1
|
Ibrahim M, Ullah A, Pan X, Lu J, Ibrahim M, Cao K, Liu S, Zhou X, Wu F, Gao D. Root separation modulates AMF diversity and composition in tomato-potato onion intercropping systems. Front Microbiol 2025; 16:1554644. [PMID: 40143864 PMCID: PMC11936949 DOI: 10.3389/fmicb.2025.1554644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Plant-plant interactions shape arbuscular mycorrhizal fungi (AMF) communities in rhizosphere soil, with tomato/potato-onion intercropping emerging as a promising agro-ecological strategy to optimize resource utilization. However, the role of root separation methods in modulating AMF diversity within intercropping systems remains unclear. Specifically, whether the AMF community in the rhizosphere of tomato and potato-onion intercropping differs from monoculture and how root separation methods modulate these effects. This study evaluates the effects of various root separation methods (no separation, 0.45 μm nylon membrane, 38 μm nylon membrane, and solid separation) on AMF diversity and composition in tomato/potato-onion intercropping and monoculture systems. High-throughput Illumina MiSeq sequencing was used to assess AMF diversity indices (Ace, Chao1, Shannon, and Simpson), and Principal Coordinate Analysis evaluated community structure. Results showed that the non-separation mode achieved the highest Ace and Chao1 indices, indicating greater richness, while intercropping lowered Shannon and Simpson indices. Intercropping significantly reduced Glomerales but increased Paraglomerales, under the non-separation mode. Similarly, it decreased Glomus while increasing Paraglomus in the rhizosphere of both crops. Principal Coordinate Analysis revealed that root separation distinctly altered AMF community structure, reflecting specific barrier effects on AMF interactions. Intercropping increased AMF abundance in the tomato rhizosphere but reduced it in potato-onion as shown by 18S rRNA gene abundance. These findings emphasize that minimizing root separation in intercropping enhances AMF diversity and functionality, providing valuable insights for sustainable agricultural management. Understanding the role of root interactions in shaping AMF communities can help optimizing intercropping strategies to improve soil health and nutrient dynamics.
Collapse
Affiliation(s)
- Musawar Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Asad Ullah
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Xinjie Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Jianzeng Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Musaddiq Ibrahim
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Mathematics, Air University, Islamabad, Pakistan
| | - Kunpeng Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Shouwei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Department of Horticulture, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Gluck-Thaler E, Shaikh MA, Wood CW. Multivariate Divergence in Wild Microbes: No Evidence for Evolution along a Genetic Line of Least Resistance. Am Nat 2025; 205:107-124. [PMID: 39718788 DOI: 10.1086/733184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractTrait evolution depends both on the direct fitness effects of specific traits and on indirect selection arising from genetically correlated traits. Although well established in plants and animals, the role of trait correlations in microbial evolution remains a major open question. Here, we tested whether genetic correlations in a suite of metabolic traits are conserved between two sister lineages of fungal endophytes and whether phenotypic divergence between lineages occurred in the direction of the multivariate trait combination containing the most genetic variance within lineages (i.e., the genetic lines of least resistance). We found that while one lineage grew faster across nearly all substrates, lineages differed in their mean response to specific substrates and in their overall multivariate metabolic trait means. The structure of the genetic variance-covariance (G) matrix was conserved between lineages, yet to our surprise divergence in metabolic phenotypes between lineages was nearly orthogonal to the major axis of genetic variation within lineages, indicating that divergence did not occur along the genetic lines of least resistance. Our findings suggest that the evolutionary genetics of trait correlations in microorganisms warrant further research and highlight the extensive functional variation that exists at very fine taxonomic scales in host-associated microbial communities.
Collapse
|
3
|
Zhang E, Wang Y, Chen S, Zhou D, Shangguan Z, Huang J, He JS, Wang Y, Sheng J, Tang L, Li X, Dong M, Wu Y, Hu S, Bai Y. Mycorrhizal Symbiosis Increases Plant Phylogenetic Diversity and Regulates Community Assembly in Grasslands. Ecol Lett 2024; 27:e14516. [PMID: 39354912 DOI: 10.1111/ele.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
The intricate mechanisms controlling plant diversity and community composition are cornerstone of ecological understanding. Yet, the role of mycorrhizal symbiosis in influencing community composition has often been underestimated. Here, we use extensive species survey data from 1315 grassland sites in China to elucidate the influence of mycorrhizal symbiosis on plant phylogenetic diversity and community assembly. We show that increasing mycorrhizal symbiotic potential leads to greater phylogenetic dispersion within plant communities. Mycorrhizal species predominantly influence deterministic processes, suggesting a role in niche-based community assembly. Conversely, non-mycorrhizal species exert a stronger influence on stochastic processes, highlighting the importance of random events in shaping community structure. These results underscore the crucial but often hidden role of mycorrhizal symbiosis in driving plant community diversity and assembly. This study provides valuable insights into the mechanisms shaping ecological communities and the way for more informed conservation that acknowledges the complex interplay between symbiosis and community dynamics.
Collapse
Affiliation(s)
- Entao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Daowei Zhou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming in the Loess Plateau, Northwest A&F University, Yangling, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, and College of Ecology, Lanzhou University, Lanzhou, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jiandong Sheng
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, Urumqi, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xinrong Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Shirouzu T, Suzuki TK, Matsuoka S, Takamatsu S. Evolutionary dependence of host type and chasmothecial appendage morphology in obligate plant parasites belonging to Erysipheae (powdery mildew, Erysiphaceae). Mycologia 2024; 116:487-497. [PMID: 38606994 DOI: 10.1080/00275514.2024.2327972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Evolutionary relationships between the morphological and ecological traits of fungi are poorly understood. The appendages of chasmothecia, which are sexual reproductive organs of Erysiphaceae, are considered to play a crucial role in the overwintering strategies of these fungi on host plants. Previous studies suggested that both the host type and appendage morphology evolved at the same nodes and transitioned from complex appendages on deciduous hosts to simple appendages on herb/evergreen hosts. However, the evolutionary dependence between host type and appendage morphology remains unproven owing to the limited species data used in analyses. To elucidate the evolutionary relationship between host type and appendage morphology, we used phylogenetic comparative methods (PCMs) to investigate the state transition, ancestral state, evolutionary dependence, and contingent evolution within Erysipheae, the largest and most diverse tribe in Erysiphaceae. Our PCMs, based on a comprehensive data set of Erysipheae, revealed that the most ancestral states were deciduous host types and complex appendages. From these ancestral states, convergent evolution toward the herb/evergreen host types and simple appendages occurred multiple times at the same nodes. For the first time in Erysiphaceae, we detected an evolutionary dependence between host type and appendage morphology. This is one of the few examples in which evolutionary dependence between host phenology and morphological traits in plant-parasitic fungi was demonstrated using PCMs. Appendage simplification on herb/evergreen hosts and complications on deciduous hosts can be reasonably explained by the functional advantages of each appendage type in different overwintering strategies. These expected appendage functions can explain approximately 90% of host type and appendage morphology combinations observed in the analyzed taxa. However, our results also highlighted the occurrence of evolutionary shifts that deviate from the expected advantages of each appendage morphology. These seemingly irrational shifts might be interpretable from the flexibility of overwintering strategies and quantification of appendage functions.
Collapse
Affiliation(s)
- Takashi Shirouzu
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, 514-8507 Japan
| | - Takao K Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, 277-8568, Japan
| | - Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| | - Susumu Takamatsu
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, 514-8507 Japan
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| |
Collapse
|
5
|
Tedersoo L, Drenkhan R, Abarenkov K, Anslan S, Bahram M, Bitenieks K, Buegger F, Gohar D, Hagh‐Doust N, Klavina D, Makovskis K, Zusevica A, Pritsch K, Padari A, Põlme S, Rahimlou S, Rungis D, Mikryukov V. The influence of tree genus, phylogeny, and richness on the specificity, rarity, and diversity of ectomycorrhizal fungi. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13253. [PMID: 38575147 PMCID: PMC10994715 DOI: 10.1111/1758-2229.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
- College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Rein Drenkhan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | | | - Sten Anslan
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mohammad Bahram
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Kriss Bitenieks
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Franz Buegger
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Daniyal Gohar
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Niloufar Hagh‐Doust
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Darta Klavina
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Kristaps Makovskis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Austra Zusevica
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Karin Pritsch
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Allar Padari
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Sergei Põlme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Natural History MuseumUniversity of TartuTartuEstonia
| | - Saleh Rahimlou
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Dainis Rungis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Vladimir Mikryukov
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
6
|
Pang W, Zhang P, Zhang Y, Zhang X, Huang Y, Zhang T, Liu B. The Ectomycorrhizal Fungi and Soil Bacterial Communities of the Five Typical Tree Species in the Junzifeng National Nature Reserve, Southeast China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3853. [PMID: 38005750 PMCID: PMC10675191 DOI: 10.3390/plants12223853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
To explore the contribution of microorganisms to forest ecosystem function, we studied the ectomycorrhizal (ECM) fungal and soil bacterial community of the five typical tree species (Pinus massoniana, PM; Castanopsis carlesii, CC; Castanopsis eyrei, CE; Castanopsis fargesii, CF; and Keteleeria cyclolepis, KC) at the Junzifeng National Nature Reserve. The results indicated that the ECM fungal and soil bacterial diversity of CC and CF was similar, and the diversity rates of CC and CF were higher than those of PM, CE, and KC. Cenococcum geophilum and unclassified_Cortinariaceae II were the most prevalent occurring ECM fungi species in the five typical tree species, followed by unclassified_Cortinariaceae I and Lactarius atrofuscus. In bacteria, the dominant bacterial genera were Acidothermus, Bradyrhizobium, Acidibacter, Candidatus_Solibacter, Candidatus_Koribacter, Roseiarcus, and Bryobacter. EMF fungi and soil bacteria were correlated with edaphic factors, especially the soil pH, TP, and TK, caused by stand development. The results show that the community characteristics of ECM fungi and bacteria in the typical tree species of the Junzifeng National Nature Reserve reflect the critical role of soil microorganisms in stabilizing forest ecosystems.
Collapse
Affiliation(s)
- Wenbo Pang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Panpan Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Yuhu Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Xiao Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanbin Huang
- Administration Bureau of Fujian Junzifeng National Nature Reserve, Mingxi 365200, China;
| | - Taoxiang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| | - Bao Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.P.); (P.Z.); (Y.Z.)
| |
Collapse
|
7
|
Dovana F, Bandini D, Eberhardt U, Olariaga I, Bizio E, Ferisin G, Esteve-Raventós F. Re-Valuation of the Taxonomic Status of Species within the Inocybe similis Complex. J Fungi (Basel) 2023; 9:679. [PMID: 37367615 DOI: 10.3390/jof9060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The taxonomy of Inocybe similis and closely allied species is addressed using morphological and molecular data (nrITS and nrLSU DNA). The holotypes of I. chondrospora and I. vulpinella and the isotype of I. immigrans were studied and sequenced. Our results suggest the synonymy between I. similis and I. vulpinella as well as that between I. chondrospora and I. immigrans.
Collapse
Affiliation(s)
| | - Ditte Bandini
- Independent Researcher, Panoramastraße 47, 69257 Wiesenbach, Germany
| | - Ursula Eberhardt
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Ibai Olariaga
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain
| | - Enrico Bizio
- Società Veneziana di Micologia, c/o Museo di Storia Naturale di Venezia, Fontego dei Turchi, S. Croce 1730, 30135 Venezia, Italy
| | - Giuliano Ferisin
- Associazione Micologica Bassa Friulana, Via Vespucci 7, 33052 Cervignano del Friuli, Italy
| | - Fernando Esteve-Raventós
- Botany Unit, Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
8
|
van Galen LG, Orlovich DA, Lord JM, Nilsen AR, Dutoit L, Larcombe MJ. Correlated evolution in an ectomycorrhizal host-symbiont system. THE NEW PHYTOLOGIST 2023; 238:1215-1229. [PMID: 36751898 DOI: 10.1111/nph.18802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mechanisms of diversification in fungi are relatively poorly known. Many ectomycorrhizal symbionts show preference for particular host genera or families, so host-symbiont selection may be an important driver of fungal diversification in ectomycorrhizal systems. However, whether ectomycorrhizal hosts and symbionts show correlated evolutionary patterns remains untested, and it is unknown whether fungal specialisation also occurs in systems dominated by hosts from the same genus. We use metabarcoding of ectomycorrhizal fungi collected with hyphal ingrowth bags from Nothofagus forests across southern New Zealand to investigate host-symbiont specialisation and correlated evolution. We examine how ectomycorrhizal communities differ between host species and look for patterns of host-symbiont cophylogeny. We found substantial differences in ectomycorrhizal communities associated with different host taxa, particularly between hosts from different subgenera (Lophozonia and Fuscospora), but also between more closely related hosts. Twenty-four per cent of fungal taxa tested showed affiliations to particular hosts, and tests for cophylogeny revealed significant correlations between host relatedness and the fungal phylogeny that extended to substantial evolutionary depth. These results provide new evidence of correlated evolution in ectomycorrhizal systems, indicating that preferences among closely related host species may represent an important evolutionary driver for local lineage diversification in ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Laura G van Galen
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - David A Orlovich
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Janice M Lord
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Andy R Nilsen
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Matthew J Larcombe
- Department of Botany, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
9
|
Zhang X, Wang Y, Xu Y, Babalola BJ, Xiang S, Ma J, Su Y, Fan Y. Stochastic processes dominate community assembly of ectomycorrhizal fungi associated with Picea crassifolia in the Helan Mountains, China. Front Microbiol 2023; 13:1061819. [PMID: 36713171 PMCID: PMC9878330 DOI: 10.3389/fmicb.2022.1061819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Understanding the underlying mechanisms of microbial community assembly is a fundamental topic in microbial ecology. As an integral part of soil organisms, ectomycorrhizal (EM) fungi play vital roles in ecosystems. Picea crassifolia is an important pine species in the Helan Mountains in Inner Mongolia, China, with high ecological and economic values. However, studies of EM fungal diversity and mechanisms underlying community assembly on this pine species are limited. Methods In this study, we investigated EM fungal communities associated with P. crassifolia from 45 root samples across three sites in the Helan Mountains using Illumina Miseq sequencing of the fungal rDNA ITS2 region. Results A total of 166 EM fungal OTUs belonging to 24 lineages were identified, of which Sebacina and Tomentella-Thelephora were the most dominant lineages. Ordination analysis revealed that EM fungal communities were significantly different among the three sites. Site/fungus preference analysis showed that some abundant EM fungal OTUs preferred specific sites. Ecological process analysis implied that dispersal limitation and ecological drift in stochastic processes dominantly determined the community assembly of EM fungi. Discussion Our study indicates that P. crassifolia harbors a high EM fungal diversity and highlights the important role of the stochastic process in driving community assembly of mutualistic fungi associated with a single plant species in a semi-arid forest in northwest China.
Collapse
Affiliation(s)
- Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China,*Correspondence: Yonglong Wang, ✉
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Simin Xiang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Jianjun Ma
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Yun Su
- Helan Mountains National Nature Reserve Administration of Inner Mongolia, Alxa League, China
| | - Yongjun Fan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China,Yongjun Fan, ✉
| |
Collapse
|
10
|
Zhang M, Liu S, Cao X, Chen M, Chen J, Xu G, Shi Z. The effects of ectomycorrhizal and saprotropic fungi on soil nitrogen mineralization differ from those of arbuscular and ericoid mycorrhizal fungi on the eastern Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2023; 13:1069730. [PMID: 36684739 PMCID: PMC9846110 DOI: 10.3389/fpls.2022.1069730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Interactions between soil fungi and soil environmental factors regulate soil nitrogen (N) mineralization rates on the eastern Qinghai-Tibetan Plateau. Some studies have also illuminated differences in soil N mineralization rate based on different mycorrhizal forests, but the associated effect of soil fungal functional guilds and soil environmental factors underlying this process are not well-understood. Three primary forests respectively dominated by Abies fargesii var. faxoniana (ectomycorrhizal, EcM), Cupressus chengiana (arbuscular mycorrhizal, AM) and Rhododendron phaeochrysum (ericoid mycorrhizal, ErM) trees were selected in this area. Meanwhile, soil net N mineralization rate, soil fungal composition and soil enzyme activity among these three mycorrhizal forests were studied. Our results showed that there were significant differences in the seasonal variation of soil net N mineralization rates among three mycorrhizal forests. Soil net N mineralization rate in the AM forest was faster. EcM fungi and saprotroph are the main functional guilds in these three mycorrhizal forests. Meanwhile, the relative abundances of soil fungal functional guilds, soil temperature and soil peroxidase activity could explain 85.0% in the difference of soil net ammonification rate among three mycorrhizal forests. In addition, soil temperature, soil water-filled pore space and soil ammonium content play a central role in controlling the differing soil net nitrification rate among three mycorrhizal forests. Our results suggest differences in soil net mineralization among different mycorrhizal forest types are driven mainly by soil net ammonification. Soil fungal functional guilds and temperature regulate the rate of soil net ammonification by modulating soil peroxidase activity.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
11
|
Phylogenetic Analyses of Hydnobolites and New Species from China. J Fungi (Basel) 2022; 8:jof8121302. [PMID: 36547635 PMCID: PMC9784535 DOI: 10.3390/jof8121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hydnobolites is an ectomycorrhizal fungal genus with hypogeous ascomata in the family Pezizaceae (Pezizales). Molecular analyses of Hydnobolites using both single (ITS) and concatenated gene datasets (ITS-nLSU) showed a total of 223 sequences, including 92 newly gained sequences from Chinese specimens. Phylogenetic results based on these two datasets revealed seven distinct phylogenetic clades. Among them, the ITS phylogenetic tree confirmed the presence of at least 42 phylogenetic species in Hydnobolites. Combined the morphological observations with molecular analyses, five new species of Hydnobolites translucidus sp. nov., H. subrufus sp. nov., H. lini sp. nov., H. sichuanensis sp. nov. and H. tenuiperidius sp. nov., and one new record species of H. cerebriformis Tul., were illustrated from Southwest China. Macro- and micro-morphological analyses of ascomata revealed a few, but diagnostic differences between the H. cerebriformis complex, while the similarities of the ITS sequences ranged from 94.4 to 97.2% resulting in well-supported clades.
Collapse
|
12
|
Yang T, Tedersoo L, Soltis PS, Soltis DE, Sun M, Ma Y, Ni Y, Liu X, Fu X, Shi Y, Lin HY, Zhao YP, Fu C, Dai CC, Gilbert JA, Chu H. Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. SCIENCE CHINA LIFE SCIENCES 2022; 66:1134-1150. [PMID: 36462107 DOI: 10.1007/s11427-022-2174-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022]
Abstract
Plant and fungal species interactions drive many essential ecosystem properties and processes; however, how these interactions differ between aboveground and belowground habitats remains unclear at large spatial scales. Here, we surveyed 494 pairwise fungal communities in leaves and soils by Illumina sequencing, which were associated with 55 woody plant species across more than 2,000-km span of mountain forests in eastern China. The relative contributions of plant, climate, soil and space to the variation of fungal communities were assessed, and the plant-fungus network topologies were inferred. Plant phylogeny was the strongest predictor for fungal community composition in leaves, accounting for 19.1% of the variation. In soils, plant phylogeny, climatic factors and soil properties explained 9.2%, 9.0% and 8.7% of the variation in soil fungal community, respectively. The plant-fungus networks in leaves exhibited significantly higher specialization, modularity and robustness (resistance to node loss), but less complicated topology (e.g., significantly lower linkage density and mean number of links) than those in soils. In addition, host/fungus preference combinations and key species, such as hubs and connectors, in bipartite networks differed strikingly between aboveground and belowground samples. The findings provide novel insights into cross-kingdom (plant-fungus) species co-occurrence at large spatial scales. The data further suggest that community shifts of trees due to climate change or human activities will impair aboveground and belowground forest fungal diversity in different ways.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, 50409, Estonia
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, 32611, USA
| | - Miao Sun
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingying Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Han-Yang Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210003, China
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Sun D, Yang X, Wang Y, Fan Y, Ding P, Song X, Yuan X, Yang X. Stronger mutualistic interactions with arbuscular mycorrhizal fungi help Asteraceae invaders outcompete the phylogenetically related natives. THE NEW PHYTOLOGIST 2022; 236:1487-1496. [PMID: 35975696 DOI: 10.1111/nph.18435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Mutualistic interactions with arbuscular mycorrhizal fungi (AMF) greatly affect the outcome of plant-plant competition, especially for invasive plants competing against native plants. We examined the effects of AMF on the competition between invasive Asteraceae plants and the phylogenetically related native plants. We compared the performance of seven invasive Asteraceae plants from different genera with that of their phylogenetically related native counterparts in response to AMF in monocultures and mixed cultures. We investigated how interactions with AMF impact the competition between Asteraceae relatives. Total biomass increased with AMF colonization in both invasive and native plants. Arbuscular mycorrhizal fungi improved the competitiveness of invasive plants, but decreased that of native plants. Competition increased the shoot nitrogen, phosphorus and root myristic acid concentrations and relative expression of fatty acid transporter genes (RiFAT1 and RiFAT2) in AMF-colonized invasive plants, but decreased those in AMF-colonized native plants. Structural equation models indicated that the presence of AMF increased the uptake of phosphorus, but not nitrogen, by invasive plants, which probably provided more myristic acids to symbiotic AMF in return. These results suggest that invasive Asteraceae plants have greater mutualistic interactions with AMF than their phylogenetically related native counterparts, potentially contributing to invasion success.
Collapse
Affiliation(s)
- Dasheng Sun
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Xueping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yu Fan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Pengcheng Ding
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xi'E Song
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuefang Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
14
|
Guo Y, Ji L, Wang M, Shan C, Shen F, Yang Y, He G, Purahong W, Yang L. View from the Top: Insights into the Diversity and Community Assembly of Ectomycorrhizal and Saprotrophic Fungi along an Altitudinal Gradient in Chinese Boreal Larix gmelinii-Dominated Forests. Microorganisms 2022; 10:1997. [PMID: 36296273 PMCID: PMC9607379 DOI: 10.3390/microorganisms10101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
The altitudinal patterns of soil fungi have attracted considerable attention; however, few studies have investigated the diversity and community assembly of fungal functional guilds along an altitudinal gradient. Here, we explored ectomycorrhizal (EcM) and saprotrophic (SAP) fungal diversity and community assembly along a 470 m vertical gradient (ranging from 830 to 1300 m) on Oakley Mountain, sampling bulk soils in the 0-10 cm and 10-20 cm soil layers of Larix gmelinii-dominated forests. Illumina MiSeq sequencing of the ITS genes was employed to explore the fungal community composition and diversity. The relative abundance of EcM and SAP fungi showed a divergent pattern along an altitudinal gradient, while we observed a consistent altitudinal tendency for EcM and SAP fungal diversity and community assembly. The diversity of both fungal guilds increased with increasing altitude. Altitude and soil moisture were the key factors affecting the community composition of both fungal guilds. In addition, the plant community composition significantly affected the EcM fungal community composition, whereas the dissolved organic nitrogen and ammonium nitrogen contents were the driving factors of SAP fungal community. Despite the effects of vegetation and soil factors, EcM and SAP fungal communities were mainly governed by stochastic processes (especially drift) at different altitudes and soil depths. These results shed new light on the ecology of different fungal functional guilds along an altitudinal gradient, which will provide a deeper understanding of the biogeography of soil fungi.
Collapse
Affiliation(s)
- Yi Guo
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li Ji
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany
| | - Mingwei Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Chengfeng Shan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fangyuan Shen
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuchun Yang
- Jilin Academy of Forestry, Changchun 130033, China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany
| | - Lixue Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
Metabolic Diversity of Xylariaceous Fungi Associated with Leaf Litter Decomposition. J Fungi (Basel) 2022; 8:jof8070701. [PMID: 35887457 PMCID: PMC9324366 DOI: 10.3390/jof8070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Fungi in the family Xylariaceae are primary agents of leaf litter decomposition. However, the diversity of carbon source utilization by xylariaceous fungi and the relative effects on this from environmental and phylogenetic factors are largely unknown. This study assessed the metabolic diversity and redundancy of xylariaceous fungi, associated with leaf litter decomposition, by measuring their in vitro capacity to utilize multiple carbon sources. The work identified the relative influences of geographic and climatic sources, as well as the taxonomic and phylogenetic relatedness, of the fungi. Using Biolog EcoPlateTM, 43 isolates belonging to Nemania, Xylaria, Nodulisporium, Astrocystis, and Hypoxylon, isolated from Castanopsis sieboldii leaf litter at eight sites in Japan, were found to have the capacity to utilize a variety of carbohydrates, amino acids/amines, carboxylic acids, and polymers. The genera of xylariaceous fungi and their origins significantly affected their metabolic diversity and utilization of carbon sources. Variation partitioning demonstrated that dissimilarities in carbon utilization among fungal isolates were mostly attributable to site differences, especially climatic factors: mean annual temperature and precipitation, and maximum snow depth. Moreover, xylariaceous isolates that originated from adjacent sites tended to have similar patterns of carbon source utilization, suggesting metabolic acclimation to local environmental conditions.
Collapse
|
16
|
Genetic Analyses of Discrete Geographic Samples of a Golden Chanterelle in Canada Reveal Evidence for Recent Regional Differentiation. Genes (Basel) 2022; 13:genes13071110. [PMID: 35885893 PMCID: PMC9319088 DOI: 10.3390/genes13071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The wild edible mushroom Cantharellus enelensis is a recently described species of the golden chanterelles found in eastern North America. At present, the genetic diversity and population structure of C. enelensis are not known. In this study, we analyzed a total of 230 fruiting bodies of C. enelensis that were collected from three regions of Canada: near the east and west coasts of Newfoundland (NFLD), with 110 fruiting bodies each, and around Hamilton, Ontario (10 fruiting bodies). Among the 110 fruiting bodies from each coast in NFLD, 10 from 2009 were without specific site information, while 100 sampled in 2010 were from each of five patches separated by at least 100 m from each other. Each fruiting body was genotyped at three microsatellite loci. Among the total 28 multilocus genotypes (MLGs) identified, 2 were shared among all three regions, 4 were shared between 2 of the t3hree regions, and the remaining 22 were each found in only 1 region. Minimal spanning network analyses revealed several region-specific MLG clusters, consistent with geographic specific mutation and expansion. Though the most frequently observed MLGs were shared among local (patch) and regional populations, population genetic analyses revealed that both local and regional geographic separations contributed significantly to the observed genetic variation in the total sample. All three regional populations showed excess heterozygosity; for the eastern NFLD population, we reject the null hypothesis of Hardy–Weinberg equilibrium (HWE) at all three loci. However, the analyses of clone-corrected samples revealed that most loci were in HWE. Together, our results suggest that the three discrete regional populations of C. enelensis were likely colonized from a common refugium since the last ice age. However, the local and regional populations are diverging from each other through mutation, drift, and selection at least partly due to heterozygous advantage.
Collapse
|
17
|
Lu X, Cao T, Nguyễn TTT, Yuan HS. Six New Species of Tomentella (Thelephorales, Basidiomycota) From Tropical Pine Forests in Central Vietnam. Front Microbiol 2022; 13:864198. [PMID: 35547107 PMCID: PMC9082317 DOI: 10.3389/fmicb.2022.864198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Up to this point, studies on the taxonomy and phylogeny of the basidiomycetous genus Tomentella stemmed mainly from the temperate to boreal zones of the Northern hemisphere but were scarce in tropical Asia. In this study, six new species—T. bidoupensis, T. brevisterigmata, T. cinereobrunnea, T. longiechinula, T. stipitobasidia, and T. verruculata from central Vietnam in Southeast Asia—are described and illustrated on the basis of morphological characteristics and molecular phylogenetic analyses of the nuclear ribosomal ITS (internal transcribed spacer: ITS1-5.8S-ITS2) and LSU (large subunit: 28S) markers. Maximum likelihood and Bayesian analyses were used to confirm the phylogenetic positions of these new species and all of them can be well recognized by the macroscopical and anatomical characteristics. The new species and closely related species in the phylogenetic tree, and the new species and morphologically similar species are discussed, whereas the host plant for these new species were speculated on the basis of the phylogenetic analyses and the tree species information of the investigated forests.
Collapse
Affiliation(s)
- Xu Lu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,College of Basic Medical Science, Liaoning He's Medical University, Shenyang, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Trang Thị Thu Nguyễn
- Department of Microbiology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
18
|
Tedersoo L, Bahram M, Zinger L, Nilsson RH, Kennedy PG, Yang T, Anslan S, Mikryukov V. Best practices in metabarcoding of fungi: From experimental design to results. Mol Ecol 2022; 31:2769-2795. [PMID: 35395127 DOI: 10.1111/mec.16460] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
The development of high-throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and unveil their ecological roles across a variety of ecosystems. Here we provide an overview of current best practices in metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By reanalysing published data sets, we demonstrate that operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) in recovering fungal diversity, a finding that is particularly evident for long markers. Additionally, analysis of the full-length ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared to the ITS2 subregion. Finally, we show that specific methods for compositional data analyses provide more reliable estimates of shifts in community structure. We conclude that metabarcoding analyses of fungi are especially promising for integrating fungi into the full microbiome and broader ecosystem functioning context, recovery of novel fungal lineages and ancient organisms as well as barcoding of old specimens including type material.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Persistence of ecologically similar fungi in a restricted floral niche. Antonie van Leeuwenhoek 2022; 115:761-771. [PMID: 35389142 DOI: 10.1007/s10482-022-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Fungi in the genera Knoxdaviesia and Sporothrix dominate fungal communities within Protea flowerheads and seed cones (infructescences). Despite apparently similar ecologies, they show strong host recurrence and often occupy the same individual infructescence. Differences in host chemistry explain their host consistency, but the factors that allow co-occupancy of multiple species within individual infructescences are unknown. Sporothrix splendens and K. proteae often grow on different senescent tissue types within infructescences of their P. repens host, indicating that substrate-related differences aid their co-occupancy. Sporothrix phasma and K. capensis grow on the same tissues of P. neriifolia suggesting neutral competitive abilities. Here we test the hypothesis that differences in host-tissues dictate competitive abilities of these fungi and explain their co-occupancy of this spatially restricted niche. Media were prepared from infructescence bases, bracts, seeds, or pollen presenters of P. neriifolia and P. repens. As expected, K. capensis was unable to grow on seeds whilst S. phasma could. As hypothesised, K. capensis and S. phasma had equal competitive abilities on pollen presenters, appearing to explain their co-occupancy of this resource. Growth of K. proteae was significantly enhanced on pollen presenters while that of S. splendens was the same as the control. Knoxdavesia proteae grew significantly faster than S. splendens on all tissue types. Despite this, S. splendens was a superior competitor on all tissue types. For K. proteae to co-occupy infructescences with S. splendens for extended periods, it likely needs to colonize pollen presenters before the arrival of S. splendens.
Collapse
|
20
|
Gohar D, Põldmaa K, Tedersoo L, Aslani F, Furneaux B, Henkel TW, Saar I, Smith ME, Bahram M. Global diversity and distribution of mushroom-inhabiting bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:254-264. [PMID: 35102713 DOI: 10.1111/1758-2229.13045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Mushroom-forming fungi are important sources of food and medicine in many regions of the world, and their development and health are known to depend on various microbes. Recent studies have examined the structure of mushroom-inhabiting bacterial (MIB) communities and their association with local environmental variables, but global-scale diversity and determinants of these communities remain poorly understood. Here we examined the MIB global diversity and community composition in relation to climate, soil and host factors. We found a core global mushroom microbiome, accounting for 30% of sequence reads, while comprising a few bacterial genera such as Halomonas, Serratia, Bacillus, Cutibacterium, Bradyrhizobium and Burkholderia. Our analysis further revealed an important role of host phylogeny in shaping the communities of MIB, whereas the effects of climate and soil factors remained negligible. The results suggest that the communities of MIB and free-living bacteria are structured by contrasting community assembly processes and that fungal-bacterial interactions are an important determinant of MIB community structure.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
| | - Farzad Aslani
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
- School of Environmental and Rural Sciences, University of New England, Armidale, NSW, Australia
| | - Brendan Furneaux
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, CA, USA
| | - Irja Saar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, Uppsala, 756 51, Sweden
| |
Collapse
|
21
|
Eberhardt U, Schütz N, Bartlett P, Beker HJ. 96 North American taxa sorted - Peck's Hebeloma revisited. Mycologia 2022; 114:337-387. [PMID: 35230235 DOI: 10.1080/00275514.2021.2012063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Charles Horton Peck described some 2700 species of North American fungi in the 19th and early 20th centuries. Among these were 31 species that he described as Hebeloma or that later authors recombined into Hebeloma. These 31 taxa have been analyzed morphologically and molecularly, as far as possible. For six of these species, lectotypes are designated. For twelve species, ITS sequences (some partial) were generated. Thirteen of the species analyzed are Hebeloma, as the genus is delimited today. Of these 13, nine are regarded as 'current', i.e. are names that should be accepted and used. Of the remaining four, three are synonymized with earlier Peck species and one with the generic type H. mesophaeum. Numerous Hebeloma species described from America are synonymized with some of Peck's species, such as H. albidulum, H. album, H. colvinii, H. excedens, H. palustre, H. sordidulum, and H. velatum; Peck's H. album, H. palustre, and H. velatum are earlier names for H. fragilipes, H. clavulipes, and H. dunense, respectively. All three names were in current use and described from Europe. The 18 species that are not Hebeloma belong to a range of genera: Agrocybe, Hemistropharia, Inocybe, Inosperma, Naucoria, and Pholiota; three species that were not previously recombined into their respective genera are here recombined and one species, Hebeloma commune is synonymized with Pholiota lenta. Two taxa, that are not Hebeloma, remain unresolved. Sixty later Hebeloma taxa described from North America are revised and synonymized with Peck species and seven with H. mesophaeum, 36 of these supported by ITS (some partial) sequence data. Updates on two species, H. petrakii and H. remyi, from Europe, are also given, and a lectotype and epitype selected for the latter.
Collapse
Affiliation(s)
- Ursula Eberhardt
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Nicole Schütz
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Peter Bartlett
- La Baraka, Gorse Hill Road, Virginia Water, Surrey GU25 4AP, United Kingdom
| | - Henry J Beker
- Rue Père de Deken 19, B-1040 Bruxelles, Belgium; Royal Holloway College, University of London, Egham, United Kingdom; Plantentuin Meise, Nieuwelaan 38, B-1860 Meise, Belgium
| |
Collapse
|
22
|
Host phylogeny is the primary determinant of ectomycorrhizal fungal community composition in the permafrost ecosystem of eastern Siberia at a regional scale. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2021.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Phosphorus Limitation of Trees Influences Forest Soil Fungal Diversity in China. FORESTS 2022. [DOI: 10.3390/f13020223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fungal-biogeography studies have shown global patterns of biotic interactions on microbial biogeography. However, the mechanisms underlying these patterns remain relatively unexplored. To determine the dominant factors affecting forest soil fungal diversity in China, soil and leaves from 33 mountain forest reserves were sampled, and their properties were measured. We tested three hypotheses and established the most realistic one for China. The results showed that the soil fungal diversity (Shannon index) varied unimodally with latitude. The relative abundance of ectomycorrhizae was significantly positively correlated with the leaf nitrogen/phosphorus. The effects of soil available phosphorus and pH on fungal diversity depended on the ectomycorrhizal fungi, and the fungal diversity shifted by 93% due to available phosphorus, potassium, and pH. Therefore, we concluded that latitudinal changes in temperature and the variations in interactions between different fungal guilds (ectomycorrhizal, saprotrophic, and plant pathogenic fungi) did not have a major influence. Forest soil fungal diversity was affected by soil pH, available phosphorus, and potassium, which are driven by the phosphorus limitation of trees.
Collapse
|
24
|
Policelli N, Vietorisz C, Bhatnagar JM, Nuñez MA. Ectomycorrhizal Fungi Invasions in Southern South America. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Shirouzu T, Suzuki TK, Matsuoka S, Takamatsu S. Evolutionary patterns of host type and chasmothecial appendage morphology in obligate plant parasites belonging to Cystotheceae (powdery mildew, Erysiphaceae). Mycologia 2021; 114:35-45. [PMID: 34871136 DOI: 10.1080/00275514.2021.1983352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The chasmothecial appendages of Erysiphaceae are considered to function in the overwintering strategy and evolve morphologically in line with transitions of different host type. However, the evolutionary patterns and relationships of these traits have not yet been verified using statistical models based on phylogenetic information. We aimed to clarify the evolutionary process of host type and appendage morphology in Cystotheceae using phylogenetic comparative methods (PCMs) and to evaluate the evolutionary relationship of these traits. The ancestral state estimation of host types showed that the deciduous type is the most ancestral in Cystotheceae, and the herb or evergreen types evolved secondarily four times and twice, respectively. Branched- or circinate-type appendages were estimated to be the most ancestral, and the mycelioid and rudimentary types evolved secondarily thrice and once, respectively. The results of the random forest analysis showed that the host type was predictable from the phylogeny and appendage morphology. The ancestral state estimation suggested that simultaneous transitions of the host type and appendage morphology occurred at several ancestral nodes. These results suggest some functional relationships between host type and appendage morphology, but there was no statistical support for an overall trend in evolutionary dependence between these traits. Our results demonstrate the utility of PCMs in the study of trait evolution in Cystotheceae, which can be applied to a broader phylogeny of powdery mildews to elucidate the evolutionary relationship and functional causality of phenotypic traits.
Collapse
Affiliation(s)
- Takashi Shirouzu
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan
| | - Takao K Suzuki
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Shunsuke Matsuoka
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Susumu Takamatsu
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
26
|
Ectomycorrhizal fungal communities differ among parental and hybrid Populus cross types within a natural riparian habitat. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Runte GC, Smith AH, Moeller HV, Bogar LM. Spheres of Influence: Host Tree Proximity and Soil Chemistry Shape rRNA, but Not DNA, Communities of Symbiotic and Free-Living Soil Fungi in a Mixed Hardwood-Conifer Forest. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host and symbiont diversity are inextricably linked across partnerships and ecosystems, with degree of partner reliance governing the strength of this correlation. In many forest soils, symbiotic ectomycorrhizal fungi coexist and compete with free-living saprotrophic fungi, with the outcomes of these interactions shaping resource availability and competitive outcomes for the trees aboveground. Traditional approaches to characterizing these communities rely on DNA sequencing of a ribosomal precursor RNA gene (the internal transcribed spacer region), but directly sequencing the precursor rRNA may provide a more functionally relevant perspective on the potentially active fungal communities. Here, we map ectomycorrhizal and saprotrophic soil fungal communities through a mixed hardwood-conifer forest to assess how above- and belowground diversity linkages compare across these differently adapted guilds. Using highly spatially resolved transects (sampled every 2 m) and well-mapped stands of varying host tree diversity, we sought to understand the relative influence of symbiosis versus environment in predicting fungal diversity measures. Canopy species in this forest included two oaks (Quercus agrifolia and Quercus douglasii) and one pine (Pinus sabiniana). At the scale of our study, spatial turnover in rRNA-based communities was much more predictable from measurable environmental attributes than DNA-based communities. And while turnover of ectomycorrhizal fungi and saprotrophs were predictable by the presence and abundance of different canopy species, they both responded strongly to soil nutrient characteristics, namely pH and nitrogen availability, highlighting the niche overlap of these coexisting guilds and the strong influence of aboveground plants on belowground fungal communities.
Collapse
|
28
|
Sanaei A, Sayer EJ, Yuan Z, Lin F, Fang S, Ye J, Liu S, Hao Z, Wang X. Soil Stoichiometry Mediates Links Between Tree Functional Diversity and Soil Microbial Diversity in a Temperate Forest. Ecosystems 2021. [DOI: 10.1007/s10021-021-00655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Wang Y, Zhao Y, Xu Y, Ma J, Babalola BJ, Fan Y. Ectomycorrhizal fungal communities associated with Larix gemelinii Rupr. in the Great Khingan Mountains, China. PeerJ 2021; 9:e11230. [PMID: 33959418 PMCID: PMC8053382 DOI: 10.7717/peerj.11230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Larix gemelinii is an important tree species in the Great Khingan Mountains in Northeast China with a high economic and ecological value for its role in carbon sequestration and as a source of lumber and nuts. However, the ectomycorrhizal (EM) fungal diversity and community composition of this tree remain largely undefined. We examined EM fungal communities associated with L. gemelinii from three sites in the Great Khingan Mountains using Illumina Miseq to sequence the rDNA ITS2 region and evaluated the impact of spatial, soil, and climatic variables on the EM fungal community. A total of 122 EM fungal operational taxonomic units (OTUs) were identified from 21 pooled-root samples, and the dominant EM fungal lineages were /tricholoma, /tomentella-thelephora, /suillus-rhizopogon, and /piloderma. A high proportion of unique EM fungal OTUs were present; some abundant OTUs largely restricted to specific sites. EM fungal richness and community assembly were significantly correlated with spatial distance and climatic and soil variables, with mean annual temperature being the most important predictor for fungal richness and geographic distance as the largest determinant for community turnover. Our findings indicate that L. gemelinii has a rich and distinctive EM fungal community contributing to our understanding of the montane EM fungal community structure from the perspective of a single host plant that has not been previously reported.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Jianjun Ma
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, Beijing, China
| | - Yongjun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| |
Collapse
|
30
|
Corrales A, Xu H, Garibay-Orijel R, Alfonso-Corrado C, Williams-Linera G, Chu C, Truong C, Jusino MA, Clark-Tapia R, Dalling JW, Liu Y, Smith ME. Fungal communities associated with roots of two closely related Juglandaceae species with a disjunct distribution in the tropics. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Wang YL, Zhang X, Xu Y, Babalola BJ, Xiang SM, Zhao YL, Fan YJ. Fungal Diversity and Community Assembly of Ectomycorrhizal Fungi Associated With Five Pine Species in Inner Mongolia, China. Front Microbiol 2021; 12:646821. [PMID: 33796093 PMCID: PMC8008119 DOI: 10.3389/fmicb.2021.646821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal (EM) fungi play vital roles in ensuring host plants' health, plant diversity, and the functionality of the ecosystem. However, EM fungal diversity, community composition, and underlying assembly processes in Inner Mongolia, China, where forests are typically semiarid and cold-temperate zones, attract less attention. In this study, we investigated EM fungal communities from 63 root samples of five common pine plants in Inner Mongolia across 1,900 km using Illumina Miseq sequencing of the fungal internal transcribed spacer 2 region. We evaluated the impact of host plant phylogeny, soil, climatic, and spatial variables on EM fungal diversity and community turnover. Deterministic vs. stochastic processes for EM fungal community assembly were quantified using β-nearest taxon index scores. In total, we identified 288 EM fungal operational taxonomic units (OTUs) belonging to 31 lineages, of which the most abundant lineages were Tomentella-Thelephora, Wilcoxina, Tricholoma, and Suillus-Rhizopogon. Variations in EM fungal OTU richness and community composition were significantly predicted by host phylogeny, soil (total nitrogen, phosphorus, nitrogen-phosphorus ratio, and magnesium), climate, and spatial distance, with the host plant being the most important factor. β-nearest taxon index demonstrated that both deterministic and stochastic processes jointly determined the community assembly of EM fungi, with the predominance of stochastic processes. At the Saihanwula site selected for preference analysis, all plant species (100%) presented significant preferences for EM fungi, 54% of abundant EM fungal OTUs showed significant preferences for host plants, and 26% of pairs of plant species and abundant fungal OTUs exhibited remarkably strong preferences. Overall, we inferred that the high diversity and distinctive community composition of EM fungi associated with natural pine species in Inner Mongolia and the stochastic processes prevailed in determining the community assembly of EM fungi. Our study shed light on the diversity and community assembly of EM fungi associated with common pine species in semiarid and cold temperate forests in Inner Mongolia, China, for the first time and provided a better understanding of the ecological processes underlying the community assembly of mutualistic fungi.
Collapse
Affiliation(s)
- Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Si-Min Xiang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yan-Ling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yong-Jun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
32
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
33
|
Otsing E, Anslan S, Ambrosio E, Koricheva J, Tedersoo L. Tree Species Richness and Neighborhood Effects on Ectomycorrhizal Fungal Richness and Community Structure in Boreal Forest. Front Microbiol 2021; 12:567961. [PMID: 33692762 PMCID: PMC7939122 DOI: 10.3389/fmicb.2021.567961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022] Open
Abstract
Tree species identity is one of the key factors driving ectomycorrhizal (EcM) fungal richness and community composition in boreal and temperate forest ecosystems, but little is known about the influence of tree species combinations and their neighborhood effects on EcM communities. To advance our understanding of host plant effects on EcM fungi, the roots of silver birch, Scots pine, and Norway spruce were analyzed using high-throughput sequencing across mature boreal forest exploratory plots of monocultures and two- and three-species mixtures in Finland. Our analyses revealed that tree species identity was an important determinant of EcM fungal community composition, but tree species richness had no significant influence on EcM fungal richness and community composition. We found that EcM fungal community composition associated with spruce depends on neighboring tree species. Our study suggests that at a regional-scale tree species identity is the primary factor determining community composition of root-associated EcM fungi alongside with tree species composition effects on EcM fungal community of spruce in mixed stands.
Collapse
Affiliation(s)
- Eveli Otsing
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Elia Ambrosio
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Natural History Museum, University of Tartu, Tartu, Estonia
| |
Collapse
|
34
|
Whitaker BK, Christian N, Chai Q, Clay K. Foliar fungal endophyte community structure is independent of phylogenetic relatedness in an Asteraceae common garden. Ecol Evol 2020; 10:13895-13912. [PMID: 33391689 PMCID: PMC7771118 DOI: 10.1002/ece3.6983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Phylogenetic distance among host species represents a proxy for host traits that act as biotic filters to shape host-associated microbiome community structure. However, teasing apart potential biotic assembly mechanisms, such as host specificity or local species interactions, from abiotic factors, such as environmental specificity or dispersal barriers, in hyperdiverse, horizontally transmitted microbiomes remains a challenge. In this study, we tested whether host phylogenetic relatedness among 18 native Asteraceae plant species and spatial distance between replicated plots in a common garden affects foliar fungal endophyte (FFE) community structure. We found that FFE community structure varied significantly among host species, as well as host tribes, but not among host subfamilies. However, FFE community dissimilarity between host individuals was not significantly correlated with phylogenetic distance between host species. There was a significant effect of spatial distance among host individuals on FFE community dissimilarity within the common garden. The significant differences in FFE community structure among host species, but lack of a significant host phylogenetic effect, suggest functional differences among host species not accounted for by host phylogenetic distance, such as metabolic traits or phenology, may drive FFE community dissimilarity. Overall, our results indicate that host species identity and the spatial distance between plants can determine the similarity of their microbiomes, even across a single experimental field, but that host phylogeny is not closely tied to FFE community divergence in native Asteraceae.
Collapse
Affiliation(s)
| | - Natalie Christian
- Department of BiologyIndiana UniversityBloomingtonINUSA
- Department of BiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Qing Chai
- Department of BiologyIndiana UniversityBloomingtonINUSA
- School of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Keith Clay
- Department of BiologyIndiana UniversityBloomingtonINUSA
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA
| |
Collapse
|
35
|
Interplay between differential competition and actions of spore-vectors explain host exclusivity of saprobic fungi in Protea flowers. Antonie Van Leeuwenhoek 2020; 113:2187-2200. [PMID: 33221982 DOI: 10.1007/s10482-020-01491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
Protea flowers host saprobic Knoxdaviesia and Sporothrix fungi that are dispersed by pollinating insects and birds. Different Protea species contain sympatric populations of different fungal species. For example, P. repens host S. splendens and K. proteae, while P. neriifolia host K. capensis and S. phasma. Even though all fungi can grow vigorously on alternative hosts and they share the same spore vector species, they rarely colonise alternative hosts. We investigated the role of fungal differential competitive abilities on their usual and alternative hosts to explain their host exclusivity. In a de Wit replacement series experiment, S. splendens outcompeted and later overgrew all other fungi on media prepared from its usual and alternative hosts. Host exclusivity of S. splendens on P. repens may therefore be maintained by restricted movement of spore vectors rather than weaker competitive abilities on alternative hosts. On their preferred hosts, S. splendens and S. phasma rapidly overgrew Knoxdavesia species with which they do not usually share a host, explaining host exclusivity of the Knoxdavesia species. Knoxdaviesia proteae likely only persist on P. repens with sympatric S. splendens if it colonizes flowers earlier, in a different area, or completes its life cycle before being overgrown. On their usual P. neriifolia host, K. capensis and S. phasma had neutralistic interactions and S. phasma could not overgrow K. capensis, explaining their co-existence. Host exclusivity of saprobic Protea-associated Knoxdaviesia and Sporothrix may therefore be maintained by both the activities of spore vectors and differential competitive abilities on different hosts, but the influence of other competing microbes and micro-niche differentiation cannot be excluded.
Collapse
|
36
|
López-Angulo J, de la Cruz M, Chacón-Labella J, Illuminati A, Matesanz S, Pescador DS, Pías B, Sánchez AM, Escudero A. The role of root community attributes in predicting soil fungal and bacterial community patterns. THE NEW PHYTOLOGIST 2020; 228:1070-1082. [PMID: 32557640 DOI: 10.1111/nph.16754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Roots are assumed to play a major role in structuring soil microbial communities, but most studies exploring the relationships between microbes and plants at the community level have only used aboveground plant distribution as a proxy. However, a decoupling between belowground and aboveground plant components may occur due to differential spreading of plant canopies and root systems. Thus, soil microbe-plant links are not completely understood. Using a combination of DNA metabarcoding and spatially explicit sampling at the plant neighbourhood scale, we assessed the influence of the plant root community on soil bacterial and fungal diversity (species richness, composition and β-diversity) in a dry Mediterranean scrubland. We found that root composition and biomass, but not richness, predict unique fractions of variation in microbial richness and composition. Moreover, bacterial β-diversity was related to root β-diversity, while fungal β-diversity was related to aboveground plant β-diversity, suggesting that plants differently influence both microbial groups. Our study highlights the role of plant distribution both belowground and aboveground, soil properties and other spatially structured factors in explaining the heterogeneity in soil microbial diversity. These results also show that incorporating data on both plant community compartments will further our understanding of the relationships between soil microbial and plant communities.
Collapse
Affiliation(s)
- Jesús López-Angulo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Marcelino de la Cruz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Julia Chacón-Labella
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Angela Illuminati
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - David S Pescador
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Beatriz Pías
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana M Sánchez
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| | - Adrián Escudero
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| |
Collapse
|
37
|
Soonvald L, Loit K, Runno-Paurson E, Astover A, Tedersoo L. Characterising the effect of crop species and fertilisation treatment on root fungal communities. Sci Rep 2020; 10:18741. [PMID: 33127926 PMCID: PMC7603395 DOI: 10.1038/s41598-020-74952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022] Open
Abstract
Information about the root mycobiome may improve the overall quality of the plants and contribute to a valuable strategy to enhance sustainable agriculture. Therefore, we assessed differences in fungal community diversity and composition in the roots of potato, wheat and barley grown under mineral nitrogen fertilisation at five rates, with and without farmyard manure amendment. The same factorial combination of treatments has been used since 1989. Species richness and diversity, as well as community composition, of different fungal guilds were characterised using Illumina MiSeq sequencing of the ITS2 region. Crop species was the main factor determining overall fungal richness and diversity, with wheat showing the highest, and potato the lowest, richness and diversity. Pathogen diversity indices were highest in wheat plots amended with farmyard manure, whereas the lowest values were observed for potato roots. Fertilisation treatments and the interaction between crop species and fertilisation had the strongest impact on arbuscular mycorrhiza and saprotroph diversity. Crop species also determined the composition of the overall fungal community and that of fungal guilds, whereas fertilisation treatment had only a minor effect. This study highlights crop species as the main driver in shaping root fungal diversity and composition under the same environmental conditions.
Collapse
Affiliation(s)
- Liina Soonvald
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Kaire Loit
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Chair of Soil Science, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Alar Astover
- Chair of Soil Science, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
38
|
Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K, Buegger F, Padari A, Hagh-Doust N, Mikryukov V, Gohar D, Amiri R, Hiiesalu I, Lutter R, Rosenvald R, Rähn E, Adamson K, Drenkhan T, Tullus H, Jürimaa K, Sibul I, Otsing E, Põlme S, Metslaid M, Loit K, Agan A, Puusepp R, Varik I, Kõljalg U, Abarenkov K. Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Front Microbiol 2020; 11:1953. [PMID: 33013735 PMCID: PMC7510051 DOI: 10.3389/fmicb.2020.01953] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023] Open
Abstract
Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.
Collapse
Affiliation(s)
- Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Zoological Institute, Technische Universität Braunschweig, Brunswick, Germany
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Karin Pritsch
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Franz Buegger
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Allar Padari
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Chair of Forest Management Planning and Wood Processing Technologies, Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasekh Amiri
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Indrek Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Reimo Lutter
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Raul Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Elisabeth Rähn
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kalev Adamson
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Tiia Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia.,Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Hardi Tullus
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Jürimaa
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Ivar Sibul
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Eveli Otsing
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sergei Põlme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Marek Metslaid
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Kaire Loit
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ahto Agan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Rasmus Puusepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Inge Varik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| | - Kessy Abarenkov
- Natural History Museum and Botanical Garden, University of Tartu, Tartu, Estonia
| |
Collapse
|
39
|
Abrego N, Huotari T, Tack AJM, Lindahl BD, Tikhonov G, Somervuo P, Martin Schmidt N, Ovaskainen O, Roslin T. Higher host plant specialization of root-associated endophytes than mycorrhizal fungi along an arctic elevational gradient. Ecol Evol 2020; 10:8989-9002. [PMID: 32884673 PMCID: PMC7452766 DOI: 10.1002/ece3.6604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.
Collapse
Affiliation(s)
- Nerea Abrego
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Tea Huotari
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Ayco J. M. Tack
- Department of EcologyEnvironment and Plant SciencesStockholm UniversityStockholmSweden
| | - Björn D. Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Gleb Tikhonov
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Computational Systems Biology groupDepartment of Computer ScienceAalto UniversityEspooFinland
| | - Panu Somervuo
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | | | - Otso Ovaskainen
- Centre for Biodiversity DynamicsDepartment of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Tomas Roslin
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
40
|
Legeay J, Husson C, Boudier B, Louisanna E, Baraloto C, Schimann H, Marcais B, Buée M. Surprising low diversity of the plant pathogen Phytophthora in Amazonian forests. Environ Microbiol 2020; 22:5019-5032. [PMID: 32452108 DOI: 10.1111/1462-2920.15099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
Abstract
The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.
Collapse
Affiliation(s)
- Jean Legeay
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Claude Husson
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France.,Département de la santé des forêts, Ministère de l'agriculture et de l'alimentation, DGAL, SDQPV, Paris, 75015, France
| | - Benjamin Boudier
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Eliane Louisanna
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France
| | - Christopher Baraloto
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France.,International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Heidy Schimann
- INRAE, UMR EcoFoG - Ecology of Guiana Forests - (AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane), Kourou, 97310, France
| | - Benoît Marcais
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR IAM - Interactions Arbres-Microorganismes, Nancy, F-54000, France
| |
Collapse
|
41
|
Pérez-Izquierdo L, Zabal-Aguirre M, Verdú M, Buée M, Rincón A. Ectomycorrhizal fungal diversity decreases in Mediterranean pine forests adapted to recurrent fires. Mol Ecol 2020; 29:2463-2476. [PMID: 32500559 DOI: 10.1111/mec.15493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023]
Abstract
Fire is a major disturbance linked to the evolutionary history and climate of Mediterranean ecosystems, where the vegetation has evolved fire-adaptive traits (e.g., serotiny in pines). In Mediterranean forests, mutualistic feedbacks between trees and ectomycorrhizal (ECM) fungi, essential for ecosystem dynamics, might be shaped by recurrent fires. We tested how the structure and function of ECM fungal communities of Pinus pinaster and Pinus halepensis vary among populations subjected to high and low fire recurrence in Mediterranean ecosystems, and analysed the relative contribution of environmental (climate, soil properties) and tree-mediated (serotiny) factors. For both pines, local and regional ECM fungal diversity were lower in areas of high than low fire recurrence, although certain fungal species were favoured in the former. A general decline of ECM root-tip enzymatic activity for P. pinaster was associated with high fire recurrence, but not for P. halepensis. Fire recurrence and fire-related factors such as climate, soil properties or tree phenotype explained these results. In addition to the main influence of climate, the tree fire-adaptive trait serotiny recovered a great portion of the variation in structure and function of ECM fungal communities associated with fire recurrence. Edaphic conditions (especially pH, tightly linked to bedrock type) were an important driver shaping ECM fungal communities, but mainly at the local scale and probably independently of the fire recurrence. Our results show that ECM fungal community shifts are associated with fire recurrence in fire-prone dry Mediterranean forests, and reveal complex feedbacks among trees, mutualistic fungi and the surrounding environment in these ecosystems.
Collapse
Affiliation(s)
| | | | | | - Marc Buée
- INRA, UMR1136 INRA Nancy - Université de Lorraine, Interactions Arbres-Microorganismes Labex ARBRE, Champenoux, France
| | - Ana Rincón
- Instituto de Ciencias Agrarias, ICA-CSIC, Madrid, Spain
| |
Collapse
|
42
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Li XC, Lü PP, Zheng Y, Guo LD. Host plant phylogeny and geographic distance strongly structure Betulaceae-associated ectomycorrhizal fungal communities in Chinese secondary forest ecosystems. FEMS Microbiol Ecol 2020; 95:5393368. [PMID: 30889238 DOI: 10.1093/femsec/fiz037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/17/2019] [Indexed: 11/14/2022] Open
Abstract
Environmental filtering and dispersal limitation are two of the primary drivers of community assembly in ecosystems, but their effects on ectomycorrhizal (EM) fungal communities associated with wide ranges of Betulaceae taxa at a large scale are poorly documented. In this study, we examined EM fungal communities associated with 23 species from four genera (Alnus, Betula, Carpinus and Corylus) of Betulaceae in Chinese secondary forest ecosystems, using Illumina MiSeq sequencing of the ITS2 region. Effects of host plant phylogeny, soil, climate and geographic distance on EM fungal community were explored. In total, we distinguished 1738 EM fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. The EM fungal communities of Alnus had significantly lower OTU richness than those associated with the other three plant genera. The EM fungal OTU richness was significantly affected by geographic distance, host plant phylogeny, soil and climate. The EM fungal community composition was significantly influenced by host plant phylogeny (12.1% of variation explained in EM fungal community), geographic distance (7.7%), soil (4.6%) and climate (1.1%). This finding highlights that environmental filtering linked to host plant phylogeny and dispersal limitation strongly influence EM fungal communities associated with Betulaceae plants in Chinese secondary forest ecosystems.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Ectomycorrhizal fungi of exotic Carya ovata in the context of surrounding native forests on Central European sites. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Abstract
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of a new, cross-system trend in host-associated microbiomes. Defining phylosymbiosis as 'microbial community relationships that recapitulate the phylogeny of their host', we review the relevant literature and data in the last decade, emphasizing frequently used methods and regular patterns observed in analyses. Quantitative support for phylosymbiosis is provided by statistical methods evaluating higher microbiome variation between host species than within host species, topological similarities between the host phylogeny and microbiome dendrogram, and a positive association between host genetic relationships and microbiome beta diversity. Significant degrees of phylosymbiosis are prevalent, but not universal, in microbiomes of plants and animals from terrestrial and aquatic habitats. Consistent with natural selection shaping phylosymbiosis, microbiome transplant experiments demonstrate reduced host performance and/or fitness upon host-microbiome mismatches. Hybridization can also disrupt phylosymbiotic microbiomes and cause hybrid pathologies. The pervasiveness of phylosymbiosis carries several important implications for advancing knowledge of eco-evolutionary processes that impact host-microbiome interactions and future applications of precision microbiology. Important future steps will be to examine phylosymbiosis beyond bacterial communities, apply evolutionary modelling for an increasingly sophisticated understanding of phylosymbiosis, and unravel the host and microbial mechanisms that contribute to the pattern. This review serves as a gateway to experimental, conceptual and quantitative themes of phylosymbiosis and outlines opportunities ripe for investigation from a diversity of disciplines.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Matsuoka S, Sugiyama Y, Tateno R, Imamura S, Kawaguchi E, Osono T. Evaluation of host effects on ectomycorrhizal fungal community compositions in a forested landscape in northern Japan. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191952. [PMID: 32257347 PMCID: PMC7062096 DOI: 10.1098/rsos.191952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/27/2020] [Indexed: 05/05/2023]
Abstract
Community compositions of ectomycorrhizal (ECM) fungi are similar within the same host taxa. However, careful interpretation is required to determine whether the combination of ECM fungi and plants is explained by the host preference for ECM fungi, or by the influence of neighbouring heterospecific hosts. In the present study, we aimed to evaluate the effects of host species on the ECM community compositions in a forested landscape (approx. 10 km) where monodominant forest stands of six ECM host species belonging to three families were patchily distributed. A total of 180 ECM operational taxonomic units (OTUs) were detected with DNA metabarcoding. Quantitative multivariate analyses revealed that the ECM community compositions were primarily structured by host species and families, regardless of the soil environments and spatial arrangements of the sampling plots. In addition, 38 ECM OTUs were only detected from particular host tree species. Furthermore, the neighbouring plots harboured similar fungal compositions, although the host species were different. The relative effect of the spatial factors on the ECM compositions was weaker than that of host species. Our results suggest that the host preference for ECM fungi is the primary determinant of ECM fungal compositions in the forested landscape.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Author for correspondence: Shunsuke Matsuoka e-mail:
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto 606-8502, Japan
| | - Shihomi Imamura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
46
|
Huang YT, Skelton J, Hulcr J. Lipids and small metabolites provisioned by ambrosia fungi to symbiotic beetles are phylogeny-dependent, not convergent. ISME JOURNAL 2020; 14:1089-1099. [PMID: 31988472 DOI: 10.1038/s41396-020-0593-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
Long-term symbiotic associations often lead to reciprocal adaptation between the involved entities. One of the main challenges for studies of such symbioses is differentiating adaptation from neutral processes and phylogenetic background. Ambrosia fungi, cultivated by ambrosia beetles as their sole food source, provide an excellent model to study evolutionary adaptation in a comparative framework because they evolved many times, and each origin bears features seemingly convergently adapted to the symbiosis. We tested whether the symbiotic lifestyle of unrelated ambrosia fungi has led to convergence in the key feature of the symbiotic phenotype-nutrition provisioning to the vector beetles. We compared conidia and mycelium content in three phylogenetic pairs of ambrosia fungi and their closely related nonambrosia relatives using an untargeted metabolomic assay. Multivariate analysis of 311 polar metabolites and 14063 lipid features revealed no convergence of nutrient content across ambrosia lineages. Instead, most variation of the metabolome composition was explained by phylogenetic relationships among the fungi. Thus the overall metabolome evolution of each ambrosia fungus is mostly driven by its inherited metabolism rather than the transition toward symbiosis. We identified eight candidate lipid compounds with expression levels different between the swollen ambrosia spores and other tissues, but they were not consistently elevated across ambrosia fungi. We conclude that ambrosia provisions consist either of nonspecific nutrients in elevated amounts, or of metabolites that are specific to each of the ambrosia symbioses.
Collapse
Affiliation(s)
- Yin-Tse Huang
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA.,Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga Prefecture, 520-2113, Japan
| | - James Skelton
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA. .,Entomology and Nematology Department, University of Florida, Gainesville, FL, 32603, USA.
| |
Collapse
|
47
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Lü PP, Li XC, Qian X, Maitra P, Babalola BJ, Zheng Y, Guo LD. Community Assembly of Endophytic Fungi in Ectomycorrhizae of Betulaceae Plants at a Regional Scale. Front Microbiol 2020; 10:3105. [PMID: 32038548 PMCID: PMC6986194 DOI: 10.3389/fmicb.2019.03105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction between aboveground and belowground biotic communities drives community assembly of plants and soil microbiota. As an important component of belowground microorganisms, root-associated fungi play pivotal roles in biodiversity maintenance and community assembly of host plants. The Betulaceae plants form ectomycorrhizae with soil fungi and widely distribute in various ecosystems. However, the community assembly of endophytic fungi in ectomycorrhizae is less investigated at a large spatial scale. Here, we examined the endophytic fungal communities in ectomycorrhizae of 22 species in four genera belonging to Betulaceae in Chinese forest ecosystems, using Illumina Miseq sequencing of internal transcribed spacer 2 amplicons. The relative contribution of host phylogeny, climate and soil (environmental filtering) and geographic distance (dispersal limitation) on endophytic fungal community was disentangled. In total, 2,106 endophytic fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level, dominated by Leotiomycetes, Agaricomycetes, Eurotiomycetes, and Sordariomycetes. The endophytic fungal OTU richness was significantly related with host phylogeny, geographic distance, soil and climate. The endophytic fungal community composition was significantly affected by host phylogeny (19.5% of variation explained in fungal community), geographic distance (11.2%), soil (6.1%), and climate (1.4%). This finding suggests that environmental filtering by plant and abiotic variables coupled with dispersal limitation linked to geographic distance determines endophytic fungal community assembly in ectomycorrhizae of Betulaceae plants, with host phylogeny being a stronger determinant than other predictor variables at the regional scale.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Geographical Science, Fujian Normal University, Fuzhou, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
R. Carrino-Kyker S, P. Coyle K, A. Kluber L, J. Burke D. Fungal and Bacterial Communities Exhibit Consistent Responses to Reversal of Soil Acidification and Phosphorus Limitation over Time. Microorganisms 2019; 8:E1. [PMID: 31861322 PMCID: PMC7022789 DOI: 10.3390/microorganisms8010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/16/2023] Open
Abstract
Chronic acid deposition affects many temperate hardwood forests of the northeastern United States, reduces soil pH and phosphorus (P) availability, and can alter the structure and function of soil microbial communities. The strategies that microorganisms possess for survival in acidic, low P soil come at a carbon (C) cost. Thus, how microbial communities respond to soil acidification in forests may be influenced by plant phenological stage as C allocation belowground varies; however, this remains largely unexplored. In this study, we examined microbial communities in an ecosystem level manipulative experiment where pH and/or P availability were elevated in three separate forests in Northeastern Ohio. Tag-encoded pyrosequencing was used to examine bacterial and fungal community structure at five time points across one year corresponding to plant phenological stages. We found significant effects of pH treatment and time on fungal and bacterial communities in soil. However, we found no interaction between pH treatment and time of sampling for fungal communities and only a weak interaction between pH elevation and time for bacterial communities, suggesting that microbial community responses to soil pH are largely independent of plant phenological stage. In addition, fungal communities were structured largely by site, suggesting that fungi were responding to differences between the forests, such as plant community differences.
Collapse
Affiliation(s)
- Sarah R. Carrino-Kyker
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kaitlin P. Coyle
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laurel A. Kluber
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - David J. Burke
- The Holden Arboretum, Kirtland, OH 44094, USA; (L.A.K.); (D.J.B.)
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
49
|
Matsuoka S, Iwasaki T, Sugiyama Y, Kawaguchi E, Doi H, Osono T. Biogeographic Patterns of Ectomycorrhizal Fungal Communities Associated With Castanopsis sieboldii Across the Japanese Archipelago. Front Microbiol 2019; 10:2656. [PMID: 31798567 PMCID: PMC6868053 DOI: 10.3389/fmicb.2019.02656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 11/13/2022] Open
Abstract
Biogeographic patterns in ectomycorrhizal (ECM) fungal communities and their drivers have been elucidated, including effects of host tree species and abiotic (climatic and edaphic) conditions. At these geographic scales, genotypic diversity and composition of single host tree species change with spatial and environmental gradients, reflecting their historical dispersal events. However, whether the host genotypes can be associated with the biogeographic patterns of ECM communities remains unclear. We investigated the biogeographic pattern of ECM fungal community associated with the single host species Castanopsis sieboldii (Fagaceae), whose genotypic diversity and composition across the Japanese archipelago has already been evaluated. ECM communities were investigated in 12 mature Castanopsis-dominated forests covering almost the entire distribution range of C. sieboldii, and we quantified the effect of host genotypes on the biogeographic pattern of ECM fungal communities. Richness and community composition of ECM fungi changed with latitude and longitude; these biogeographic changes of ECM community were significantly correlated with host genotypic variables. Quantitative analyses showed a higher relative explanatory power of climatic and spatial variables than that of host genotypic variables for the biogeographic patterns in the ECM community. Our results suggest historical events of host dispersal can affect the biogeographic patterns of the ECM fungal community, while their explanation power was lower than that for climatic filtering and/or fungal dispersal.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takaya Iwasaki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| |
Collapse
|
50
|
The Contrasting Responses of Mycorrhizal Fungal Mycelium Associated with Woody Plants to Multiple Environmental Factors. FORESTS 2019. [DOI: 10.3390/f10110973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: Extraradical mycorrhizal fungal mycelium (MFM) plays critical roles in nutrient absorption and carbon cycling in forest ecosystems. However, it is often ignored or treated as a root uptake apparatus in existing biogeochemical models. Methods: We conducted a meta-analysis to reveal how MFM responds to various, coinciding environmental factors and their interactions. Results: Nitrogen (N) addition and N-phosphorus (P)-potassium (K) combination significantly decreased MFM. However, elevated CO2, organic matter addition, P addition, and CO2-N combination significantly increased MFM. In contrast, warming, K addition, N-P combination, and P-K combination did not affect MFM. Mycorrhizal fungal levels (individual vs. community), mycorrhizal type (ectomycorrhizal fungi vs. arbuscular mycorrhizal fungi), treatment time (<1 year vs. >1 year), and mycelium estimation/sampling method (biomarker vs. non-biomarker; ingrowth mesh bag vs. soil core) significantly affected the responses of MFM to elevated CO2 and N addition. The effect sizes of N addition significantly increased with mean annual precipitation, but decreased with soil pH and host tree age. The effect sizes of P addition significantly increased with N concentration in host plant leaves. Conclusions: The differential responses revealed emphasize the importance of incorporating MFM in existing biogeochemical models to precisely assess and predict the impacts of global changes on forest ecosystem functions.
Collapse
|