1
|
Cloutier S, Edwards T, Zheng C, Booker HM, Islam T, Nabetani K, Kutcher HR, Molina O, You FM. Fine-mapping of a major locus for Fusarium wilt resistance in flax (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:27. [PMID: 38245903 PMCID: PMC10800302 DOI: 10.1007/s00122-023-04528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Fine-mapping of a locus on chromosome 1 of flax identified an S-lectin receptor-like kinase (SRLK) as the most likely candidate for a major Fusarium wilt resistance gene. Fusarium wilt, caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. lini, is a devastating disease in flax. Genetic resistance can counteract this disease and limit its spread. To map major genes for Fusarium wilt resistance, a recombinant inbred line population of more than 700 individuals derived from a cross between resistant cultivar 'Bison' and susceptible cultivar 'Novelty' was phenotyped in Fusarium wilt nurseries at two sites for two and three years, respectively. The population was genotyped with 4487 single nucleotide polymorphism (SNP) markers. Twenty-four QTLs were identified with IciMapping, 18 quantitative trait nucleotides with 3VmrMLM and 108 linkage disequilibrium blocks with RTM-GWAS. All models identified a major QTL on chromosome 1 that explained 20-48% of the genetic variance for Fusarium wilt resistance. The locus was estimated to span ~ 867 Kb but included a ~ 400 Kb unresolved region. Whole-genome sequencing of 'CDC Bethune', 'Bison' and 'Novelty' produced ~ 450 Kb continuous sequences of the locus. Annotation revealed 110 genes, of which six were considered candidate genes. Fine-mapping with 12 SNPs and 15 Kompetitive allele-specific PCR (KASP) markers narrowed down the interval to ~ 69 Kb, which comprised the candidate genes Lus10025882 and Lus10025891. The latter, a G-type S-lectin receptor-like kinase (SRLK) is the most likely resistance gene because it is the only polymorphic one. In addition, Fusarium wilt resistance genes previously isolated in tomato and Arabidopsis belonged to the SRLK class. The robust KASP markers can be used in marker-assisted breeding to select for this major Fusarium wilt resistance locus.
Collapse
Affiliation(s)
- S Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - T Edwards
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - C Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - H M Booker
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- Department of Plant Agriculture, Ontario Agricultural College, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| | - T Islam
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - K Nabetani
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - H R Kutcher
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - O Molina
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - F M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
2
|
Gou M, Balint-Kurti P, Xu M, Yang Q. Quantitative disease resistance: Multifaceted players in plant defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:594-610. [PMID: 36448658 DOI: 10.1111/jipb.13419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In contrast to large-effect qualitative disease resistance, quantitative disease resistance (QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding. The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years. In this review, we summarize the genes that have been associated with plant QDR and their biological functions. Many QDR genes belong to the canonical resistance gene categories with predicted functions in pathogen perception, signal transduction, phytohormone homeostasis, metabolite transport and biosynthesis, and epigenetic regulation. However, other "atypical" QDR genes are predicted to be involved in processes that are not commonly associated with disease resistance, such as vesicle trafficking, molecular chaperones, and others. This diversity of function for QDR genes contrasts with qualitative resistance, which is often based on the actions of nucleotide-binding leucine-rich repeat (NLR) resistance proteins. An understanding of the diversity of QDR mechanisms and of which mechanisms are effective against which classes of pathogens will enable the more effective deployment of QDR to produce more durably resistant, resilient crops.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
3
|
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3010. [PMID: 36432742 PMCID: PMC9693284 DOI: 10.3390/plants11223010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.
Collapse
|
4
|
Wang L, Calabria J, Chen HW, Somssich M. The Arabidopsis thaliana-Fusarium oxysporum strain 5176 pathosystem: an overview. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6052-6067. [PMID: 35709954 PMCID: PMC9578349 DOI: 10.1093/jxb/erac263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Fusarium oxysporum is a soil-borne fungal pathogen of several major food crops. Research on understanding the molecular details of fungal infection and the plant's defense mechanisms against this pathogen has long focused mainly on the tomato-infecting F. oxysporum strains and their specific host plant. However, in recent years, the Arabidopsis thaliana-Fusarium oxysporum strain 5176 (Fo5176) pathosystem has additionally been established to study this plant-pathogen interaction with all the molecular biology, genetic, and genomic tools available for the A. thaliana model system. Work on this system has since produced several new insights, especially with regards to the role of phytohormones involved in the plant's defense response, and the receptor proteins and peptide ligands involved in pathogen detection. Furthermore, work with the pathogenic strain Fo5176 and the related endophytic strain Fo47 has demonstrated the suitability of this system for comparative studies of the plant's specific responses to general microbe- or pathogen-associated molecular patterns. In this review, we highlight the advantages of this specific pathosystem, summarize the advances made in studying the molecular details of this plant-fungus interaction, and point out open questions that remain to be answered.
Collapse
Affiliation(s)
- Liu Wang
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jacob Calabria
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hsiang-Wen Chen
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | | |
Collapse
|
5
|
Kudjordjie EN, Hooshmand K, Sapkota R, Darbani B, Fomsgaard IS, Nicolaisen M. Fusarium oxysporum Disrupts Microbiome-Metabolome Networks in Arabidopsis thaliana Roots. Microbiol Spectr 2022; 10:e0122622. [PMID: 35766498 PMCID: PMC9430778 DOI: 10.1128/spectrum.01226-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
While the plant host metabolome drives distinct enrichment of detrimental and beneficial members of the microbiome, the mechanistic interomics relationships remain poorly understood. Here, we studied microbiome and metabolome profiles of two Arabidopsis thaliana accessions after Fusarium oxysporum f.sp. mathioli (FOM) inoculation, Landsberg erecta (Ler-0) being susceptible and Col-0 being resistant against FOM. By using bacterial and fungal amplicon sequencing and targeted metabolite analysis, we observed highly dynamic microbiome and metabolome profiles across FOM host progression, while being markedly different between FOM-inoculated and noninoculated Col-0 and Ler-0. Co-occurrence network analysis revealed more robust microbial networks in the resistant Col-0 compared to Ler-0 during FOM infection. Correlation analysis revealed distinct metabolite-OTU correlations in Ler-0 compared with Col-0 which could possibly be explained by missense variants of the Rfo3 and Rlp2 genes in Ler-0. Remarkably, we observed positive correlations in Ler-0 between most of the analyzed metabolites and the bacterial phyla Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia, and negative correlations with Actinobacteria, Firmicutes, and Chloroflexi. The glucosinolates 4-methyoxyglucobrassicin, glucoerucin and indole-3 carbinol, but also phenolic compounds were strongly correlating with the relative abundances of indicator and hub OTUs and thus could be active in structuring the A. thaliana root-associated microbiome. Our results highlight interactive effects of host plant defense and root-associated microbiota on Fusarium infection and progression. Our findings provide significant insights into plant interomic dynamics during pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control. IMPORTANCE Plant health and fitness are determined by plant-microbe interactions which are guided by host-synthesized metabolites. To understand the orchestration of this interaction, we analyzed the distinct interomic dynamics in resistant and susceptible Arabidopsis ecotypes across different time points after infection with Fusarium oxysporum (FOM). Our results revealed distinct microbial profiles and network resilience during FOM infection in the resistant Col-0 compared with the susceptible Ler-0 and further pinpointed specific microbe-metabolite associations in the Arabidopsis microbiome. These findings provide significant insights into plant interomics dynamics that are likely affecting fungal pathogen invasion and could possibly facilitate future exploitation of microbiomes for plant disease control.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Rumakanta Sapkota
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Behrooz Darbani
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Inge S. Fomsgaard
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| |
Collapse
|
6
|
Yu X, Casonato S, Jones EE, Butler RC, Johnston PA, Chng S. Phenotypic characterization of the Hordeum bulbosum derived leaf rust resistance genes Rph22 and Rph26 in barley. J Appl Microbiol 2022; 133:2083-2094. [PMID: 35815837 PMCID: PMC9546178 DOI: 10.1111/jam.15710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Aims Two introgression lines (ILs), 182Q20 and 200A12, which had chromosomal segments introgressed from Hordeum bulbosum in H. vulgare backgrounds, were identified to show seedling resistance against Puccinia hordei, possibly attributed to two resistance genes, Rph22 and Rph26, respectively. This study characterized the phenotypic responses of the two genes against P. hordei over different plant development stages. Methods and Results Using visual and fungal biomass assessments, responses of ILs 182Q20, 200A12 and four other barley cultivars against P. hordei were determined at seedling, tillering, stem elongation and booting stages. Plants carrying either Rph22 or Rph26 were found to confer gradually increasing resistance over the course of different development stages, with partial resistant phenotypes (i.e. prolonged rust latency periods, reduced uredinia numbers but with susceptible infection types) observed at seedling stage and adult plant resistance (APR) at booting stage. A definitive switch between the two types of resistance occurred at tillering stage. Conclusions Rph22 and Rph26 derived from H. bulbosum were well characterized and had typical APR phenotypes against P. hordei. Significance and Impact of the Study This study provides important insights on the effectiveness and expression of Rph22 and Rph26 against P. hordei during plant development and underpins future barley breeding programmes using non‐host as a genetic resource for leaf rust management.
Collapse
Affiliation(s)
- Xiaohui Yu
- Lincoln University, Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln 7608, Canterbury, New Zealand
| | - Seona Casonato
- Lincoln University, Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln 7608, Canterbury, New Zealand
| | - E Eirian Jones
- Lincoln University, Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln 7608, Canterbury, New Zealand
| | - Ruth C Butler
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, Canterbury, New Zealand
| | - Paul A Johnston
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, Canterbury, New Zealand
| | - Soonie Chng
- The New Zealand Institute for Plant and Food Research Limited, Lincoln 7608, Canterbury, New Zealand
| |
Collapse
|
7
|
Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. BIOLOGY 2022; 11:biology11060821. [PMID: 35741342 PMCID: PMC9220128 DOI: 10.3390/biology11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Developing cultivars with resistance genes (R genes) is an effective strategy to support high yield and quality in Brassica crops. The availability of clone R gene and genomic sequences in Brassica species and Arabidopsis thaliana provide the opportunity to compare genomic regions and survey R genes across genomic databases. In this paper, we aim to identify genes related to cloned genes through sequence identity, providing a repertoire of species-wide related R genes in Brassica crops. The comprehensive list of candidate R genes can be used as a reference for functional analysis. Abstract Various diseases severely affect Brassica crops, leading to significant global yield losses and a reduction in crop quality. In this study, we used the complete protein sequences of 49 cloned resistance genes (R genes) that confer resistance to fungal and bacterial diseases known to impact species in the Brassicaceae family. Homology searches were carried out across Brassica napus, B. rapa, B. oleracea, B. nigra, B. juncea, B. carinata and Arabidopsis thaliana genomes. In total, 660 cloned disease R gene homologs (CDRHs) were identified across the seven species, including 431 resistance gene analogs (RGAs) (248 nucleotide binding site-leucine rich repeats (NLRs), 150 receptor-like protein kinases (RLKs) and 33 receptor-like proteins (RLPs)) and 229 non-RGAs. Based on the position and distribution of specific homologs in each of the species, we observed a total of 87 CDRH clusters composed of 36 NLR, 16 RLK and 3 RLP homogeneous clusters and 32 heterogeneous clusters. The CDRHs detected consistently across the seven species are candidates that can be investigated for broad-spectrum resistance, potentially providing resistance to multiple pathogens. The R genes identified in this study provide a novel resource for the future functional analysis and gene cloning of Brassicaceae R genes towards crop improvement.
Collapse
|
8
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
9
|
Nag P, Paul S, Shriti S, Das S. Defence response in plants and animals against a common fungal pathogen, Fusarium oxysporum. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100135. [PMID: 35909626 PMCID: PMC9325751 DOI: 10.1016/j.crmicr.2022.100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Fusarium oxysporum species complex (FOSC) is considered one of the most devastating plant pathogen. FOSC is an emerging pathogen of immunocompromised individuals. Mycotoxins produced by FOSC predisposes the host to other pathogens. Comparative immune reactions in plant and invertebrate show that several antimicrobial peptides (AMPs) and secondary metabolites maybe used as control against Fusarium infection.
Plant pathogens emerging as threat to human and animal health has been a matter of concern within the scientific community. Fusarium oxysporum, predominantly a phytopathogen, can infect both plants and animals. As a plant pathogen, F. oxysporum is one of the most economically damaging pathogen. In humans, F. oxysporum can infect immunocompromised individuals and is increasingly being considered as a problematic pathogen. Mycotoxins produced by F. oxysporum supress the innate immune pathways in both plants and animals. Hence, F. oxysporum is the perfect example for studying similarities and differences between defence strategies adopted by plants and animals. In this review we will discuss the innate immune response of plant and animal hosts for protecting against F. oxysporum infection. Such studies will be helpful for identifying genes, protein and metabolites with antifungal properties suitable for protecting humans.
Collapse
|
10
|
Ma Y, Chhapekar SS, Lu L, Yu X, Kim S, Lee SM, Gan TH, Choi GJ, Lim YP, Choi SR. QTL mapping for Fusarium wilt resistance based on the whole-genome resequencing and their association with functional genes in Raphanus sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3925-3940. [PMID: 34387712 DOI: 10.1007/s00122-021-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Two major QTL associated with resistance to Fusarium wilt (FW) were identified using whole-genome resequencing. Sequence variations and gene expression level differences suggest that TIR-NBS and LRR-RLK are candidate genes associated with FW-resistance. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. raphani is an important disease in radish, leading to severe decrease in yield and quality. YR4 as a novel genetic source to resistant to FW was confirmed through screening with five pathogen isolates. We have generated F2 and F2:3 populations segregated with FW resistance using YR4 and YR18 inbred lines. The disease symptom was evaluated in F2:3 population (n = 180) in three independent studies over two years. We identified 4 QTL including the two major QTL (FoRsR7.159A and FoRsR9.359A). FoRsR7.159A and FoRsR9.359A were detected in three replicated experiments. FoRsR7.159A was delimited to the 2.18-Mb physical interval on chromosome R07, with a high LOD value (5.17-12.84) and explained phenotypic variation (9.34%-27.97%). The FoRsR9.359A represented relatively low LOD value (3.38-4.52) and explained phenotypic variation (6.24%-8.82%). On the basis of the re-sequencing data for the parental lines, we identified five putative resistance-related genes and 13 unknown genes with sequence variations at the gene and protein levels. A semi-quantitative RT-PCR analysis revealed that Rs382940 (TIR-NBS) and Rs382200 (RLK) were expressed only in 'YR4' from 0 to 6 days after the inoculation. Moreover, Rs382950 (TIR-NBS-LRR) was more highly expressed in 'YR4' from 3 to 6 days after the inoculation. These three genes might be important for FW-resistance in radish. We identified several markers based on these potential candidate genes. The marker set should be useful for breeding system to introduce the FW resistance loci from 'YR4' to improve tolerance to FW.
Collapse
Affiliation(s)
- Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Shandong Peanut Industry Collaborative Innovation Center, College of Agronomy, Qingdao Agricultural University, Qingdao, 266000, China
| | - Seungho Kim
- Neo Seed Co., 256-45 Jingeonjung-gil, Gongdo-eup, Anseong, Gyeonggi Province, 17565, Republic of Korea
| | - Soo Min Lee
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Tae Hyoung Gan
- JIREH Seed Co., 104 Dongtansunhwan-daero 20-gil, Hwaseong, Gyeonggi Province, 18484, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
11
|
Adhikari P, Mideros SX, Jamann TM. Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:675208. [PMID: 34113371 PMCID: PMC8185347 DOI: 10.3389/fpls.2021.675208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.
Collapse
|
12
|
Zmienko A, Marszalek-Zenczak M, Wojciechowski P, Samelak-Czajka A, Luczak M, Kozlowski P, Karlowski WM, Figlerowicz M. AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. THE PLANT CELL 2020; 32:1797-1819. [PMID: 32265262 PMCID: PMC7268809 DOI: 10.1105/tpc.19.00640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully used the CNVs as markers to analyze population structure and migration patterns. Finally, we examined the impact of gene dosage variation triggered by a CNV spanning the SEC10 gene on SEC10 expression at both the transcript and protein levels. The catalog of CNVs, CNV-overlapping genes, and their genotypes in a top model dicot will stimulate the exploration of the genetic basis of phenotypic variation.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
13
|
Yu H, Ayhan DH, Diener AC, Ma LJ. Genome Sequence of Fusarium oxysporum f. sp. matthiolae, a Brassicaceae Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:569-572. [PMID: 31967942 PMCID: PMC7233306 DOI: 10.1094/mpmi-11-19-0324-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The filamentous fungus Fusarium oxysporum is a soilborne pathogen of many cultivated species and an opportunistic pathogen of humans. F. oxysporum f. sp. matthiolae is one of three formae speciales that are pathogenic to crucifers, including Arabidopsis thaliana, a premier model for plant molecular biology and genetics. Here, we report a genome assembly of F. oxysporum f. sp. matthiolae strain PHW726, generated using a combination of PacBio and Illumina sequencing technologies. The genome assembly presented here should facilitate in-depth investigation of F. oxysporum-Arabidopsis interactions and shed light on the genetics of fungal pathogenesis and plant immunity.
Collapse
Affiliation(s)
- Houlin Yu
- Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, U.S.A
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, U.S.A
| | - Dilay Hazal Ayhan
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, U.S.A
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, U.S.A
| | - Andrew C. Diener
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, U.S.A
| | - Li-Jun Ma
- Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, U.S.A
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, U.S.A
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, U.S.A
| |
Collapse
|
14
|
Branham SE, Patrick Wechter W, Ling KS, Chanda B, Massey L, Zhao G, Guner N, Bello M, Kabelka E, Fei Z, Levi A. QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:677-687. [PMID: 31822938 DOI: 10.1007/s00122-019-03500-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
A Citrullus amarus mapping population segregating for resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus was used to identify novel QTL, important for the improvement in watermelon disease resistance. Multiple disease screens of the USDA Citrullus spp. germplasm collection have highlighted the value of Citrullus amarus (citron melon or wild watermelon) as a resource for enhancing modern watermelon cultivars (Citrullus lanatus) with resistance to a broad range of fungal, bacterial and viral diseases of watermelon. We have generated a genetic population of C. amarus segregating for resistance to two important watermelon diseases: Fusarium wilt (caused by the fungus Fusarium oxysporum f. sp. niveum; Fon race 2) and Papaya ringspot virus-watermelon strain (PRSV-W). QTL mapping of Fon race 2 resistance identified seven significant QTLs, with the major QTL representing a novel genetic source of resistance and an opportunity for gene pyramiding. A single QTL was associated with resistance to PRSV-W, which adhered to expectations of a prior study indicating a single-gene recessive inheritance in watermelon. The resistance loci identified here provide valuable genetic resources for introgression into cultivated watermelon for the improvement in disease resistance.
Collapse
Affiliation(s)
- Sandra E Branham
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
- Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - W Patrick Wechter
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Kai-Shu Ling
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Bidisha Chanda
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Laura Massey
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Guangwei Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Zhengzhou, 450009, China
| | - Nihat Guner
- Sakata Seed America, 20900 State Road 82, Fort Myers, FL, 33913, USA
| | - Marco Bello
- Sakata Seed America, 20900 State Road 82, Fort Myers, FL, 33913, USA
| | - Eileen Kabelka
- Sakata Seed America, 18095 Serene Drive, Morgan Hill, CA, 95037, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| | - Amnon Levi
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
15
|
Yu X, Lu L, Ma Y, Chhapekar SS, Yi SY, Lim YP, Choi SR. Fine-mapping of a major QTL (Fwr1) for fusarium wilt resistance in radish. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:329-340. [PMID: 31686113 DOI: 10.1007/s00122-019-03461-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A major radish QTL (Fwr1) for fusarium wilt resistance was fine-mapped. Sequence and expression analyses suggest that a gene encoding a serine/arginine-rich protein kinase is a candidate gene for Fwr1. Fusarium wilt resistance locus 1 (Fwr1) is a major quantitative trait locus (QTL) mediating the resistance of radish inbred line 'B2' to Fusarium oxysporum, which is responsible for fusarium wilt. We previously detected Fwr1 on radish linkage group 3 (i.e., chromosome 5). In this study, a high-resolution genetic map of the Fwr1 locus was constructed by analyzing 354 recombinant F2 plants derived from a cross between 'B2' and '835', the latter of which is susceptible to fusarium wilt. The Fwr1 QTL was fine-mapped to a 139.8-kb region between markers FM82 and FM87 in the middle part of chromosome 5. Fifteen candidate genes were predicted in this region based on a sequence comparison with the 'WK10039' radish reference genome. Additionally, we examined the time-course expression patterns of these predicted genes following an infection by the fusarium wilt pathogen. The ORF4 expression level was significantly higher in the resistant 'B2' plants than in the susceptible '835' plants. The ORF4 sequence was predicted to encode a serine/arginine-rich protein kinase and includes SNPs that result in nonsynonymous mutations, which may have important functional consequences. This study reveals a novel gene responsible for fusarium wilt resistance in radish. Further analyses of this gene may elucidate the molecular mechanisms underlying the fusarium wilt resistance of plants.
Collapse
Affiliation(s)
- Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, Korea
- Agronomy Department, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - So Young Yi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
16
|
Welgemoed T, Pierneef R, Sterck L, Van de Peer Y, Swart V, Scheepers KD, Berger DK. De novo Assembly of Transcriptomes From a B73 Maize Line Introgressed With a QTL for Resistance to Gray Leaf Spot Disease Reveals a Candidate Allele of a Lectin Receptor-Like Kinase. FRONTIERS IN PLANT SCIENCE 2020; 11:191. [PMID: 32231673 PMCID: PMC7083176 DOI: 10.3389/fpls.2020.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/07/2020] [Indexed: 05/03/2023]
Abstract
Gray leaf spot (GLS) disease in maize, caused by the fungus Cercospora zeina, is a threat to maize production globally. Understanding the molecular basis for quantitative resistance to GLS is therefore important for food security. We developed a de novo assembly pipeline to identify candidate maize resistance genes. Near-isogenic maize lines with and without a QTL for GLS resistance on chromosome 10 from inbred CML444 were produced in the inbred B73 background. The B73-QTL line showed a 20% reduction in GLS disease symptoms compared to B73 in the field (p = 0.01). B73-QTL leaf samples from this field experiment conducted under GLS disease pressure were RNA sequenced. The reads that did not map to the B73 or C. zeina genomes were expected to contain novel defense genes and were de novo assembled. A total of 141 protein-coding sequences with B73-like or plant annotations were identified from the B73-QTL plants exposed to C. zeina. To determine whether candidate gene expression was induced by C. zeina, the RNAseq reads from C. zeina-challenged and control leaves were mapped to a master assembly of all of the B73-QTL reads, and differential gene expression analysis was conducted. Combining results from both bioinformatics approaches led to the identification of a likely candidate gene, which was a novel allele of a lectin receptor-like kinase named L-RLK-CML that (i) was induced by C. zeina, (ii) was positioned in the QTL region, and (iii) had functional domains for pathogen perception and defense signal transduction. The 817AA L-RLK-CML protein had 53 amino acid differences from its 818AA counterpart in B73. A second "B73-like" allele of L-RLK was expressed at a low level in B73-QTL. Gene copy-specific RT-qPCR confirmed that the l-rlk-cml transcript was the major product induced four-fold by C. zeina. Several other expressed defense-related candidates were identified, including a wall-associated kinase, two glutathione s-transferases, a chitinase, a glucan beta-glucosidase, a plasmodesmata callose-binding protein, several other receptor-like kinases, and components of calcium signaling, vesicular trafficking, and ethylene biosynthesis. This work presents a bioinformatics protocol for gene discovery from de novo assembled transcriptomes and identifies candidate quantitative resistance genes.
Collapse
Affiliation(s)
- Tanya Welgemoed
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Kevin Daniel Scheepers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Dave K. Berger,
| |
Collapse
|
17
|
Kanyuka K, Rudd JJ. Cell surface immune receptors: the guardians of the plant's extracellular spaces. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:1-8. [PMID: 30861483 PMCID: PMC6731392 DOI: 10.1016/j.pbi.2019.02.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
Since the original 'Zigzag model', several iterations have been proposed to reconcile both the Pattern Triggered Immunity (PTI) and the Effector Triggered Immunity (ETI) branches of the plant immune system. The recent cloning of new disease resistance genes, functioning in gene-for-gene interactions, which structurally resemble cell surface broad spectrum Pattern Recognition Receptors, have further blurred the distinctions between PTI and ETI in plant immunity. In an attempt to simplify further the existing conceptual models, we, herein, propose a scheme based on the spatial localization of the key proteins (receptors) which function to induce plant immune responses. We believe this 'Spatial Invasion model' will prove useful for understanding how immune receptors interact with different pathogen types which peripherally or totally invade plant cells, colonize solely extracellularly or switch locations during a successful infection.
Collapse
Affiliation(s)
- Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.
| | - Jason J Rudd
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
18
|
Cox KL, Babilonia K, Wheeler T, He P, Shan L. Return of old foes - recurrence of bacterial blight and Fusarium wilt of cotton. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:95-103. [PMID: 31075542 DOI: 10.1016/j.pbi.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 05/28/2023]
Abstract
Bacterial blight of cotton, caused by Xanthomonas citri subsp. malvacearum, and Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum, contribute cotton losses worldwide. Resurgences of these diseases in the United States were reported in recent years. There is a pressing need to understand pathogenicity and host responses to the pathogens and develop effective strategies for disease prevention and management. Here, we discuss the current status of bacterial blight and Fusarium wilt of cotton in the field as well as the knowledge of cotton resistance and susceptibility to these pathogens. In addition, we aim to provide insights into how these diseases are recurring and possible methods to use current technologies for biological control of these pathogens.
Collapse
Affiliation(s)
- Kevin L Cox
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; Institute for Plant Genomics and Biotechnology, AgriLife Research, Texas A&M University, College Station, TX 77843, USA
| | - Kevin Babilonia
- Institute for Plant Genomics and Biotechnology, AgriLife Research, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Terry Wheeler
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; Texas A&M AgriLife Research, Lubbock, TX 79403, USA
| | - Ping He
- Institute for Plant Genomics and Biotechnology, AgriLife Research, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; Institute for Plant Genomics and Biotechnology, AgriLife Research, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Branham SE, Levi A, Wechter WP. QTL Mapping Identifies Novel Source of Resistance to Fusarium Wilt Race 1 in Citrullus amarus. PLANT DISEASE 2019; 103:984-989. [PMID: 30856077 DOI: 10.1094/pdis-09-18-1677-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.
Collapse
Affiliation(s)
| | - Amnon Levi
- U.S. Vegetable Laboratory, USDA-ARS, Charleston, SC 29414
| | | |
Collapse
|
20
|
Simbaqueba J, Catanzariti A, González C, Jones DA. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2018; 19:2302-2318. [PMID: 29786161 PMCID: PMC6638030 DOI: 10.1111/mpp.12700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNA sequencing (RNAseq) reads from cape gooseberry plants (Physalis peruviana) infected with Fusarium oxysporumf. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporumf. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1(designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1bwere tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant shows reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3.These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph.Alternatively, cape gooseberry germplasm could be explored for I-3homologues capable of providing resistance to Foph.
Collapse
Affiliation(s)
- Jaime Simbaqueba
- Plant Sciences Division, Research School of BiologyThe Australian National UniversityActonACT2601Australia
| | - Ann‐Maree Catanzariti
- Plant Sciences Division, Research School of BiologyThe Australian National UniversityActonACT2601Australia
| | | | - David A. Jones
- Plant Sciences Division, Research School of BiologyThe Australian National UniversityActonACT2601Australia
| |
Collapse
|
21
|
Yu X, Kang DH, Choi SR, Ma Y, Lu L, Oh SH, Chhapekar SS, Lim YP. Isolation and characterization of fusarium wilt resistance gene analogs in radish. 3 Biotech 2018; 8:255. [PMID: 29765813 DOI: 10.1007/s13205-018-1279-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/06/2018] [Indexed: 11/28/2022] Open
Abstract
The resistance gene analog (RGA)-based marker strategy is an effective supplement for current marker reservoir of radish disease-resistance breeding. In this study, we identified RGAs based on the conserved nucleotide-binding site (NBS) and S-receptor-like kinase (SRLK) domains. A total of 68 NBS-RGAs and 46 SRLK-RGAs were isolated from two FW-resistant radish inbred lines, B2 and YR31, and one susceptible line, YR15. A BLASTx search revealed that the NBS-RGAs contained six conserved motifs (i.e., P loop, RNBS-A, Kinase-2, RNBS-B, RNBS-C, and GLPL) and the SRLK-RGAs, contained two conserved motifs (i.e., G-type lectin and PAN-AP). A phylogenetic analysis indicated that the NBS-RGAs could be separated into two classes (i.e., toll/interleukin receptor and coiled-coil types), with six subgroups, and the SRLK-RGAs were divided into three subgroups. Moreover, we designed RGA-specific markers from data-mining approach in radish databases. Based on marker analysis, 24 radish inbred lines were clustered into five main groups with a similarity index of 0.44 and showing genetic diversity with resistance variation in those radish inbred lines. The development of RGA-specific primers would be valuable for marker-assisted selection during the breeding of disease-resistant radish cultivars.
Collapse
Affiliation(s)
- Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| | - Dong Hyun Kang
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| | - Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| | - Sang Heon Oh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 34134 South Korea
| |
Collapse
|
22
|
Branham SE, Levi A, Katawczik M, Fei Z, Wechter WP. Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:829-837. [PMID: 29372283 DOI: 10.1007/s00122-017-3039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/11/2017] [Indexed: 05/22/2023]
Abstract
Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon. The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok'neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.
Collapse
Affiliation(s)
- Sandra E Branham
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Amnon Levi
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Melanie Katawczik
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - W Patrick Wechter
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
23
|
Signaling through plant lectins: modulation of plant immunity and beyond. Biochem Soc Trans 2018; 46:217-233. [PMID: 29472368 DOI: 10.1042/bst20170371] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Lectins constitute an abundant group of proteins that are present throughout the plant kingdom. Only recently, genome-wide screenings have unraveled the multitude of different lectin sequences within one plant species. It appears that plants employ a plurality of lectins, though relatively few lectins have already been studied and functionally characterized. Therefore, it is very likely that the full potential of lectin genes in plants is underrated. This review summarizes the knowledge of plasma membrane-bound lectins in different biological processes (such as recognition of pathogen-derived molecules and symbiosis) and illustrates the significance of soluble intracellular lectins and how they can contribute to plant signaling. Altogether, the family of plant lectins is highly complex with an enormous diversity in biochemical properties and activities.
Collapse
|
24
|
An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 2018; 553:342-346. [PMID: 29320478 PMCID: PMC6485605 DOI: 10.1038/nature25184] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/29/2017] [Indexed: 12/22/2022]
Abstract
Multicellular organisms receive extracellular signals at the surface of a cell by using receptors. The extracellular domains (ECDs) of cell surface receptors serve as interaction platforms, and as regulatory modules of receptor activation1,2. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability3,4. In plants, discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions5. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily-related leucine-rich repeat receptor kinases (LRR-RKs)5, that function in microbe sensing, cell expansion, stomata development and stem cell maintenance6–9. While the principles governing LRR-RK signalling activation are emerging1,10, the systems-level organization of this family of proteins is totally unexplored. To address this, we interrogated 40,000 potential ECD interactions via a sensitized high-throughput interaction assay3, and produced an LRR-based Cell Surface Interaction network (CSILRR) comprising 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the function of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most critical for its overall structure are required to prevent aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.
Collapse
|
25
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
26
|
Zhang X, Valdés-López O, Arellano C, Stacey G, Balint-Kurti P. Genetic dissection of the maize (Zea mays L.) MAMP response. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1155-1168. [PMID: 28289802 DOI: 10.1007/s00122-017-2876-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified. Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.
Collapse
Affiliation(s)
- Xinye Zhang
- Maize Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Oswaldo Valdés-López
- Division of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Laboratorio de Genomica Funcional de Leguminosas, FES Iztacala, UNAM, Tlalnepantla, 54090, Mexico
| | - Consuelo Arellano
- Statistics Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gary Stacey
- Division of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) Plant Science Research Unit, Raleigh, NC, USA.
| |
Collapse
|
27
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
28
|
Branham SE, Levi A, Farnham MW, Patrick Wechter W. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:319-330. [PMID: 27803951 DOI: 10.1007/s00122-016-2813-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/08/2016] [Indexed: 05/27/2023]
Abstract
A major QTL for resistance to Fusarium oxysporum f. sp. niveum race 2 was mapped to a narrow 1.2 Mb interval using a high-density GBS-SNP linkage map, the first map of Citrullus lanatus var. citroides. Fusarium wilt, a fungal disease caused by Fusarium oxysporum f. sp. niveum (Fon), devastates watermelon crop production worldwide. Several races, which are differentiated by host range, of the pathogen exist. Resistance to Fon race 2, a particularly virulent strain prevalent in the United States, does not exist in edible cultivars of the sweet cultivated watermelon Citrullus lanatus var. lanatus (Cll) and has been well described in a few plant introductions of the wild subspecies of watermelon, C. lanatus var. citroides (Clc). Clc provides a vital source of genetic diversity, as well as resistance to numerous diseases. Unfortunately, both genetic diversity and disease resistance are lacking in Cll due to the narrow genetic base. Despite the importance of Clc to continued watermelon improvement, intra-variety genetic studies are lacking. Here, we present the first Clc genetic linkage map, generated with 2495 single nucleotide polymorphisms developed through genotyping-by-sequencing, and use it to identify quantitative trait loci associated with Fon race 2 resistance. Multiple QTL mapping in a Clc F2:3 population (N = 173) identified one major and four minor QTL. The major QTL explained 43% of the variation in Fon race 2 resistance and was delimited to a 1.2-Mb interval on chromosome 9, a region spanning 44 genes.
Collapse
Affiliation(s)
- Sandra E Branham
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Amnon Levi
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Mark W Farnham
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - W Patrick Wechter
- USDA, ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA.
| |
Collapse
|
29
|
Timmerman-Vaughan GM, Moya L, Frew TJ, Murray SR, Crowhurst R. Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:879-96. [PMID: 26801334 DOI: 10.1007/s00122-016-2669-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/09/2016] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Advances have been made in our understanding of Ascochyta blight resistance genetics through mapping candidate genes associated with QTL regions and demonstrating the importance of epistatic interactions in determining resistance. Ascochyta blight disease of pea (Pisum sativum L.) is economically significant with worldwide distribution. The causal pathogens are Didymella pinodes, Phoma medicaginis var pinodella and, in South Australia, P. koolunga. This study aimed to identify candidate genes that map to quantitative trait loci (QTL) for Ascochyta blight field disease resistance and to explore the role of epistatic interactions. Candidate genes associated with QTL were identified beginning with 101 defence-related genes from the published literature. Synteny between pea and Medicago truncatula was used to narrow down the candidates for mapping. Fourteen pea candidate sequences were mapped in two QTL mapping populations, A26 × Rovar and A88 × Rovar. QTL peaks, or the intervals containing QTL peaks, for the Asc2.1, Asc4.2, Asc4.3 and Asc7.1 QTL were defined by four of these candidate genes, while another three candidate genes occurred within 1.0 LOD confidence intervals. Epistasis involving QTL × background marker and background marker × background marker interactions contributed to the disease response phenotypes observed in the two mapping populations. For each population, five pairwise interactions exceeded the 5% false discovery rate threshold. Two candidate genes were involved in significant pairwise interactions. Markers in three genomic regions were involved in two or more epistatic interactions. Therefore, this study has identified pea defence-related sequences that are candidates for resistance determination, and that may be useful for marker-assisted selection. The demonstration of epistasis informs breeders that the architecture of this complex quantitative resistance includes epistatic interactions with non-additive effects.
Collapse
Affiliation(s)
- Gail M Timmerman-Vaughan
- The New Zealand Institute for Plant & Food Research Limited, PO Box 4704, Christchurch, New Zealand.
| | - Leire Moya
- The New Zealand Institute for Plant & Food Research Limited, PO Box 4704, Christchurch, New Zealand
| | - Tonya J Frew
- The New Zealand Institute for Plant & Food Research Limited, PO Box 4704, Christchurch, New Zealand
| | - Sarah R Murray
- The New Zealand Institute for Plant & Food Research Limited, PO Box 4704, Christchurch, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Rd., Auckland, New Zealand
| |
Collapse
|
30
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
31
|
Gonzalez-Cendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. MOLECULAR PLANT PATHOLOGY 2016; 17:448-63. [PMID: 26177154 PMCID: PMC6638478 DOI: 10.1111/mpp.12294] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.
Collapse
Affiliation(s)
- Yvonne Gonzalez-Cendales
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Ann-Maree Catanzariti
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Barbara Baker
- Plant Gene Expression Center, University of California-Berkeley, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Des J Mcgrath
- Agri-Science Queensland, Queensland Department of Agriculture and Fisheries, Gatton, Qld, 4343, Australia
| | - David A Jones
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
32
|
Belowground Defence Strategies Against Fusarium oxysporum. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
33
|
de Sain M, Rep M. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. Int J Mol Sci 2015; 16:23970-93. [PMID: 26473835 PMCID: PMC4632733 DOI: 10.3390/ijms161023970] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/07/2023] Open
Abstract
A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity.
Collapse
Affiliation(s)
- Mara de Sain
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands.
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands.
| |
Collapse
|
34
|
Catanzariti AM, Lim GTT, Jones DA. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. THE NEW PHYTOLOGIST 2015; 207:106-118. [PMID: 25740416 DOI: 10.1111/nph.13348] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/29/2015] [Indexed: 05/22/2023]
Abstract
Plant resistance proteins provide race-specific immunity through the recognition of pathogen effectors. The resistance genes I, I-2 and I-3 have been incorporated into cultivated tomato (Solanum lycopersicum) from wild tomato species to confer resistance against Fusarium oxysporum f. sp. lycopersici (Fol) races 1, 2 and 3, respectively. Although the Fol effectors corresponding to these resistance genes have all been identified, only the I-2 resistance gene has been isolated from tomato. To isolate the I-3 resistance gene, we employed a map-based cloning approach and used transgenic complementation to test candidate genes for resistance to Fol race 3. Here, we describe the fine mapping and sequencing of genes at the I-3 locus, which revealed a family of S-receptor-like kinase (SRLK) genes. Transgenic tomato lines were generated with three of these SRLK genes and one was found to confer Avr3-dependent resistance to Fol race 3, confirming it to be I-3. The finding that I-3 encodes an SRLK reveals a new pathway for Fol resistance and a new class of resistance genes, of which Pi-d2 from rice is also a member. The identification of I-3 also allows the investigation of the complex effector-resistance protein interaction involving Avr1-mediated suppression of I-2- and I-3-dependent resistance in tomato.
Collapse
Affiliation(s)
- Ann-Maree Catanzariti
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Ginny T T Lim
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - David A Jones
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
35
|
Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction. PLoS One 2015; 10:e0127699. [PMID: 26034991 PMCID: PMC4452756 DOI: 10.1371/journal.pone.0127699] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects.
Collapse
|
36
|
|
37
|
Shimizu M, Pu ZJ, Kawanabe T, Kitashiba H, Matsumoto S, Ebe Y, Sano M, Funaki T, Fukai E, Fujimoto R, Okazaki K. Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:119-30. [PMID: 25351523 DOI: 10.1007/s00122-014-2416-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/11/2014] [Indexed: 05/13/2023]
Abstract
We identified the candidate gene conferring yellow wilt resistance (YR) in B. oleracea . This work will facilitate YR breeding programs for B. oleracea and its closely related species. Yellow wilt disease is one of the most serious diseases of cabbage worldwide. Type A resistance to the disease is controlled by a single dominant gene that is used in cabbage breeding. Our previous QTL study identified the FocBo1 locus controlling type A resistance. In this study, the FocBo1 locus was fine-mapped by using 139 recombinant F2 plants derived from resistant cabbage (AnjuP01) and susceptible broccoli (GCP04) DH lines. As a result, we successfully delimited the location of FocBo1 within 1.00 cM between markers, BoInd 2 and BoInd 11. Analysis of BAC and cosmid sequences corresponding to the FocBo1 locus identified an orthologous gene of Bra012688 that was recently identified as an candidate gene that confers yellows resistance in Chinese cabbage. The candidate gene-specific DNA markers and phenotypes in F1 cabbage cultivars and their selfed F2 populations showed a perfect correlation. Our identification of the candidate gene for FocBo1 will assist introduction of fusarium resistance into B. oleracea cultivars and contribute further understanding of interaction between Brassica plants and fusarium.
Collapse
Affiliation(s)
- Motoki Shimizu
- Laboratory of Plant Breeding, Graduate School of Science and Technology, Faculty of Agriculture, Niigata University, 2-8050, Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cole SJ, Yoon AJ, Faull KF, Diener AC. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates. MOLECULAR PLANT PATHOLOGY 2014; 15:589-600. [PMID: 24387225 PMCID: PMC4211617 DOI: 10.1111/mpp.12117] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild-type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone-related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild-type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine- and leucine-conjugated jasmonate (JA-Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA-Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis.
Collapse
Affiliation(s)
- Stephanie J Cole
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
39
|
Swarupa V, Ravishankar KV, Rekha A. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. PLANTA 2014; 239:735-51. [PMID: 24420701 DOI: 10.1007/s00425-013-2024-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/30/2013] [Indexed: 05/23/2023]
Abstract
Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.
Collapse
Affiliation(s)
- V Swarupa
- Division of Biotechnology, Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru, 560089, India
| | | | | |
Collapse
|
40
|
Li C, Shao J, Wang Y, Li W, Guo D, Yan B, Xia Y, Peng M. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genomics 2013; 14:851. [PMID: 24304681 PMCID: PMC4046742 DOI: 10.1186/1471-2164-14-851] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/26/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cavendish, the most widely grown banana cultivar, is relatively resistant to Race 1 of Fusarium oxysporum f. sp. cubense (Foc1) which caused widespread Panama disease during the first half of the 20th century but is susceptible to Tropical Race 4 of Foc (Foc TR4) which is threatening world banana production. The genome of the diploid species Musa acuminata which is the ancestor of a majority of triploid banana cultivars has recently been sequenced. Availability of banana transcriptomes will be highly useful for improving banana genome annotation and for biological research. The knowledge of global gene expression patterns influenced by infection of different Foc races will help to understand the host responses to the infection. RESULTS RNA samples from different organs of the Cavendish cultivar were pooled for deep sequencing using the Illumina technology. Analysis of the banana transcriptome led to identification of over 842 genes that were not annotated by the Musa genome project. A large number of simple nucleotide polymorphisms (SNPs) and short insertions and deletion (indels) were identified from the transcriptome data. GFP-expressing Foc1 and Foc TR4 were used to monitor the infection process. Both Foc1 and Foc TR4 were found to be able to invade banana roots and spread to root vascular tissues in the first two days following inoculation. Digital gene expression (DGE) profiling analysis reveal that the infection by Foc1 and Foc TR4 caused very similar changes in the global gene expression profiles in the banana roots during the first two days of infection. The Foc infection led to induction of many well-known defense-related genes. Two genes encoding the ethylene biosynthetic enzyme ACC oxidase and several ethylene-responsive transcription factors (ERF) were among the strongly induced genes by both Foc1 and Foc TR4. CONCLUSIONS Both Foc1 and Foc TR4 are able to spread into the vascular system of banana roots during the early infection process and their infection led to similar gene expression profiles in banana roots. The transcriptome profiling analysis indicates that the ethylene synthetic and signalling pathways were activated in response to the Foc infection.
Collapse
Affiliation(s)
- Chunqiang Li
- />Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- />Hainan University, Haikou, China
- />Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- />Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yejun Wang
- />School of Life Science Chinese University of Hong Kong, Hong Kong, China
| | - Wenbin Li
- />Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dianjing Guo
- />School of Life Science Chinese University of Hong Kong, Hong Kong, China
- />Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Bin Yan
- />Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- />Department of Biology, Hong Kong Baptist University, Hong Kong, China
- />Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Ming Peng
- />Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- />Hainan University, Haikou, China
| |
Collapse
|
41
|
Diener AC. Routine mapping of Fusarium wilt resistance in BC(1) populations of Arabidopsis thaliana. BMC PLANT BIOLOGY 2013; 13:171. [PMID: 24172069 PMCID: PMC3819736 DOI: 10.1186/1471-2229-13-171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/26/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Susceptibility to Fusarium wilt disease varies among wild accessions of Arabidopsis thaliana. Six RESISTANCE TO FUSARIUM OXYSPORUM (RFO) quantitative trait loci (QTLs) controlling the resistance of accession Columbia-0 (Col-0) and susceptibility of Taynuilt-0 to Fusarium oxysporum forma specialis matthioli (FOM) are detected in a recombinant population derived from a single backcross of the F1 hybrid (BC1). In particular, the RFO1 QTL appears to interact with three other loci, RFO2, RFO4 and RFO6, and is attributed to the gene At1g79670. RESULTS When resistance to FOM was mapped in a new BC(1) population, in which the loss-of-function mutant of At1g79670 replaced wild type as the Col-0 parent, RFO1's major effect and RFO1's interaction with RFO2, RFO4 and RFO6 were absent, showing that At1g79670 alone accounts for the RFO1 QTL. Resistance of two QTLs, RFO3 and RFO5, was independent of RFO1 and was reproduced in the new BC(1) population. In analysis of a third BC1 population, resistance to a second pathogen, F. oxysporum forma specialis conglutinans race 1 (FOC1), was mapped and the major effect locus RFO7 was identified. CONCLUSIONS Natural quantitative resistance to F. oxysporum is largely specific to the infecting forma specialis because different RFO loci were responsible for resistance to FOM and FOC1. The mapping of quantitative disease resistance traits in BC(1) populations, generated from crosses between sequenced Arabidopsis accessions, can be a routine procedure when genome-wide genotyping is efficient, economical and accessible.
Collapse
Affiliation(s)
- Andrew C Diener
- Department of Molecular, Cell and Developmental Biology, University of California, Terasaki Life Sciences Building, 610 Charles E, Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|