1
|
Abadie C, Lalande J, Limami AM, Tcherkez G. Non-targeted 13 C metabolite analysis demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary. PLANT, CELL & ENVIRONMENT 2021; 44:445-457. [PMID: 33165970 DOI: 10.1111/pce.13940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
It is common practice to manipulate CO2 and O2 mole fraction during gas-exchange experiments to suppress or exacerbate photorespiration, or simply carry out CO2 response curves. In doing so, it is implicitly assumed that metabolic pathways other than carboxylation and oxygenation are altered minimally. In the past few years, targeted metabolic analyses have shown that this assumption is incorrect, with changes in the tricarboxylic acid cycle, anaplerosis (phosphoenolpyruvate carboxylation), and nitrogen or sulphur assimilation. However, this problem has never been tackled systematically using non-targeted analyses to embrace all possible affected metabolic pathways. Here, we exploited combined NMR, GC-MS, and LC-MS data and conducted non-targeted analyses on sunflower leaves sampled at different O2 /CO2 ratios in a gas exchange system. The statistical analysis of nearly 4,500 metabolic features not only confirms previous findings on anaplerosis or S assimilation, but also reveals significant changes in branched chain amino acids, phenylpropanoid metabolism, or adenosine turn-over. Noteworthy, all of these pathways involve CO2 assimilation or liberation and thus affect net CO2 exchange. We conclude that manipulating CO2 and O2 mole fraction has a broad effect on metabolism, and this must be taken into account to better understand variations in carboxylation (anaplerotic fixation) or apparent day respiration.
Collapse
Affiliation(s)
- Cyril Abadie
- Institut de Recherche en Horticulture et Semences, INRA d'Angers, Université d'Angers, Angers, France
| | - Julie Lalande
- Institut de Recherche en Horticulture et Semences, INRA d'Angers, Université d'Angers, Angers, France
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences, INRA d'Angers, Université d'Angers, Angers, France
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, INRA d'Angers, Université d'Angers, Angers, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Arruda P, Barreto P. Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:587. [PMID: 32508857 PMCID: PMC7253579 DOI: 10.3389/fpls.2020.00587] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 05/14/2023]
Abstract
The saccharopine pathway (SACPATH) involves the conversion of lysine into α-aminoadipate by three enzymatic reactions catalyzed by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) and the enzyme α-aminoadipate semialdehyde dehydrogenase (AASADH). The LKR domain condenses lysine and α-ketoglutarate into saccharopine, and the SDH domain hydrolyzes saccharopine to form glutamate and α-aminoadipate semialdehyde, the latter of which is oxidized to α-aminoadipate by AASADH. Glutamate can give rise to proline by the action of the enzymes Δ1-pyrroline-5-carboxylate synthetase (P5CS) and Δ1-pyrroline-5-carboxylate reductase (P5CR), while Δ1-piperideine-6-carboxylate the cyclic form of α-aminoadipate semialdehyde can be used by P5CR to produce pipecolate. The production of proline and pipecolate by the SACPATH can help plants face the damage caused by osmotic, drought, and salt stress. AASADH is a versatile enzyme that converts an array of aldehydes into carboxylates, and thus, its induction within the SACPATH would help alleviate the toxic effects of these compounds produced under stressful conditions. Pipecolate is the priming agent of N-hydroxypipecolate (NHP), the effector of systemic acquired resistance (SAR). In this review, lysine catabolism through the SACPATH is discussed in the context of abiotic stress and its potential role in the induction of the biotic stress response.
Collapse
Affiliation(s)
- Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Paulo Arruda,
| | - Pedro Barreto
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Cavalcanti JHF, Kirma M, Barros JAS, Quinhones CGS, Pereira-Lima ÍA, Obata T, Nunes-Nesi A, Galili G, Fernie AR, Avin-Wittenberg T, Araújo WL. An L,L-diaminopimelate aminotransferase mutation leads to metabolic shifts and growth inhibition in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5489-5506. [PMID: 30215754 PMCID: PMC6255705 DOI: 10.1093/jxb/ery325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Lysine (Lys) connects the mitochondrial electron transport chain to amino acid catabolism and the tricarboxylic acid cycle. However, our understanding of how a deficiency in Lys biosynthesis impacts plant metabolism and growth remains limited. Here, we used a previously characterized Arabidopsis mutant (dapat) with reduced activity of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase to investigate the physiological and metabolic impacts of impaired Lys biosynthesis. Despite displaying similar stomatal conductance and internal CO2 concentration, we observed reduced photosynthesis and growth in the dapat mutant. Surprisingly, whilst we did not find differences in dark respiration between genotypes, a lower storage and consumption of starch and sugars was observed in dapat plants. We found higher protein turnover but no differences in total amino acids during a diurnal cycle in dapat plants. Transcriptional and two-dimensional (isoelectric focalization/SDS-PAGE) proteome analyses revealed alterations in the abundance of several transcripts and proteins associated with photosynthesis and photorespiration coupled with a high glycine/serine ratio and increased levels of stress-responsive amino acids. Taken together, our findings demonstrate that biochemical alterations rather than stomatal limitations are responsible for the decreased photosynthesis and growth of the dapat mutant, which we hypothesize mimics stress conditions associated with impairments in the Lys biosynthesis pathway.
Collapse
Affiliation(s)
- João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tamar Avin-Wittenberg
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
4
|
Clément G, Moison M, Soulay F, Reisdorf-Cren M, Masclaux-Daubresse C. Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:891-903. [PMID: 28992054 PMCID: PMC5853214 DOI: 10.1093/jxb/erx253] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a long developmental process important for nutrient management and for source to sink remobilization. Constituents of the mesophyll cells are progressively degraded to provide nutrients to the rest of the plant. Up to now, studies on leaf senescence have not paid much attention to the role of the different leaf tissues. In the present study, we dissected leaf laminae from the midvein to perform metabolite profiling. The laminae mesophyll cells are the source of nutrients, and in C3 plants they contain Rubisco as the most important nitrogen storage pool. Veins, rich in vasculature, are the place where all the nutrients are translocated, and sometimes interconverted, before being exported through the phloem or the xylem. The different metabolic changes we observed in laminae and midvein with ageing support the idea that the senescence programme in these two tissues is different. Important accumulations of metabolites in the midvein suggest that nutrient translocations from source leaves to sinks are mainly controlled at this level. Carbon and nitrogen long-distance molecules such as fructose, glucose, aspartate, and asparagine were more abundant in the midvein than in laminae. In contrast, sucrose, glutamate, and aspartate were more abundant in laminae. The concentrations of tricarboxylic acid (TCA) compounds were also lower in the midvein than in laminae. Since nitrogen remobilization increased under low nitrate supply, plants were grown under two nitrate concentrations. The results revealed that the senescence-related differences were mostly similar under low and high nitrate conditions except for some pathways such as the TCA cycle.
Collapse
Affiliation(s)
- Gilles Clément
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Michaël Moison
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Fabienne Soulay
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Michèle Reisdorf-Cren
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | | |
Collapse
|
5
|
Abadie C, Lothier J, Boex-Fontvieille E, Carroll A, Tcherkez G. Direct assessment of the metabolic origin of carbon atoms in glutamate from illuminated leaves using 13 C-NMR. THE NEW PHYTOLOGIST 2017; 216:1079-1089. [PMID: 28771732 DOI: 10.1111/nph.14719] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/25/2017] [Indexed: 05/21/2023]
Abstract
Glutamate (Glu) is the cornerstone of nitrogen assimilation and photorespiration in illuminated leaves. Despite this crucial role, our knowledge of the flux to Glu de novo synthesis is rather limited. Here, we used isotopic labelling with 13 CO2 and 13 C-NMR analyses to examine the labelling pattern and the appearance of multi-labelled species of Glu molecules to trace the origin of C-atoms found in Glu. We also compared this with 13 C-labelling patterns in Ala and Asp, which reflect citrate (and thus Glu) precursors, that is, pyruvate and oxaloacetate. Glu appeared to be less 13 C-labelled than Asp and Ala, showing that the Glu pool was mostly formed by 'old' carbon atoms. There were modest differences in intramolecular 13 C-13 C couplings between Glu C-2 and Asp C-3, showing that oxaloacetate metabolism to Glu biosynthesis did not involve C-atom redistribution by the Krebs cycle. The apparent carbon allocation increased with carbon net photosynthesis. However, when expressed relative to CO2 fixation, it was clearly higher at low CO2 while it did not change in 2% O2 , as compared to standard conditions. We conclude that Glu production from current photosynthetic carbon represents a small flux that is controlled by the gaseous environment, typically upregulated at low CO2 .
Collapse
Affiliation(s)
- Cyril Abadie
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| | - Jérémy Lothier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 42 Rue Georges Morel, Beaucouzé, 49071, France
| | - Edouard Boex-Fontvieille
- Laboratoire de Police Scientifique de Lyon, Institut National de Police Scientifique, 31 Avenue Franklin Roosevelt, Écully Cedex, 69134, France
| | - Adam Carroll
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| | - Guillaume Tcherkez
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
6
|
Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous KY, Griffin K, Way D, Turnbull M, Adams MA, Atkin OK, Farquhar GD, Cornic G. Leaf day respiration: low CO 2 flux but high significance for metabolism and carbon balance. THE NEW PHYTOLOGIST 2017; 216:986-1001. [PMID: 28967668 DOI: 10.1111/nph.14816] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/13/2017] [Indexed: 05/04/2023]
Abstract
Contents 986 I. 987 II. 987 III. 988 IV. 991 V. 992 VI. 995 VII. 997 VIII. 998 References 998 SUMMARY: It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low-flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have been made using carbon isotopes, 'omics' analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange is now outdated and it should now be regarded as a central actor of plant carbon-use efficiency.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Paul Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA
| | - Thomas N Buckley
- IA Watson Grains Research Centre, University of Sydney, 12656 Newell Hwy, Narrabri, NSW, 2390, Australia
| | - Florian A Busch
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Margaret M Barbour
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Dan Bruhn
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
| | - Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Kevin Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Matthew Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand
| | - Mark A Adams
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Graham D Farquhar
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Gabriel Cornic
- Ecologie Systématique Evolution, Université Paris-Sud, 91405, Orsay Cedex, France
| |
Collapse
|
7
|
Metabolite Profiling for Leaf Senescence in Barley Reveals Decreases in Amino Acids and Glycolysis Intermediates. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Abadie C, Carroll A, Tcherkez G. Interactions Between Day Respiration, Photorespiration, and N and S Assimilation in Leaves. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Freund DM, Hegeman AD. Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol 2016; 43:41-48. [PMID: 27610928 DOI: 10.1016/j.copbio.2016.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023]
Abstract
Methods employing isotope labeled compounds have been an important part of the bioanalytical canon for many decades. The past fifteen years have seen the development of many new approaches using stable (non-radioactive) isotopes as labels for high-throughput bioanalytical, 'omics-scale' measurements of metabolites (metabolomics) and proteins (proteomics). This review examines stable isotopic labeling approaches that have been developed for labeling whole intact plants, plant tissues, or crude extracts of plant materials with stable isotopes (mainly using 2H, 13C, 15N, 18O or 34S). The application of metabolome-scale labeling for improving metabolite annotation, metabolic pathway elucidation, and relative quantification in mass spectrometry-based metabolomics of plants is also reviewed.
Collapse
Affiliation(s)
- Dana M Freund
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA
| | - Adrian D Hegeman
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA.
| |
Collapse
|
10
|
Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL. Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:59-69. [PMID: 27297990 DOI: 10.1016/j.plantsci.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism.
Collapse
Affiliation(s)
- Willian Batista Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| |
Collapse
|
11
|
Dellero Y, Jossier M, Glab N, Oury C, Tcherkez G, Hodges M. Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3149-63. [PMID: 26896850 DOI: 10.1093/jxb/erw054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metabolic and physiological analyses of Arabidopsis thaliana glycolate oxidase (GOX) mutant leaves were performed to understand the development of the photorespiratory phenotype after transfer from high CO2 to air. We show that two Arabidopsis genes, GOX1 and GOX2, share a redundant photorespiratory role. Air-grown single gox1 and gox2 mutants grew normally and no significant differences in leaf metabolic levels and photosynthetic activities were found when compared with wild-type plants. To study the impact of a highly reduced GOX activity on plant metabolism, both GOX1 and GOX2 expression was knocked-down using an artificial miRNA strategy. Air-grown amiRgox1/2 plants with a residual 5% GOX activity exhibited a severe growth phenotype. When high-CO2-grown adult plants were transferred to air, the photosynthetic activity of amiRgox1/2 was rapidly reduced to 50% of control levels, and a high non-photochemical chlorophyll fluorescence quenching was maintained. (13)C-labeling revealed that daily assimilated carbon accumulated in glycolate, leading to reduced carbon allocation to sugars, organic acids, and amino acids. Such changes were not always mirrored in leaf total metabolite levels, since many soluble amino acids increased after transfer, while total soluble protein, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), and chlorophyll amounts decreased in amiRgox1/2 plants. The senescence marker, SAG12, was induced only in amiRgox1/2 rosettes after transfer to air. The expression of maize photorespiratory GOX in amiRgox1/2 abolished all observed phenotypes. The results indicate that the inhibition of the photorespiratory cycle negatively impacts photosynthesis, alters carbon allocation, and leads to early senescence in old rosette leaves.
Collapse
Affiliation(s)
- Younès Dellero
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Mathieu Jossier
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Nathalie Glab
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Céline Oury
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Guillaume Tcherkez
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
12
|
Yin G, Whelan J, Wu S, Zhou J, Chen B, Chen X, Zhang J, He J, Xin X, Lu X. Comprehensive Mitochondrial Metabolic Shift during the Critical Node of Seed Ageing in Rice. PLoS One 2016; 11:e0148013. [PMID: 27124767 PMCID: PMC4849721 DOI: 10.1371/journal.pone.0148013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
The critical node (CN) in seed aging in rice (Oryza sativa) is the transformation from Phase I (P-I) to Phase II (P-II) of the reverse S-shaped curve (RS-SC). Although mitochondrial dysfunction plays a key role in seed ageing, the metabolic shift in the CN remains poorly understood. Here, we investigated the mitochondrial regulatory mechanisms during the CN of rice seed ageing. We showed that during the CN of seed ageing, the mitochondrial ultrastructure was impaired, causing oxygen consumption to decrease, along with cytochrome c (cyt c) oxidase and malate dehydrogenase (MDH) activity. In addition, the transcript levels for the alternative pathway of the electron transport chain (ETC) were significantly induced, whereas the transcripts of the cytochrome oxidase (COX) pathway were inhibited. These changes were concomitant with the down-regulation of mitochondrial protein levels related to carbon and nitrogen metabolism, ATP synthase (ATPase) complex, tricarboxylic acid cycle (TCA) cycle, mitochondrial oxidative enzymes, and a variety of other proteins. Therefore, while these responses inhibit the production of ATP and its intermediates, signals from mitochondria (such as the decrease of cyt c and accumulation of reactive oxygen species (ROS)) may also induce oxidative damage. These events provide considerable information about the mitochondrial metabolic shifts involved in the progression of seed ageing in the CN.
Collapse
Affiliation(s)
- Guangkun Yin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Shuhua Wu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Zhou
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baoyin Chen
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoling Chen
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Xin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XL); (XX)
| | - Xinxiong Lu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XL); (XX)
| |
Collapse
|
13
|
Sarasketa A, González-Moro MB, González-Murua C, Marino D. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:29. [PMID: 26870054 PMCID: PMC4734181 DOI: 10.3389/fpls.2016.00029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/10/2016] [Indexed: 05/09/2023]
Abstract
Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source ([Formula: see text] and [Formula: see text]), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to [Formula: see text] accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, [Formula: see text] accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment.
Collapse
Affiliation(s)
- Asier Sarasketa
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | - M. Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
- Ikerbasque, Basque Foundation for ScienceBilbao, Spain
- *Correspondence: Daniel Marino
| |
Collapse
|
14
|
Aranjuelo I, Erice G, Sanz-Sáez A, Abadie C, Gilard F, Gil-Quintana E, Avice JC, Staudinger C, Wienkoop S, Araus JL, Bourguignon J, Irigoyen JJ, Tcherkez G. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.). PLANT, CELL & ENVIRONMENT 2015; 38:2780-94. [PMID: 26081746 DOI: 10.1111/pce.12587] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 06/01/2015] [Indexed: 05/17/2023]
Abstract
C sink/source balance and N assimilation have been identified as target processes conditioning crop responsiveness to elevated CO2 . However, little is known about phenology-driven modifications of C and N primary metabolism at elevated CO2 in cereals such as wheat. Here, we examined the differential effect of elevated CO2 at two development stages (onset of flowering, onset of grain filling) in durum wheat (Triticum durum, var. Sula) using physiological measurements (photosynthesis, isotopes), metabolomics, proteomics and (15) N labelling. Our results show that growth at elevated CO2 was accompanied by photosynthetic acclimation through a lower internal (mesophyll) conductance but no significant effect on Rubisco content, maximal carboxylation or electron transfer. Growth at elevated CO2 altered photosynthate export and tended to accelerate leaf N remobilization, which was visible for several proteins and amino acids, as well as lysine degradation metabolism. However, grain biomass produced at elevated CO2 was larger and less N rich, suggesting that nitrogen use efficiency rather than photosynthesis is an important target for improvement, even in good CO2 -responsive cultivars.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Plant Biology and Ecology Department, Science and Technology Faculty, University of the Basque Country, Leioa, 48940, Spain
| | - Gorka Erice
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alvaro Sanz-Sáez
- Department of Plant Biology and Crop Science, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cyril Abadie
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, 91405, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, 91405, France
| | - Erena Gil-Quintana
- Dpto. Ciencias del Medio Natural, Universidad Pública de Navarra Campus de Arrosadía, Pamplona, 31006, Spain
| | - Jean-Christophe Avice
- Ecophysiologie Végétale, Agronomie et Nutritions NCS, INRA, UMR INRA/UCBN, Institut de Biologie Fondamentale et Appliquée, Université de Caen Basse-Normandie, Caen, 14032, France
| | - Christiana Staudinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, 1090, Austria
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, 1090, Austria
| | - Jose L Araus
- Dpto de Biología Vegetal, Facultat de Biologia, Universidad de Barcelona, Barcelona, 08028, Spain
| | - Jacques Bourguignon
- Laboratoire Physiologie Cellulaire Végétale (PCV), CEA, iRTSV, Grenoble, 38054, France
- Réponse de la plante aux stress environnementaux et métaux lourds, Université Grenoble-Alpes, Grenoble, 38041, France
| | - Juan J Irigoyen
- Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias yFarmacia, Universidad de Navarra, Pamplona, 31008, Spain
| | - Guillaume Tcherkez
- Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
15
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Brychkova G, Yarmolinsky D, Batushansky A, Grishkevich V, Khozin-Goldberg I, Fait A, Amir R, Fluhr R, Sagi M. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves. PLANTS 2015; 4:573-605. [PMID: 27135342 PMCID: PMC4844397 DOI: 10.3390/plants4030573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022]
Abstract
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants.
Collapse
Affiliation(s)
- Galina Brychkova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Dmitry Yarmolinsky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Albert Batushansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Vladislav Grishkevich
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Rachel Amir
- Migal-Galilee Technology Center, Southern Industrial Zone, POB831 Kiryat-Shmona 11016, Israel.
| | - Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, P.O.B. 26 Rehovot 76100, Israel.
| | - Moshe Sagi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| |
Collapse
|
17
|
Atkin O. New Phytologist and the 'fate' of carbon in terrestrial ecosystems. THE NEW PHYTOLOGIST 2015; 205:1-3. [PMID: 25427215 DOI: 10.1111/nph.13185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
18
|
Dahan J, Tcherkez G, Macherel D, Benamar A, Belcram K, Quadrado M, Arnal N, Mireau H. Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 gene leads to cytochrome c oxidase depletion and reorchestrated respiratory metabolism in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1788-802. [PMID: 25301889 PMCID: PMC4256860 DOI: 10.1104/pp.114.248526] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/09/2014] [Indexed: 05/20/2023]
Abstract
Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis.
Collapse
Affiliation(s)
- Jennifer Dahan
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Guillaume Tcherkez
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - David Macherel
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Abdelilah Benamar
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Katia Belcram
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Martine Quadrado
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Nadège Arnal
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Hakim Mireau
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| |
Collapse
|
19
|
Cavalcanti JHF, Esteves-Ferreira AA, Quinhones CGS, Pereira-Lima IA, Nunes-Nesi A, Fernie AR, Araújo WL. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol Evol 2014; 6:2830-48. [PMID: 25274566 PMCID: PMC4224347 DOI: 10.1093/gbe/evu221] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations.
Collapse
Affiliation(s)
- João Henrique Frota Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Alberto A Esteves-Ferreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Italo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| |
Collapse
|
20
|
Corrigendum. THE NEW PHYTOLOGIST 2014; 201:1509. [PMID: 33862964 DOI: 10.1111/nph.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 06/12/2023]
|