47 in REMAP. Genetic relationships of the accessions were analyzed using distance- and model-based cluster analyses. CONCLUSION The result showed that genetic distance did not seem to be related to geographic distribution, and the accessions could be divided into three groups, which was further supported by principal coordinate analysis. These results on genetic diversity and population structure of Ae. tauschii in Iran should provide important knowledge on genetic resources and their applications in wheat breeding programs.
Collapse
Affiliation(s)
- Sona Minaei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. .,Center of Excellence in Cereal Molecular Breeding, University of Tabriz, Tabriz, Iran. .,Department of Life Sciences, Center for Cell Pathology, Khazar University, Baku, AZ1096, Azerbaijan.
| | - Atefeh Sabouri
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Ahmad Reza Dadras
- Department of Crop and Horticultural Research, Zanjan Agricultural and Natural Resource Research and Education, AREEO, Zanjan, Iran
| |
Collapse
|
27
|
Hao M, Zhang L, Huang L, Ning S, Yuan Z, Jiang B, Yan Z, Wu B, Zheng Y, Liu D. 渗入杂交与小麦杂种优势. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Xue S, Hu S, Chen X, Ma Y, Lu M, Bai S, Wang X, Sun T, Wang Y, Wan H, An X, Li S. Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1657-1669. [PMID: 35234985 DOI: 10.1007/s00122-022-04061-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 05/26/2023]
Abstract
The powdery mildew resistance gene Pm58 was traced to a 141.3-kb interval with the co-segregating marker Xkasp68500 in wheat breeding. Pm58 is a powdery mildew resistance gene identified in Aegilops tauschii accession TA1662 and effective in a common wheat background. To finely map Pm58, an F2 population of 676 plants derived from the cross T093 × TA1662 was used for recombinant screening. We obtained 13 recombinants that occurred between the flanking markers Xhnu670 and Xhnu186. Genotyping and phenotyping these recombinant F2:3 families delimited Pm58 to a 0.22-cM interval (Xsts20220-Xkasp61553) on chromosome arm 2DS. The region carrying the Pm58 locus was approximately 141.3-kb, which contained eight annotated genes according to the reference genome sequence of Ae. tauschii AL8/78. Haplotype analysis of 178 Ae. tauschii accessions using the candidate gene-specific markers identified a disease resistance gene AET2Gv20068500 as a candidate for Pm58. Comparative mapping of the Pm58-containing interval revealed two presence/absence variations (PAVs) between AL8/78 and common wheat Chinese Spring. PAV-1 resides in the 3'-end of AET2Gv20068500. The majority of 158 common wheat cultivars (84.8%) displayed the absence of a 14.1-kb fragment in the PAV-1 region, which was confirmed by aligning the targeted genome sequences of the other sequenced Ae. tauschii accessions and common wheat cultivars. A co-segregating marker Xkasp68500 developed from AET2Gv20068500 can distinguish TA1662 from all randomly selected common wheat cultivars and will be instrumental for tracking Pm58 in breeding programs.
Collapse
Affiliation(s)
- Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China.
| | - Shanshan Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Xian Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Yuyu Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Mingxue Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Xintian Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Tiepeng Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Yingxue Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Xia An
- Zibo Academy of Agricultural Sciences, Zibo, 255000, Shandong, China
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
29
|
Avni R, Lux T, Minz‐Dub A, Millet E, Sela H, Distelfeld A, Deek J, Yu G, Steuernagel B, Pozniak C, Ens J, Gundlach H, Mayer KFX, Himmelbach A, Stein N, Mascher M, Spannagl M, Wulff BBH, Sharon A. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:179-192. [PMID: 34997796 PMCID: PMC10138734 DOI: 10.1111/tpj.15664] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 05/20/2023]
Abstract
Aegilops is a close relative of wheat (Triticum spp.), and Aegilops species in the section Sitopsis represent a rich reservoir of genetic diversity for the improvement of wheat. To understand their diversity and advance their utilization, we produced whole-genome assemblies of Aegilops longissima and Aegilops speltoides. Whole-genome comparative analysis, along with the recently sequenced Aegilops sharonensis genome, showed that the Ae. longissima and Ae. sharonensis genomes are highly similar and are most closely related to the wheat D subgenome. By contrast, the Ae. speltoides genome is more closely related to the B subgenome. Haplotype block analysis supported the idea that Ae. speltoides genome is closest to the wheat B subgenome, and highlighted variable and similar genomic regions between the three Aegilops species and wheat. Genome-wide analysis of nucleotide-binding leucine-rich repeat (NLR) genes revealed species-specific and lineage-specific NLR genes and variants, demonstrating the potential of Aegilops genomes for wheat improvement.
Collapse
Affiliation(s)
- Raz Avni
- Wise Faculty of Life Sciences, Institute for Cereal Crops Improvement and School of Plant Sciences and Food SecurityTel Aviv UniversityTel Aviv6997801Israel
- Present address: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenCorrensstrasse 3Seeland06466Germany
| | - Thomas Lux
- Plant Genome and Systems Biology (PGSB)Helmholtz‐Center MunichIngolstädter Landstraße 1NeuherbergD‐85764Germany
| | - Anna Minz‐Dub
- Wise Faculty of Life Sciences, Institute for Cereal Crops ImprovementTel Aviv UniversityTel Aviv6997801Israel
| | - Eitan Millet
- Wise Faculty of Life Sciences, Institute for Cereal Crops ImprovementTel Aviv UniversityTel Aviv6997801Israel
| | - Hanan Sela
- Wise Faculty of Life Sciences, Institute for Cereal Crops Improvement and School of Plant Sciences and Food SecurityTel Aviv UniversityTel Aviv6997801Israel
- Present address: Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of EvolutionUniversity of Haifa199 Aba Khoushy Ave., Mount CarmelHaifa3498838Israel
| | - Assaf Distelfeld
- Wise Faculty of Life Sciences, Institute for Cereal Crops Improvement and School of Plant Sciences and Food SecurityTel Aviv UniversityTel Aviv6997801Israel
- Present address: Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of EvolutionUniversity of Haifa199 Aba Khoushy Ave., Mount CarmelHaifa3498838Israel
| | - Jasline Deek
- Wise Faculty of Life Sciences, Institute for Cereal Crops Improvement and School of Plant Sciences and Food SecurityTel Aviv UniversityTel Aviv6997801Israel
| | - Guotai Yu
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Present address: Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | | | - Curtis Pozniak
- Department of Plant Sciences and Crop Development Centre, College of Agriculture and BioresourcesUniversity of SaskatchewanCampus Drive 51SaskatoonS7N 5A8Canada
| | - Jennifer Ens
- Department of Plant Sciences and Crop Development Centre, College of Agriculture and BioresourcesUniversity of SaskatchewanCampus Drive 51SaskatoonS7N 5A8Canada
| | - Heidrun Gundlach
- Plant Genome and Systems Biology (PGSB)Helmholtz‐Center MunichIngolstädter Landstraße 1NeuherbergD‐85764Germany
| | - Klaus F. X. Mayer
- Plant Genome and Systems Biology (PGSB)Helmholtz‐Center MunichIngolstädter Landstraße 1NeuherbergD‐85764Germany
- Faculty of Life SciencesTechnical University MunichWeihenstephanMunichD‐80333Germany
| | - Axel Himmelbach
- Center of Integrated Breeding Research (CiBreed), Department of Crop SciencesGeorg‐August‐UniversityVon Siebold Str. 8Göttingen37075Germany
| | - Nils Stein
- Center of Integrated Breeding Research (CiBreed), Department of Crop SciencesGeorg‐August‐UniversityVon Siebold Str. 8Göttingen37075Germany
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenCorrensstrasse 3Seeland06466Germany
| | - Martin Mascher
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenCorrensstrasse 3Seeland06466Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigPuschstrasse 4LeipzigD‐04103Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology (PGSB)Helmholtz‐Center MunichIngolstädter Landstraße 1NeuherbergD‐85764Germany
| | - Brande B. H. Wulff
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Present address: Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Amir Sharon
- Wise Faculty of Life Sciences, Institute for Cereal Crops Improvement and School of Plant Sciences and Food SecurityTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
30
|
He F, Wang W, Rutter WB, Jordan KW, Ren J, Taagen E, DeWitt N, Sehgal D, Sukumaran S, Dreisigacker S, Reynolds M, Halder J, Sehgal SK, Liu S, Chen J, Fritz A, Cook J, Brown-Guedira G, Pumphrey M, Carter A, Sorrells M, Dubcovsky J, Hayden MJ, Akhunova A, Morrell PL, Szabo L, Rouse M, Akhunov E. Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nat Commun 2022; 13:826. [PMID: 35149708 PMCID: PMC8837796 DOI: 10.1038/s41467-022-28453-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022] Open
Abstract
Allopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is strongly affected by both selection and demographic events. Though trans-acting effects play major role in expression regulation, the expression dosage of homoeologs is largely influenced by cis-acting variants, which appear to be subjected to selection. The frequency and expression of homoeologous gene alleles showing strong expression dosage bias are predictive of variation in yield-related traits, and have likely been impacted by breeding for increased productivity. Our study highlights the importance of genomic variants affecting homoeolog expression dosage in shaping agronomic phenotypes and points at their potential utility for improving yield in polyploid crops.
Collapse
Affiliation(s)
- Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA
| | - William B Rutter
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC, USA
| | - Katherine W Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Jie Ren
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Ellie Taagen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Noah DeWitt
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | | | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Sunish Kumar Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jason Cook
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Gina Brown-Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Mike Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Mark Sorrells
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Matthew J Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Les Szabo
- USDA-ARS Cereal Disease Lab, St. Paul, MN, USA
| | | | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA. .,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
31
|
Awan MJA, Rasheed A, Saeed NA, Mansoor S. Aegilops tauschii presents a genetic roadmap for hexaploid wheat improvement. Trends Genet 2022; 38:307-309. [DOI: 10.1016/j.tig.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
32
|
Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat Biotechnol 2022; 40:422-431. [PMID: 34725503 PMCID: PMC8926922 DOI: 10.1038/s41587-021-01058-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023]
Abstract
Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.
Collapse
|
33
|
Zhang S, Du P, Lu X, Fang J, Wang J, Chen X, Chen J, Wu H, Yang Y, Tsujimoto H, Chu C, Qi Z. Frequent numerical and structural chromosome changes in early generations of synthetic hexaploid wheat. Genome 2021; 65:205-217. [PMID: 34914567 DOI: 10.1139/gen-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modern hexaploid wheat (Triticum aestivum L.; AABBDD) evolved from a hybrid of tetraploid wheat (closely related to Triticum turgidum L. ssp. durum (Desf.) Husn., AABB) and goatgrass (Aegilops tauschii Coss., DD). Variations in chromosome structure and ploidy played important roles in wheat evolution. How these variations occurred and their role in expanding the genetic diversity in modern wheat is mostly unknown. Synthetic hexaploid wheat (SHW) can be used to investigate chromosome variation that occurs during the early generations of existence. SHW lines derived by crossing durum wheat 'Langdon' with twelve Ae. tauschii accessions were analyzed using oligonucelotide probe multiplex fluorescence in situ hybridization (FISH) to metaphase chromosomes and SNP markers. Cluster analysis based on SNP markers categorized them into three groups. Among 702 plants from the S8 and S9 generations, 415 (59.12%) carried chromosome variations involving all 21 chromosomes but with different frequencies for each chromosome and sub-genome. Total chromosome variation frequencies varied between lines, but there was no significant difference among the three groups. The non-random chromosome variations in SHW lines detected in this research may be an indication that similar variations occurred in the early stages of wheat polyploidization and played important roles in wheat evolution.
Collapse
Affiliation(s)
- Siyu Zhang
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Pei Du
- Henan Academy of Agricultural Sciences, 74728, Henan Academy of Crop Molecular Breeding, Zhengzhou, Henan, China;
| | - Xueying Lu
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jiaxin Fang
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jiaqi Wang
- Nanjing Agricultural University, 70578, Weigang No.1, Nanjing, Jiangsu, China, 210095;
| | - Xuejun Chen
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Jianyong Chen
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Hao Wu
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Yang Yang
- Zaozhuang University, 372543, Zaozhuang, Shandong, China;
| | - Hisashi Tsujimoto
- Tottori University, 13114, Arid Land Research Center, Hamasaka, Tottori, Japan;
| | - Chenggen Chu
- USDA ARS, 17123, Fargo, North Dakota, United States;
| | - Zengjun Qi
- Nanjing Agricultural University, 70578, Weigang 1,Nanjing, Nanjing, China, 210095;
| |
Collapse
|
34
|
Zhao X, Fu X, Yin C, Lu F. Wheat speciation and adaptation: perspectives from reticulate evolution. ABIOTECH 2021; 2:386-402. [PMID: 36311810 PMCID: PMC9590565 DOI: 10.1007/s42994-021-00047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Reticulate evolution through the interchanging of genetic components across organisms can impact significantly on the fitness and adaptation of species. Bread wheat (Triticum aestivum subsp. aestivum) is one of the most important crops in the world. Allopolyploid speciation, frequent hybridization, extensive introgression, and occasional horizontal gene transfer (HGT) have been shaping a typical paradigm of reticulate evolution in bread wheat and its wild relatives, which is likely to have a substantial influence on phenotypic traits and environmental adaptability of bread wheat. In this review, we outlined the evolutionary history of bread wheat and its wild relatives with a highlight on the interspecific hybridization events, demonstrating the reticulate relationship between species/subspecies in the genera Triticum and Aegilops. Furthermore, we discussed the genetic mechanisms and evolutionary significance underlying the introgression of bread wheat and its wild relatives. An in-depth understanding of the evolutionary process of Triticum species should be beneficial to future genetic study and breeding of bread wheat.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2021; 150:179-193. [PMID: 33393064 DOI: 10.1007/s11120-020-00812-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
The frequency and severity of heat waves are expected to increase in the near future, with a significant impact on physiological functions and yield of crop plants. In this study, we assessed the residual post-heat stress effects on photosynthetic responses of six diverse winter wheat (Triticum sp.) genotypes, differing in country of origin, taxonomy and ploidy (tetraploids vs. hexaploids). After 5 days of elevated temperatures (up to 38 °C), the photosynthetic parameters recorded on the first day of recovery (R1) as well as after the next 4-5 days of the recovery (R2) were compared to those of the control plants (C) grown under moderate temperatures. Based on the values of CO2 assimilation rate (A) and the maximum rates of carboxylation (VCmax) in R1, we identified that the hexaploid (HEX) and tetraploid (TET) species clearly differed in the strength of their response to heat stress. Next, the analyses of gas exchange, simultaneous measurements of PSI and PSII photochemistry and the measurements of electrochromic bandshift (ECS) have consistently shown that photosynthetic and photoprotective functions in leaves of TET genotypes were almost fully recovered in R2, whereas the recovery of photosynthetic and photoprotective functions in the HEX group in R2 was still rather low. A poor recovery was associated with an overly reduced acceptor side of photosystem I as well as high values of the electric membrane potential (Δψ component of the proton motive force, pmf) in the chloroplast. On the other hand, a good recovery of photosynthetic capacity and photoprotective functions was clearly associated with an enhanced ΔpH component of the pmf, thus demonstrating a key role of efficient regulation of proton transport to ensure buildup of the transthylakoid proton gradient needed for photosynthesis restoration after high-temperature episodes.
Collapse
Affiliation(s)
- Erik Chovancek
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, People's Republic of China
| | | |
Collapse
|
36
|
Genetic Analysis of Hexaploid Wheat ( Triticum aestivum L.) Using the Complete Sequencing of Chloroplast DNA and Haplotype Analysis of the Wknox1 Gene. Int J Mol Sci 2021; 22:ijms222312723. [PMID: 34884525 PMCID: PMC8657936 DOI: 10.3390/ijms222312723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of the presented study is a genetic characterization of the hexaploid wheat Triticum aestivum L. Two approaches were used for the genealogical study of hexaploid wheats—the complete sequencing of chloroplast DNA and PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth-exon region of Wknox1b. The complete chloroplast DNA sequences of 13 hexaploid wheat samples were determined: Free-threshing—T. aestivum subsp. aestivum, one sample; T. aestivum subsp. compactum, two samples; T. aestivum subsp. sphaerococcum, one sample; T. aestivum subsp. carthlicoides, four samples. Hulled—T. aestivum subsp. spelta, three samples; T. aestivum subsp. vavilovii jakubz., two samples. The comparative analysis of complete cpDNA sequences of 20 hexaploid wheat samples (13 samples in this article plus 7 samples sequenced in this laboratory in 2018) was carried out. PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth exon region of Wknox1b of all 20 hexaploid wheat samples was carried out. The 20 hexaploid wheat samples (13 samples in this article plus 7 samples in 2018) can be divided into two groups—T. aestivum subsp. spelta, three samples and T. aestivum subsp. vavilovii collected in Armenia, and the remaining 16 samples, including T. aestivum subsp. vavilovii collected in Europe (Sweden). If we take the cpDNA of Chinese Spring as a reference, 25 SNPs can be identified. Furthermore, 13–14 SNPs can be identified in T. aestivum subsp. spelta and subsp. vavilovii (Vav1). In the other samples up to 11 SNPs were detected. 22 SNPs are found in the intergenic regions, 2 found in introns, and 10 SNPs were found in the genes, of which seven are synonymous. PCR-based haplotype analysis of the fourth intron of Wknox1d and the fifth-to-sixth-exon region of Wknox1b provides an opportunity to make an assumption that hexaploid wheats T. aestivum subsp. macha var. palaeocolchicum and var. letshckumicum differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of Wknox1d. One possible explanation for this observation would be that two Aegilops tauschii Coss. (A) and (B) participated in the formation of hexaploids through the D genome: Ae. tauschii (A)—macha (1–5, 7, 8, 10–12), and Ae. tauschii (B)—macha M6, M9, T. aestivum subsp. aestivum cv. ‘Chinese Spring’ and cv. ‘Red Doly’.
Collapse
|
37
|
New insights into the dispersion history and adaptive evolution of taxon Aegilops tauschii in China. J Genet Genomics 2021; 49:185-194. [PMID: 34838726 DOI: 10.1016/j.jgg.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Aegilops tauschii, the wild progenitor of wheat D-genome and a valuable germplasm for wheat improvement, has a wide natural distribution from eastern Turkey to China. However, the phylogenetic relationship and dispersion history of Ae. tauschii in China has not been scientifically clarified. In this study, we genotyped 208 accessions (with 104 in China) using ddRAD sequencing and 55K SNP array, and classified the population into six sublineages. Three possible spreading routes or events were identified, resulting in specific distribution patterns, with four sublineages found in Xinjiang, one in Qinghai, two in Shaanxi and one in Henan. We also established the correlation of SNP-based, karyotype-based and spike-morphology-based techniques to demonstrate the internal classification of Ae. tauschii, and developed consensus dataset with 1245 putative accessions by merging data previously published. Our analysis suggested that eight inter-lineage accessions could be assigned to the putative Lineage 3 and these accessions would help to conserve the genetic diversity of the species. By developing the consensus phylogenetic relationships of Ae. tauschii, our work validated the hypothesis on the dispersal history of Ae. tauschii in China, and contributed to the efficient and comprehensive germplasm-mining of the species.
Collapse
|
38
|
Jordan KW, Bradbury PJ, Miller ZR, Nyine M, He F, Fraser M, Anderson J, Mason E, Katz A, Pearce S, Carter AH, Prather S, Pumphrey M, Chen J, Cook J, Liu S, Rudd JC, Wang Z, Chu C, Ibrahim AMH, Turkus J, Olson E, Nagarajan R, Carver B, Yan L, Taagen E, Sorrells M, Ward B, Ren J, Akhunova A, Bai G, Bowden R, Fiedler J, Faris J, Dubcovsky J, Guttieri M, Brown-Guedira G, Buckler E, Jannink JL, Akhunov ED. Development of the Wheat Practical Haplotype Graph Database as a Resource for Genotyping Data Storage and Genotype Imputation. G3-GENES GENOMES GENETICS 2021; 12:6423995. [PMID: 34751373 PMCID: PMC9210282 DOI: 10.1093/g3journal/jkab390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022]
Abstract
To improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the Wheat PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 92% imputation accuracy with 0.01× sequence coverage, which was slightly lower than the accuracy obtained using the 0.5× sequence coverage (96.6%). Compared to Beagle, on average, PHG imputation was ∼3.5% (P-value < 2 × 10−14) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed from a wild relative into wheat. We found reduced accuracy of imputation with independent 2× GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the database. The accuracy reduction with GBS is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of linkage disequilibrium and proportion of identity-by-descent regions among accessions in the PHG database. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher proportion of genetic variance for heading date and meiotic crossover rate compared to previous studies.
Collapse
Affiliation(s)
- Katherine W Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.,USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66502, USA
| | - Peter J Bradbury
- USDA-ARS, Plant Soil and Nutrition Research Unit, Ithaca, NY, 14853, USA
| | - Zachary R Miller
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Moses Nyine
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Max Fraser
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jim Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Esten Mason
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Andrew Katz
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Arron H Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Samuel Prather
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, 83210, USA
| | - Jason Cook
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Shuyu Liu
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Jackie C Rudd
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Zhen Wang
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Chenggen Chu
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Amir M H Ibrahim
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Jonathan Turkus
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Eric Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Brett Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Ellie Taagen
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Mark Sorrells
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Brian Ward
- USDA-ARS, Plant Science Research Unit, Raleigh, NC, 27695, USA
| | - Jie Ren
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.,Integrative Genomics Facility, Kansas State University, Manhattan, KS, 66506 USA
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.,Integrative Genomics Facility, Kansas State University, Manhattan, KS, 66506 USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66502, USA
| | - Robert Bowden
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66502, USA
| | - Jason Fiedler
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND, 58102, USA
| | - Justin Faris
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND, 58102, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - Mary Guttieri
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66502, USA
| | | | - Ed Buckler
- USDA-ARS, Plant Soil and Nutrition Research Unit, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- USDA-ARS, Plant Soil and Nutrition Research Unit, Ithaca, NY, 14853, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
39
|
Delorean E, Gao L, Lopez JFC, Wulff BBH, Ibba MI, Poland J. High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Commun Biol 2021; 4:1242. [PMID: 34725451 PMCID: PMC8560932 DOI: 10.1038/s42003-021-02563-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Central to the diversity of wheat products was the origin of hexaploid bread wheat, which added the D-genome of Aegilops tauschii to tetraploid wheat giving rise to superior dough properties in leavened breads. The polyploidization, however, imposed a genetic bottleneck, with only limited diversity introduced in the wheat D-subgenome. To understand genetic variants for quality, we sequenced 273 accessions spanning the known diversity of Ae. tauschii. We discovered 45 haplotypes in Glu-D1, a major determinant of quality, relative to the two predominant haplotypes in wheat. The wheat allele 2 + 12 was found in Ae. tauschii Lineage 2, the donor of the wheat D-subgenome. Conversely, the superior quality wheat allele 5 + 10 allele originated in Lineage 3, a recently characterized lineage of Ae. tauschii, showing a unique origin of this important allele. These two wheat alleles were also quite similar relative to the total observed molecular diversity in Ae. tauschii at Glu-D1. Ae. tauschii is thus a reservoir for unique Glu-D1 alleles and provides the genomic resource to begin utilizing new alleles for end-use quality improvement in wheat breeding programs.
Collapse
Affiliation(s)
- Emily Delorean
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Liangliang Gao
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Brande B H Wulff
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico, DF, Mexico
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
40
|
Verma AK, Mandal S, Tiwari A, Monachesi C, Catassi GN, Srivastava A, Gatti S, Lionetti E, Catassi C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods 2021; 10:2351. [PMID: 34681400 PMCID: PMC8534962 DOI: 10.3390/foods10102351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Wheat gluten contains epitopes that trigger celiac disease (CD). A life-long strict gluten-free diet is the only treatment accepted for CD. However, very low-gluten wheat may provide an alternative treatment to CD. Conventional plant breeding methods have not been sufficient to produce celiac-safe wheat. RNA interference technology, to some extent, has succeeded in the development of safer wheat varieties. However, these varieties have multiple challenges in terms of their implementation. Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) is a versatile gene-editing tool that has the ability to edit immunogenic gluten genes. So far, only a few studies have applied CRISPR/Cas9 to modify the wheat genome. In this article, we reviewed the published literature that applied CRISPR/Cas9 in wheat genome editing to investigate the current status of the CRISPR/Cas9 system to produce a low-immunogenic wheat variety. We found that in recent years, the CRISPR/Cas9 system has been continuously improved to edit the complex hexaploid wheat genome. Although some reduced immunogenic wheat varieties have been reported, CRISPR/Cas9 has still not been fully explored in terms of editing the wheat genome. We conclude that further studies are required to apply the CRISPR/Cas9 gene-editing system efficiently for the development of a celiac-safe wheat variety and to establish it as a "tool to celiac safe wheat".
Collapse
Affiliation(s)
- Anil K. Verma
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India;
| | - Aadhya Tiwari
- Department of System Biology, MD Anderson Cancer Center, Houston, TX 77030, USA;
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Chiara Monachesi
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
| | - Giulia N. Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Akash Srivastava
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA;
| | - Simona Gatti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Elena Lionetti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Carlo Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
41
|
Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. BIOLOGY 2021; 10:982. [PMID: 34681081 PMCID: PMC8533267 DOI: 10.3390/biology10100982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.
Collapse
Affiliation(s)
- Shivali Sharma
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco;
| | - Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey;
| | - Peter Werner
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| |
Collapse
|
42
|
Wang L, Zhu T, Rodriguez JC, Deal KR, Dubcovsky J, McGuire PE, Lux T, Spannagl M, Mayer KFX, Baldrich P, Meyers BC, Huo N, Gu YQ, Zhou H, Devos KM, Bennetzen JL, Unver T, Budak H, Gulick PJ, Galiba G, Kalapos B, Nelson DR, Li P, You FM, Luo MC, Dvorak J. Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3-GENES GENOMES GENETICS 2021; 11:6369516. [PMID: 34515796 PMCID: PMC8664484 DOI: 10.1093/g3journal/jkab325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat, was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.
Collapse
Affiliation(s)
- Le Wang
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Juan C Rodriguez
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Munich 85764, Germany
| | - Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.,University of Missouri, Columbia, Division of Plant Sciences, Columbia, Missouri 65211, USA
| | - Naxin Huo
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, California 94710, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, USDA-ARS, Albany, California 94710, USA
| | - Hongye Zhou
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Dept. of Crop & Soil Sciences) and Dept. of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara 06374, Turkey
| | - Hikmet Budak
- Montana BioAg Inc., Missoula, Montana 59801, USA
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Gabor Galiba
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary.,Department of Environmental Sustainability, IES, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Balázs Kalapos
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - David R Nelson
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Pingchuan Li
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C5, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C5, Canada
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
43
|
Ebrahimzadegan R, Orooji F, Ma P, Mirzaghaderi G. Differentially Amplified Repetitive Sequences Among Aegilops tauschii Subspecies and Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:716750. [PMID: 34490015 PMCID: PMC8417419 DOI: 10.3389/fpls.2021.716750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Genomic repetitive sequences commonly show species-specific sequence type, abundance, and distribution patterns, however, their intraspecific characteristics have been poorly described. We quantified the genomic repetitive sequences and performed single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and subspecies using publicly available raw genomic Illumina sequence reads and used fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The majority of the identified repetitive sequences had similar contents and proportions between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1, CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type) showed significantly lower abundances in subspecies strangulata compared with the subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S rDNA) abundances showed a high variation between genotypes but their abundances were not subspecies specific. Phylogenetic analysis using the repeat abundances of the aforementioned clusters placed the strangulata subsp. in a distinct clade but could not discriminate anathera and meyeri. A near complete differentiation of anathera and strangulata subspecies was observed using SNP analysis; however, var. meyeri showed higher genetic diversity. FISH using major tandem repeats couldn't detect differences between subspecies, although (GAA)10 signal patterns generated two different karyotype groups. Taken together, the different classes of repetitive DNA sequences have differentially accumulated between strangulata and the other two subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying that factors affecting repeatome evolution are variable even among highly closely related lineages.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Orooji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
44
|
Zhou Y, Bai S, Li H, Sun G, Zhang D, Ma F, Zhao X, Nie F, Li J, Chen L, Lv L, Zhu L, Fan R, Ge Y, Shaheen A, Guo G, Zhang Z, Ma J, Liang H, Qiu X, Hu J, Sun T, Hou J, Xu H, Xue S, Jiang W, Huang J, Li S, Zou C, Song CP. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. NATURE PLANTS 2021; 7:774-786. [PMID: 34045708 DOI: 10.1038/s41477-021-00934-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Increasing crop production is necessary to feed the world's expanding population, and crop breeders often utilize genetic variations to improve crop yield and quality. However, the narrow diversity of the wheat D genome seriously restricts its selective breeding. A practical solution is to exploit the genomic variations of Aegilops tauschii via introgression. Here, we established a rapid introgression platform for transferring the overall genetic variations of A. tauschii to elite wheats, thereby enriching the wheat germplasm pool. To accelerate the process, we assembled four new reference genomes, resequenced 278 accessions of A. tauschii and constructed the variation landscape of this wheat progenitor species. Genome comparisons highlighted diverse functional genes or novel haplotypes with potential applications in wheat improvement. We constructed the core germplasm of A. tauschii, including 85 accessions covering more than 99% of the species' overall genetic variations. This was crossed with elite wheat cultivars to generate an A. tauschii-wheat synthetic octoploid wheat (A-WSOW) pool. Laboratory and field analysis with two examples of the introgression lines confirmed its great potential for wheat breeding. Our high-quality reference genomes, genomic variation landscape of A. tauschii and the A-WSOW pool provide valuable resources to facilitate gene discovery and breeding in wheat.
Collapse
Affiliation(s)
- Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinpeng Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing, China
| | - Linlin Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Ge
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiamin Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ting Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyi Hou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Changsong Zou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
45
|
Lang J, Fu Y, Zhou Y, Cheng M, Deng M, Li M, Zhu T, Yang J, Guo X, Gui L, Li L, Chen Z, Yi Y, Zhang L, Hao M, Huang L, Tan C, Chen G, Jiang Q, Qi P, Pu Z, Ma J, Liu Z, Liu Y, Luo M, Wei Y, Zheng Y, Wu Y, Liu D, Wang J. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. THE NEW PHYTOLOGIST 2021; 230:1940-1952. [PMID: 33651378 PMCID: PMC8251712 DOI: 10.1111/nph.17312] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/16/2021] [Indexed: 05/08/2023]
Abstract
Pre-harvest sprouting (PHS), the germination of grain before harvest, is a serious problem resulting in wheat yield and quality losses. Here, we mapped the PHS resistance gene PHS-3D from synthetic hexaploid wheat to a 2.4 Mb presence-absence variation (PAV) region and found that its resistance effect was attributed to the pleiotropic Myb10-D by integrated omics and functional analyses. Three haplotypes were detected in this PAV region among 262 worldwide wheat lines and 16 Aegilops tauschii, and the germination percentages of wheat lines containing Myb10-D was approximately 40% lower than that of the other lines. Transcriptome and metabolome profiling indicated that Myb10-D affected the transcription of genes in both the flavonoid and abscisic acid (ABA) biosynthesis pathways, which resulted in increases in flavonoids and ABA in transgenic wheat lines. Myb10-D activates 9-cis-epoxycarotenoid dioxygenase (NCED) by biding the secondary wall MYB-responsive element (SMRE) to promote ABA biosynthesis in early wheat seed development stages. We revealed that the newly discovered function of Myb10-D confers PHS resistance by enhancing ABA biosynthesis to delay germination in wheat. The PAV harboring Myb10-D associated with grain color and PHS will be useful for understanding and selecting white grained PHS resistant wheat cultivars.
Collapse
|
46
|
He G, Zhang Y, Liu P, Jing Y, Zhang L, Zhu Y, Kong X, Zhao H, Zhou Y, Sun J. The transcription factor TaLAX1 interacts with Q to antagonistically regulate grain threshability and spike morphogenesis in bread wheat. THE NEW PHYTOLOGIST 2021; 230:988-1002. [PMID: 33521967 DOI: 10.1111/nph.17235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The domestication gene Q is largely responsible for the widespread cultivation of wheat because it confers multiple domestication traits. However, the underlying molecular mechanisms of how Q regulates these domestication traits remain unclear. In this study, we identify a Q-interacting protein TaLAX1, a basic helix-loop-helix transcription factor, through yeast two-hybrid assays. Using biochemical and genetic approaches, we explore the roles of TaLAX1 in regulating wheat domestication traits. Overexpression of TaLAX1 produces phenotypes, reminiscent of the q allele; loss-of-function Talax1 mutations confer compact spikes, largely similar to the Q-overexpression wheat lines. The two transcription factors TaLAX1 and Q disturb each other's activity to antagonistically regulate the expression of the lignin biosynthesis-related gene TaKNAT7-4D. More interestingly, a natural variation (InDel, +/- TATA), which occurs in the promoter of TaLAX1, is associated with the promoter activity difference between the D subgenome of bread wheat and its ancestor Aegilops tauschii accession T093. This study reveals that the transcription factor TaLAX1 physically interacts with Q to antagonistically regulate wheat domestication traits and a natural variation (InDel, +/- TATA) is associated with the diversification of TaLAX1 promoter activity.
Collapse
Affiliation(s)
- Guanhua He
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yexing Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huixian Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
47
|
Identification of QTLs and a Candidate Gene for Reducing Pre-Harvest Sprouting in Aegilops tauschii- Triticum aestivum Chromosome Segment Substitution Lines. Int J Mol Sci 2021; 22:ijms22073729. [PMID: 33918469 PMCID: PMC8038248 DOI: 10.3390/ijms22073729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Wheat pre-harvest sprouting (PHS) causes serious losses in wheat yield. In this study, precise mapping was carried out in the chromosome segment substitution lines (CSSL) F2 population generated by a direct cross of Zhoumai 18 (PHS-sensitive) and Aegilops tauschii accession T093 (highly PHS-resistant). Three Ae. tauschii-derived quantitative trait loci (QTLs), QDor.3D.1, QDor.3D.2, and QDor.3D.3, were detected on chromosome 3DL using four simple sequence repeats (SSR) markers and 10 developed Kompetitive allele-specific PCR (KASP) markers. Alongside these QTL results, the RNA-Seq and qRT-PCR analysis revealed expression levels of TraesCS3D01G466100 in the QDor.3D.2 region that were significantly higher in CSSLs 495 than in Zhoumai 18 during the seed imbibition treatment. The cDNA sequencing results of TraesCS3D01G466100 showed two single nucleotide polymorphisms (SNPs), resulting in two changed amino acid substitutions between Zhoumai 18 and line 495, and the 148 nt amino acid substitution of TraesCS3D01G466100, derived from Ae. tauschii T093, which may play an important role in the functioning of ubiquitin ligase enzymes 3 (E3) according to the homology protein analysis, which could lead to differential PHS-resistance phenotypes. Taken together, our results may foster a better understanding of the mechanism of PHS resistance and are potentially valuable for marker-assisted selection in practical wheat breeding efforts.
Collapse
|
48
|
Schaart JG, Salentijn EMJ, Goryunova SV, Chidzanga C, Esselink DG, Gosman N, Bentley AR, Gilissen LJWJ, Smulders MJM. Exploring the alpha-gliadin locus: the 33-mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:86-94. [PMID: 33369792 PMCID: PMC8248119 DOI: 10.1111/tpj.15147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 05/28/2023]
Abstract
Most alpha-gliadin genes of the Gli-D2 locus on the D genome of hexaploid bread wheat (Triticum aestivum) encode for proteins with epitopes that can trigger coeliac disease (CD), and several contain a 33-mer peptide with six partly overlapping copies of three epitopes, which is regarded as a remarkably potent T-cell stimulator. To increase genetic diversity in the D genome, synthetic hexaploid wheat lines are being made by hybridising accessions of Triticum turgidum (AB genome) and Aegilops tauschii (the progenitor of the D genome). The diversity of alpha-gliadins in A. tauschii has not been studied extensively. We analysed the alpha-gliadin transcriptome of 51 A. tauschii accessions representative of the diversity in A. tauschii. We extracted RNA from developing seeds and performed 454 amplicon sequencing of the first part of the alpha-gliadin genes. The expression profile of allelic variants of the alpha-gliadins was different between accessions, and also between accessions of the Western and Eastern clades of A. tauschii. Generally, both clades expressed many allelic variants not found in bread wheat. In contrast to earlier studies, we detected the 33-mer peptide in some A. tauschii accessions, indicating that it was introduced along with the D genome into bread wheat. In these accessions, transcripts with the 33-mer peptide were present at lower frequencies than in bread wheat varieties. In most A. tauschii accessions, however, the alpha-gliadins do not contain the epitope, and this may be exploited, through synthetic hexaploid wheats, to breed bread wheat varieties with fewer or no coeliac disease epitopes.
Collapse
Affiliation(s)
- Jan G. Schaart
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Elma M. J. Salentijn
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Svetlana V. Goryunova
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Present address:
FSBSI Lorch Potato Research InstituteKraskovo140051Russia
- Present address:
Institute of General GeneticsRussian Academy of ScienceMoscow119333Russia
| | - Charity Chidzanga
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Present address:
University of AdelaideSchool of Agriculture, Food and WineWaite CampusUrrbraeSouth Australia5064Australia
| | - Danny G. Esselink
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Nick Gosman
- The John Bingham LaboratoryNIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
Gosman AssociatesAg‐Biotech Consultingthe StreetBressingham, DissIP22 2BLUK
| | - Alison R. Bentley
- The John Bingham LaboratoryNIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
International Maize and Wheat Improvement Center (CIMMYT)TexcocoMexico
| | - Luud J. W. J. Gilissen
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- BioscienceWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Allergy Consortium WageningenDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Marinus J. M. Smulders
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Allergy Consortium WageningenDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| |
Collapse
|
49
|
Pototskaya IV, Shamanin VP, Shepelev SS, Bhatta M, Morgounov AI. Analysis of the Genome D Polymorphism of Synthetic Wheat Obtained on the Basis of Ae. tauschii L. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Gupta A, Hua L, Lin G, Molnár I, Doležel J, Liu S, Li W. Multiple origins of Indian dwarf wheat by mutations targeting the TREE domain of a GSK3-like kinase for drought tolerance, phosphate uptake, and grain quality. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:633-645. [PMID: 33164159 DOI: 10.1007/s00122-020-03719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/27/2020] [Indexed: 05/28/2023]
Abstract
Multiple origins of Indian dwarf wheat were due to two mutations targeting the same TREE domain of a GSK3-like kinase, and these mutations confer to enhanced drought tolerance and increased phosphate and nitrogen accumulation for adaptation to the dry climate of Indian and Pakistan. Indian dwarf wheat, featured by the short stature, erect leaves, dense spikes, and small, spherical grains, was a staple crop in India and Pakistan from the Bronze Age until the early 1900s. These morphological features are controlled by a single locus Sphaerococcum 1 (S1), but the genetic identity of the locus and molecular mechanisms underlying the selection of this wheat type are unknown. In this study, we showed that the origin of Indian dwarf wheat was due to two independent missense mutations targeting the conserved TREE domain of a GSK3-like kinase, which is homologous to the Arabidopsis BIN2 protein, a negative regulator in brassinosteroid signaling. The S1 protein is involved in brassinosteroid signaling by physical interaction with the wheat BES1/BZR1 proteins. The dwarf alleles are insensitive to brassinosteroid, upregulates brassinosteroid biosynthetic genes, significantly enhanced drought tolerance, facilitated phosphate accumulation, and increased high molecular weight glutenins. It is the enhanced drought tolerance and accumulation of nitrogen and phosphate that contributed to the adaptation of such a small-grain form of wheat to the dry climate of India and Pakistan. Thus, our research not only identified the genetic events underlying the origin of the Indian dwarf wheat, but also revealed the function of brassinosteroid in the regulation of drought tolerance, phosphate homeostasis, and grain quality.
Collapse
Affiliation(s)
- Ajay Gupta
- 252 McFadden Biostress Laboratory, Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Lei Hua
- 252 McFadden Biostress Laboratory, Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Guifang Lin
- Plant Pathology Department, Kansas State University, Manhattan, KS, 66502, USA
| | - Istváan Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Sanzhen Liu
- Plant Pathology Department, Kansas State University, Manhattan, KS, 66502, USA
| | - Wanlong Li
- 252 McFadden Biostress Laboratory, Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|