1
|
Wang Z, Tu S, Shehzad K, Hou J, Xiong S, Cao M. Comparative study of organosilicon and inorganic silicon in reducing cadmium accumulation in wheat: Insights into rhizosphere microbial communities and molecular regulation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138061. [PMID: 40179787 DOI: 10.1016/j.jhazmat.2025.138061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Silicon is widely used as a "quality element" and "stress resistance element" in crop production and the remediation of heavy metal-contamination soils. Compared to inorganic silicon, organosilicon has unique properties such as amphiphilicity, low surface energy and high biocompatibility. Our previous research has confirmed the effectiveness of organosilicon-modified fertilizers in inhibiting Cadmium (Cd) absorption in wheat. Therefore, it is of great importance to further explore the potential mechanisms and comprehensive benefits of organosilicon. In this study, the microbiological and molecular mechanisms by which organosilicon reduces Cd concentration in wheat compared to inorganic silicon were investigated in depth. The findings indicated that, in comparison with inorganic silicon, organosilicon exhibited a more remarkable efficacy. Specifically, it was more effective in reducing the Cd concentration in wheat grains, achieving a reduction range of 35-39 % as opposed to the 23-28 % reduction achieved by inorganic silicon. Moreover, it manifested a greater ability to mitigate health risks, with a reduction range of 33-42 % compared to the 25-30 % reduction of inorganic silicon. Furthermore, organosilicon contributed to a significant increase in wheat yield, with a growth range of 11-14 % in contrast to the 8-11 % increase from inorganic silicon. Additionally, it enhanced the quality of the grains, substantially improving the protein content and amino acid content. The comparative advantages of organosilicon over inorganic silicon would be firstly due to the reduction of the bioavailability of soil Cd by increasing the available silicon content in the soil and improving the soil microbial ecology (increasing the abundance of Bacillus, Pseudomonas, Massilia and Talaromyces and reducing the enrichment of Fusarium). Secondly, organosilicon achieved vacuolar compartmentalization of Cd by upregulating the expression of the ABC transporter gene (TaABCB7), thereby alleviating Cd toxicity and restricting Cd transport from leaves to grains. Meanwhile, organosilicon increased the wheat yield by optimizing the availability of soil nutrients and enhancing photosynthesis. These results demonstrate the immense potential of organosilicon in mitigating heavy metal contamination in crops.
Collapse
Affiliation(s)
- Zhiheng Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Khurram Shehzad
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wang Z, Wu J, Tu S, Shehzad K, Hou J, Xiong S, Cao M. Organosilicon enhances rice root suberization and antioxidant gene expression under cadmium/arsenic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109894. [PMID: 40239256 DOI: 10.1016/j.plaphy.2025.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Organosilicon exhibits unique physicochemical and biological properties with wide applicability across diverse fields, including agriculture and industry. Previous research has verified the effectiveness of organosilicon-modified fertilizers in inhibiting the uptake of cadmium (Cd) and arsenic (As) by plants. However, further investigations are necessary to elucidate the underlying mechanisms. In this study, we explored the potential of organosilicon to mitigate the toxic effects of Cd/As and lessen their uptake and accumulation during rice seed germination. Our results showed that under Cd/As stress, organosilicon treatments significantly increased suberin biosynthesis in rice roots. This was manifested as an increased level of root suberization and an enhanced apoplast barrier, as verified by observations made through fluorol yellow (FY) staining and transmission electron microscopy (TEM). Consequently, the uptake and translocation of Cd and As in rice seedlings were significantly reduced by 48.66 % and 72.19 % in shoots, and 43.23 % and 68.93 % in roots, respectively. Moreover, the application of organosilicon enhanced the activities of antioxidant enzymes in rice, This lead to an accelerated glutathione-oxidized glutathione (GSH-GSSG) cycle, up-regulated expression of the rice glutathione peroxidase gene (OsGPX), and increased GPX activity. These modifications effectively scavenged reactive oxygen species (ROS) generated by Cd/As stress and alleviated oxidative damage in rice. Overall, our study has unraveled the physiological and molecular mechanisms underlying the role of organosilicon in alleviating Cd/As toxicity in rice and has also provided new insights for the application of suberin in reducing heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Zhiheng Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Wu
- Xiaoshan Branch of Hangzhou Ecological Environment Bureau, Hangzhou, 310000, China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Khurram Shehzad
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingtao Hou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Zhang QH, Tan XT, Li ZB, Chen YQ, Yang ZY, Xin GR, He CT. De-Methyl Esterification Modification of Root Pectin Mediates Cd Accumulation of Lactuca sativa. PLANT, CELL & ENVIRONMENT 2025; 48:1735-1748. [PMID: 39491538 DOI: 10.1111/pce.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Cadmium (Cd) contamination in agricultural soil brings severe health risks through the dietary intake of Cd-polluted crops. The comprehensive role of pectin in lowering Cd accumulation is investigated through low Cd accumulated (L) and high Cd accumulated (H) cultivars of L. sativa. The significantly different Cd contents in the edible parts of two L. sativa cultivars are accomplished by different Cd transportations. The pectin is the dominant responsive cell wall component according to significantly increased uronic acid contents and the differential Cd absorption between unmodified and modified cell wall. The chemical structure characterization revealed the decreased methyl esterification in pectin under Cd treatment compared with control. Significantly brighter LM19 relative fluorescence density and 40.82% decreased methanol in the root pectin of L cultivar under Cd treatment (p < 0.05) supported that the de-methyl esterification of root pectin is more significant in L cultivar than in H cultivar. The pectin de-methyl esterification of L cultivar is achieved by the upregulation of pectin esterases and the downregulation of pectin esterase inhibitors under Cd treatments, which has facilitated the higher Cd-binding of pectin. Our findings provide deep insight into the differential Cd accumulation of L. sativa cultivars and contribute to the understanding the pollutant behaviors in plants.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Xuan-Tong Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhen-Bang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Yi-Qi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Zhong-Yi Yang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Guo-Rong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| | - Chun-Tao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen City, Guangdong Province, China
| |
Collapse
|
4
|
Pang Z, Qiu LX, Guan DX, Zeng X, Wang Y, Peng H, Song A, Liang Y. A novel layered culture device reveals spatial dynamics of root element uptake and optimal silicon application site for mitigating chromium uptake by rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123488. [PMID: 39615476 DOI: 10.1016/j.jenvman.2024.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
Understanding root uptake mechanisms for various elements is crucial for optimizing heavy metal remediation strategies and enhancing plant-nutrient interactions. However, simple and effective methods to differentiate the contributions of specific root segments in element uptake are lacking. Here, we developed a layered culture device consisting of a culture box and a plant suspension mechanism, which isolates different root segments through solid media and waterproof coating. Then, we used the device to investigate the roles of distinct root segments (0-1 cm and 1-2 cm from the tip) in heavy metal chromium (Cr) and beneficial element silicon (Si) uptake in rice. The results indicated that the 0-1 cm root segment contributed approximately 58% of leaf Cr(VI), with higher efflux compared to the 1-2 cm segment. Conversely, the 1-2 cm root segment served as the primary source of leaf Si and Cr(III), accounting for 62% and 54%, respectively. The translocation factors for Cr(VI) were similar for both segments (0.039 and 0.032), while the Cr(III) translocation factor for the 0-1 cm root segment (0.061) was 2.8 times that of the 1-2 cm segment. Notably, Si application to the 0-1 cm segment most effectively alleviated Cr (III) and Cr (VI) stress, boosting shoot length, fresh weight, and chlorophyll concentration and reducing Cr concentrations in roots and leaves by 24.7%-65.7%. In contrast, Si application to the 1-2 cm segment had minimal impact on rice growth or Cr uptake. These results suggest a deep Si application strategy for remediating Cr-contaminated soil. The innovative device provides a scientific foundation for distinguishing element uptake contributions of different root segments and enhancing the utilization efficiency of remediation materials and nutrient management in agriculture.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Li-Xue Qiu
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xian Zeng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Yang Z, Xiao X, Liu T, Wang H, Luo X. Metabolomics reveals the size effect of microplastics impeding membrane synthesis in rice cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117378. [PMID: 39579448 DOI: 10.1016/j.ecoenv.2024.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The global-scale production of plastics has led to a significant accumulation in the environment, and it has become a major stressor to environmental sustainability, agricultural crops, and human health. Here we report the particle size effect of polystyrene (PS, typically microplastic) on the impact on rice suspension cells. This study used PS of different particle sizes (30 nm, 200 nm, and 2 μm) in a three-day co-culture experiment, the results showed that 30 nm, 200 nm, and 2 μm PS at the same concentration (100 μg/mL) caused 4.6 %, 55.8 %, and 66.4 % decrease in rice suspension cell viability, respectively. Furthermore, a substantial reduction in protein content, amounting to 26.53 % and 48.47 %, was observed in cells treated with 200 nm and 2 μm PS, and the DNA and RNA content of rice suspension cells also decreased substantially at 100 μg/mL PS. Non-targeted metabolomics analyses showed that PS disrupted fatty acid biosynthesis with a clear size effect, wherein 2 μm PS caused a decrease of 64.9 % in hexadecanoic acid content. Consequently, this finding provides valuable perspectives on the potential ecotoxicity of microplastics at the single-cell level of rice and will facilitate the formulation of an environmental management program specifically tailored for addressing the challenges posed by microplastics.
Collapse
Affiliation(s)
- Zhenlong Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Haodong Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Jiangxi Province for agricultural environmental pollution prevention and control in red soil hilly region, School of life sciences, Jinggangshan University, Ji'an 343009, China
| |
Collapse
|
6
|
Wang B, Liu Y, Wang Z, Zhang Q. Rare earth elements sequestration in phytoliths: Partitioning patterns and influencing mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175287. [PMID: 39111446 DOI: 10.1016/j.scitotenv.2024.175287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Rare earth elements (REEs) are integral to numerous high-tech industries, yet their biogeochemical cycling within ecosystems remains inadequately characterized. Recently, phytoliths have been identified as potentially significant sinks for REEs; however, their role in the cycling of these elements has been underestimated. In this work, we investigate the accumulation of REEs in phytoliths (PhytREEs) within the Greater Khingan Mountains region, employing an optimized wet oxidation method combined with heavy liquid flotation to quantify PhytREEs contents in surface soils. The results revealed an elevation-dependent pattern of PhytREEs concentration, with heightened levels at higher altitudes and diminishing concentrations towards the eastern plains. The enrichment coefficient of PhytREEs (ECPhytREEs) was found to be approximately 2.7 %, indicative of a moderately selective sequestration process. The multivariate analysis indicated that terrain complexity, climatic patterns, soil texture, and organic matter significantly influence the uptake and storage of REEs in plants, subsequently affecting their partitioning in phytoliths. Among these factors, the complexation of REEs with organic matter emerged as a pivotal mechanism facilitating their immobilization within phytoliths. Soil characteristics also play a non-negligible role in modulating REEs dynamics. Our findings highlight the predominant influence of climate on PhytREE storage, suggesting that climatic variables are the primary drivers modulating the bioavailability and ultimate sequestration of REEs within phytoliths. This study enhances our understanding of the biotic-abiotic interplay in the sequestration of REEs and underscores the need to incorporate phytoliths into models of terrestrial REE cycling.
Collapse
Affiliation(s)
- Bing Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010019, China; Forest Ecosystem National Observation and Research Station of Greater Khingan Mountains in Inner Mongolia, Genhe 022350, China.
| | - Yangzheng Liu
- School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Zihao Wang
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Qiuliang Zhang
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010019, China; Forest Ecosystem National Observation and Research Station of Greater Khingan Mountains in Inner Mongolia, Genhe 022350, China
| |
Collapse
|
7
|
Zhao P, Yan X, Wan Y, Xiong Y, Li Q, Yang Z, Si M, Yang W. Cooperation of selenium, iron and phosphorus for simultaneously minimizing cadmium and arsenic concentrations in rice grains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175193. [PMID: 39094643 DOI: 10.1016/j.scitotenv.2024.175193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Cadmium (Cd) and arsenic (As), two toxic elements to humans, are ubiquitously coexisting contaminant found in paddy fields. The accumulation of Cd and As in rice, a major food source for many people around the world, can pose a serious threat to food safety and human health. Therefore, it is crucial to be aware of these contaminants and take adequate measures to reduce the accumulation of these two elements in rice. Developing an effective method to simultaneously reduce the accumulation of Cd) and As in rice is challenging. In this study, a pot experiment was conducted to investigate the synergistic effects of selenium (Se), iron (Fe) and phosphorus (P) on the uptake, transport and accumulation of cadmium and arsenic in rice by analyzing the physical and chemical properties of the soil, the elemental concentrations and their interrelationships in the rice tissues, and the composition and morphology of the iron plaque (IP). The results showed that the combined treatments of Se, Fe and P had positive effects on reducing Cd and As accumulation in rice, reducing Cd concentrations in brown rice by 3.86-51.88 % and As concentrations by 25.37-40.81 %. The possible mechanisms for the reduction of As and Cd concentrations in rice grains were: (i) Combined application of Fe, P and Se can effectively reduce the soil available Cd and As concentration. (ii) Combined application significantly improved the formation of IP at the tillering stage and increased the crystalline iron oxides in IP, promoting the deposition of SiO2 in rice roots, thereby effectively inhibiting the uptake of Cd and As by rice roots. (iii) Interplay and interaction between elements facilitated by transporter proteins could contribute to the synergistic mitigation of Cd and As by Se, Fe and P. This study provides a valuable new approach for effective control of Cd and As concentration of rice grown in co-contaminated soil.
Collapse
Affiliation(s)
- Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Xiao Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Youyuan Wan
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Yuan Xiong
- Ecology and Environment Affairs Center of Hunan Province, Changsha 410014, Hunan, PR China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China.
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China.
| |
Collapse
|
8
|
Xu K, Lan Y, Xing C, Rao Y, Zhu E, Yan J, Wang S, Wu XL, Cai M, Duan X. Phytotoxicity of Prussian blue nanoparticles to rice and the related defence mechanisms: In vivo observations and physiological and biochemical analysis. CHEMOSPHERE 2024; 368:143724. [PMID: 39536833 DOI: 10.1016/j.chemosphere.2024.143724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
While the nanotoxic effects on plants have been extensively studied, the underlying mechanisms of plant defense responses and resistance to nanostress remain insufficiently understood. Particularly, Prussian blue nanoparticles (PB NPs) have been extensively used in pigments, pharmaceuticals, electrocatalysis, biosensors and energy storage. However, the impact of PB NPs on plants' health and growth are largely unknown. Herein, the phytotoxicity of PB NPs to rice and trace the uptake, accumulation and biotransformation of PB NPs was explored, along with the underlying defence mechanisms. The results showed that PB NPs (≥50 mg L-1) significantly inhibited the growth of rice seedling up to 16.16%, 27.80%, and 29.37% in plant height, shoot biomass and root biomass, respectively. The X-ray spectroscopic studies and in vivo elemental and particle-imaging demonstrated that PB NPs were transported through the cortex via xylem from root to shoot. However, most of the PB NPs and their transformation products were retained in the root, where they were blocked owing to root cell wall (RCW) remodeling, and 81.4%-83.4% of Fe accumulated in the RCW compared to 66.6% in the control. Specifically, PB NPs stimulated pectin methylesterase activity by promoting hydrogen peroxide production to participate in RCW remodeling. More interestingly, Si was specifically regulated to covalently bind to hemicellulose to form the Si-hemicellulose complex that strongly bound with PB NPs during RCW remodeling, resulting in the strong defense against PB NPs. These findings provide new insights into the phytotoxicity of artificial NPs and the defense mechanisms of plants.
Collapse
Affiliation(s)
- Kai Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Yilun Lan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Chenghua Xing
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321007, PR China
| | - Yuchun Rao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Engao Zhu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Jianfang Yan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, Australia
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Zhou X, Liu Y, Sun J, Li B, Xiao G. Nondestructive detection of lead content in oilseed rape leaves under silicon action using hyperspectral image. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175076. [PMID: 39069175 DOI: 10.1016/j.scitotenv.2024.175076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
This study explored the feasibility of employing hyperspectral imaging (HSI) technology to quantitatively assess the effect of silicon (Si) on lead (Pb) content in oilseed rape leaves. Aiming at the defects of hyperspectral data with high dimension and redundant information, this paper proposed two improved feature wavelength extraction algorithms, repetitive interval combination optimization (RICO) and interval combination optimization (ICO) combined with stepwise regression (ICO-SR). The entire oilseed rape leaves were taken as the region of interest (ROI) to extract the visible near-infrared hyperspectral data within the 400.89-1002.19 nm range. In data processing, Savitzky-Golay (SG) smoothing, detrending (DT), and multiple scatter correction (MSC) were utilized for spectral data preprocessing, while recursive feature elimination (RFE), iteratively variable subset optimization (IVSO), ICO, and the two enhanced algorithms were employed to identify characteristic wavelengths. Subsequently, based on the spectral data of preprocessing and feature extraction, partial least squares regression (PLSR) and support vector regression (SVR) methods were used to construct various Pb content prediction models in oilseed rape leaves, with a comparison and analysis of each model performance. The results indicated that the two improved algorithms were more efficient in extracting representative spectral information than conventional methods, and the performance of SVR models was better than PLSR models. Finally, to further improve the prediction accuracy and robustness of the SVR models, the whale optimization algorithm (WOA) was introduced to optimize their parameters. The findings demonstrated that the MSC-RICO-WOA-SVR model achieved the best comprehensive performance, with Rp2 of 0.9436, RMSEP of 0.0501 mg/kg, and RPD of 3.4651. The results further confirmed the great potential of HSI combined with feature extraction algorithms to evaluate the effectiveness of Si in alleviating Pb stress in oilseed rape and provided a theoretical basis for determining the appropriate amount of Si application to alleviate Pb pollution in oilseed rape.
Collapse
Affiliation(s)
- Xin Zhou
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China; Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment of Jiangsu University, Zhenjiang 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Zhenjiang 212013, China.
| | - Yang Liu
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
| | - Jun Sun
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China.
| | - Bo Li
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
| | - Gaojie Xiao
- School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Wang X, Li H, Zhang S, Gao F, Sun X, Ren X. Interactive effect of 24-epibrassinolide and silicon on the alleviation of cadmium toxicity in rice ( Oryza sativa L.) plants. ENVIRONMENTAL TECHNOLOGY 2024; 45:4725-4736. [PMID: 37953712 DOI: 10.1080/09593330.2023.2283073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/09/2023] [Indexed: 11/14/2023]
Abstract
Cadmium (Cd) pollution is a serious threat to food safety and human health. Minimization of Cd uptake and enhancing Cd tolerance in plants are vital to improve crop yield and reduce hazardous effects to humans. In this study, we investigate the effect of a synergistic system with phytohormone (24-Epibrassinolide, EBL) and silicon (Si) on Cd toxicity and accumulation of rice plants. The results revealed that Si, EBL and their combination rescued Cd-induced growth inhibition, as evidenced by the increased dry weight of root and shoot. The chlorophyll content and photosynthetic performance were improved. The activity of antioxidant enzymes (SOD, POD and CAT) was increased and oxidative stress was alleviated. More importantly, Cd content in root was decreased by 20.25%, 17.72% and 27.84%, while Cd content in shoot decreased by 21.17%, 16.47% and 25.88%, respectively. Moreover, Si, EBL and Si + EBL treatment enriched cell wall-bound Cd and reduced Cd toxicity to functional organelles. Meanwhile, the residual form of Cd was enriched and the highly toxic forms of Cd (inorganic and water-soluble Cd) were decreased. The joint application showed better effects than applying Si and EBL alone. Collectively, this study provides an effective way for Cd toxicity mitigation in rice plants.
Collapse
Affiliation(s)
- Xueshun Wang
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, People's Republic of China
| | - Hongyu Li
- Jiamusi Technician College, Jiamusi, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, People's Republic of China
| | - Fengwen Gao
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, People's Republic of China
| | - Xue Sun
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, People's Republic of China
| | - Xuekun Ren
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, People's Republic of China
| |
Collapse
|
11
|
Dai Z, Yu L, Ma P, Wang Y, An S, Liu M. Synergistic effects of silicon and goethite co-application in alleviating cadmium stress in rice (Oryza sativa L.): Insights into plant growth and iron plaque formation mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116570. [PMID: 38896902 DOI: 10.1016/j.ecoenv.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Rice is one of the most important staple food crops; however, it is prone to cadmium (Cd) accumulation, which has negative health effects. Therefore, methods to reduce Cd uptake by rice are necessary. At present, there is limited research on the effects of co-application of silicon (Si) and goethite in mitigating Cd stress in rice. Furthermore, the specific mechanisms underlying the effects of their combined application on iron plaque formation in rice roots remain unclear. Therefore, this study analyzed the effects of the combined application of Si and goethite on the biomass, physiological stress indicators, Cd concentration, and iron plaques of rice using hydroponic experiments. The results revealed that co-treatment with both Si and goethite increased the plant height and dry weight, superoxide dismutase and catalase activities, photosynthetic pigment concentration, and root activity. Moreover, this treatment decreased the malondialdehyde concentration, repaired epidermal cells, reduced the Cd concentration in the roots by 57.2 %, and increased the number of iron plaques and Cd concentration by 150.9 % and 266.2 % in the amorphous and crystalline fractions, respectively. The Cd/Fe ratio in amorphous iron plaques also increased. Our findings suggest that goethite serves as a raw material for iron plaque formation, while Si enhances the oxidation capacity of rice roots. The application of a combination of Si and goethite increases the quantity and quality of iron plaques, enhancing its Cd fixation capacity. This study provides theoretical evidence for the effective inhibition of Cd uptake by iron plaques in rice, providing insights into methods for the remediation of Cd contamination.
Collapse
Affiliation(s)
- Zhaoyi Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lei Yu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Pan Ma
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yaojing Wang
- College of Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shuai An
- Shenyang Center of the China Geological Survey, Shenyang, Liaoning 110034, China
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
12
|
Shi X, Du J, Wang X, Zhang X, Yan X, Yang Y, Jia H, Zhang S. NtGCN2 confers cadmium tolerance in Nicotiana tabacum L. by regulating cadmium uptake, efflux, and subcellular distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172695. [PMID: 38663613 DOI: 10.1016/j.scitotenv.2024.172695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
General control non-derepressible-2 (GCN2) is widely expressed in eukaryotes and responds to biotic and abiotic stressors. However, the precise function and mechanism of action of GCN2 in response to cadmium (Cd) stress in Nicotiana tabacum L. (tobacco) remains unclear. We investigated the role of NtGCN2 in Cd tolerance and explored the mechanism by which NtGCN2 responds to Cd stress in tobacco by exposing NtGCN2 transgenic tobacco lines to different concentrations of CdCl2. NtGCN2 was activated under 50 μmol·L-1 CdCl2 stress and enhanced the Cd tolerance and photosynthetic capacities of tobacco by increasing chlorophyll content and antioxidant capacity by upregulating NtSOD, NtPOD, and NtCAT expression and corresponding enzyme activities and decreasing malondialdehyde and O2·- contents. NtGCN2 enhanced the osmoregulatory capacity of tobacco by elevating proline (Pro) and soluble sugar contents and maintaining low levels of relative conductivity. Finally, NtGCN2 enhanced Cd tolerance in tobacco by reducing Cd uptake and translocation, promoting Cd efflux, and regulating Cd subcellular distribution. In conclusion, NtGCN2 improves the tolerance of tobacco to Cd through a series of mechanisms, namely, increasing antioxidant, photosynthetic, and osmoregulation capacities and regulating Cd uptake, translocation, efflux, and subcellular distribution. This study provides a scientific basis for further exploration of the role of NtGCN2 in plant responses to Cd stress and enhancement of the Cd stress signaling network in tobacco.
Collapse
Affiliation(s)
- Xiaotian Shi
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jiao Du
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xu Wang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoquan Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoxiao Yan
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yongxia Yang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hongfang Jia
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Songtao Zhang
- Key Laboratory of Tobacco Cultivation in Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
13
|
Rabbani M, Taqi Rabbani M, Muthoni F, Sun Y, Vahidi E. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. BIORESOURCE TECHNOLOGY 2024; 401:130751. [PMID: 38685517 DOI: 10.1016/j.biortech.2024.130751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Rare earth elements (REEs) are pivotal for advanced technologies, driving a surge in global demand. Import dependency on clean energy minerals raises concerns about supply chain vulnerabilities and geopolitical risks. Conventional REEs productionis resource-intensive and environmentally harmful, necessitating a sustainable supply approach. Phytomining (agromining) utilizes plants for eco-friendly REE extraction, contributing to the circular economy and exploiting untapped metal resources in enriched soils. Critical parameters like soil pH, Casparian strip, and REE valence influence soil and plant uptake bioavailability. Hyperaccumulator species efficiently accumulate REEs, serving as energy resources. Despite a lack of a comprehensive database, phytomining exhibits lower environmental impacts due to minimal chemical usage and CO2 absorption. This review proposes phytomining as a system for REEs extraction, remediating contaminated areas, and rehabilitating abandoned mines. The phytomining of REEs offers a promising avenue for sustainable REEs extraction but requires technological advancements to realize its full potential.
Collapse
Affiliation(s)
- Mohsen Rabbani
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA
| | | | - Frida Muthoni
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA
| | - Ying Sun
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ehsan Vahidi
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA.
| |
Collapse
|
14
|
Lin Q, Hamid Y, Wang H, Lu M, Cao X, Zou T, Chen Z, Hussain B, Feng Y, Li T, He Z, Yang X. Co-foliar application of zinc and nano-silicon to rice helps in reducing cadmium exposure risk: Investigations through in-vitro digestion with human cell line bioavailability assay. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133822. [PMID: 38387179 DOI: 10.1016/j.jhazmat.2024.133822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Foliar application of zinc (Zn) or silicon nanoparticles (Si-NPs) may exert regulatory effects on cadmium (Cd) accumulation in rice grains, however, their impact on Cd bioavailability during human rice consumption remains elusive. This study comprehensively investigated the application of Zn with or without Si-NPs in reducing Cd accumulation in rice grains as well to exactly evaluate the potential risk of Cd exposure resulting from the rice consumption by employing field experiment as well laboratory bioaccessibility and bioavailability assay. Sole Zn (ZnSO4) or in combination with Si (ZnSO4 +Si and ZnO+Si) efficiently lowered the Cd concentration in rice grains. However, the impact of bioaccessible (0.1215-0.1623 mg kg-1) and bioavailable Cd (0.0245-0.0393 mg kg-1) during simulated human rice consumption depicted inconsistent trend. The straw HCl-extractable fraction of Cd (FHCl-Cd) exhibited a significant correlation with total, bioaccessible, and bioavailable Cd in grains, indicating the critical role of FHCl-Cd in Cd accumulation and translocation from grains to human. Additionally, foliar spraying of Zn+Si raised the nutritional value of rice grains, leading to increased protein content and reduced phytic acid concentration. Overall, this study demonstrates the potential of foliar application of ZnSO4 +Si in mitigating the Cd levels in rice grains and associated health risks upon consumption.
Collapse
Affiliation(s)
- Qiang Lin
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Honhang Wang
- Agricultural Technology Extension Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou 324002, People's Republic of China
| | - Min Lu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Xuerui Cao
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, People's Republic of China
| | - Tong Zou
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhiqin Chen
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ying Feng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Tingqiang Li
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
15
|
Guo K, Zhao Y, Zhang Y, Yang J, Chu Z, Zhang Q, Xiao W, Huang B, Li T. Effects of wollastonite and phosphate treatments on cadmium bioaccessibility in pak choi ( Brassica rapa L. ssp. chinensis) grown in contaminated soils. Front Nutr 2024; 11:1337996. [PMID: 38638296 PMCID: PMC11024290 DOI: 10.3389/fnut.2024.1337996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Cadmium (Cd) contamination of soil can strongly impact human health through the food chain due to uptake by crop plants. Inorganic immobilizing agents such as silicates and phosphates have been shown to effectively reduce Cd transfer from the soil to cereal crops. However, the effects of such agents on total Cd and its bioaccessibility in leafy vegetables are not yet known. Pak choi (Brassica rapa L. ssp. chinensis) was here selected as a representative leafy vegetable to be tested in pots to reveal the effects of silicate-phosphate amendments on soil Cd chemical fractions, total plant Cd levels, and plant bioaccessibility. The collected Cd contaminated soil was mixed with control soil at 1:0, 1:1, 1:4, 0:1 with a view to Cd high/moderate/mild/control soil samples. Three heavy metal-immobilizing agents: wollastonite (W), potassium tripolyphosphate (KTPP), and sodium hexametaphosphate (SHMP) were added to the soil in order to get four different treatment groups, i.e., control (CK), application of wollastonite alone (W), wollastonite co-applied with KTPP (WKTPP), application of wollastonite co-applied with SHMP (WSHMP) for remediation of soils with different levels of Cd contamination. All three treatments increased the effective bio-Cd concentration in the soils with varying levels of contamination, except for W under moderate and heavy Cd contamination. The total Cd concentration in pak choi plants grown in mildly Cd-contaminated soil was elevated by 86.2% after WKTPP treatment compared to the control treatment could function as a phytoremediation aid for mildly Cd-contaminated soil. Using an in vitro digestion method (physiologically based extraction test) combined with transmission electron microscopy, silicate and phosphorus agents were found to reduce the bioaccessibility of Cd in pak choi by up to 66.13% with WSHMP treatment. Application of silicate alone reduced soil bio-Cd concentration through the formation of insoluble complexes and silanol groups with Cd, but the addition of phosphate may have facilitated Cd translocation into pak choi by first co-precipitating with Ca in wollastonite while simultaneously altering soil pH. Meanwhile, wollastonite and phosphate treatments may cause Cd to be firmly enclosed in the cell wall in an insoluble form, reducing its translocation to edible parts and decreasing the bioaccessibility of Cd in pak choi. This study contributes to the mitigation of Cd bioaccessibility in pak choi by reducing soil Cd concentration through in situ remediation and will help us to extend the effects of wollastonite and phosphate on Cd bioaccessibility to other common vegetables. Therefore, this study thus reveals effective strategies for the remediation of soil Cd and the reduction of Cd bioaccessibility in crops based on two indicators: total Cd and Cd bioaccessibility. Our findings contribute to the development of methods for safer cultivation of commonly consumed leafy vegetables and for soil remediation.
Collapse
Affiliation(s)
- Kexin Guo
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Yuehua Zhao
- The 7th Institute of Geology & Mineral Exploration of Shandong Province, Linyi, China
| | - Yang Zhang
- Weifang Binhai Ecological Environment Monitoring Center, Weifang, China
| | - Jinbo Yang
- The 7th Institute of Geology & Mineral Exploration of Shandong Province, Linyi, China
| | - Zhiyuan Chu
- The 7th Institute of Geology & Mineral Exploration of Shandong Province, Linyi, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Wenwei Xiao
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou, China
| | - Bin Huang
- Zhongchuang Guoke Scientific Instrument (Shandong) Co., Ji’nan, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| |
Collapse
|
16
|
Pang Z, Luo Z, Guan DX, Zhang T, Qiu L, Zhao E, Ma Q, Li T, Peng H, Liang Y. The adsorption-diffusion model and biomimetic simulation reveal the switchable roles of silicon in regulating toxic metal uptake in rice roots. CHEMOSPHERE 2024; 353:141669. [PMID: 38460848 DOI: 10.1016/j.chemosphere.2024.141669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Soil contamination by heavy metals has become a serious threat to global food security. The application of silicon (Si)-based materials is a simple and economical method for producing safe crops in contaminated soil. However, the impact of silicon on the heavy-metal concentration in plant roots, which are the first line in the chain of heavy-metal entering plants and causing stress and the main site of heavy-metal deposition in plants, remains puzzling. We proposed a process-based model (adsorption-diffusion model) to explain the results of a collection of 28 experiments on alleviating toxic metal stress in plants by Si. Then we evaluated the applicability of the model in Si-mitigated trivalent chromium (Cr[III]) stress in rice, taking into account variations in experimental conditions such as Cr(III) concentration, stress duration, and Si concentration. It was found that the adsorption-diffusion model fitted the experimental data well (R2 > 0.9). We also verified the binding interaction between Si and Cr in the cell wall using SEM-EDS and XPS. In addition, we designed a simplified biomimetic device that simulated the Si in cell wall to analyze the dual-action switch of Si from increasing Cr(III) adsorption to blocking Cr(III) diffusion. We found that the adsorption of Cr(III) by Si decreased from 58% to 7% as the total amount of Cr(III) increased, and finally the diffusion blocking effect of Si dominated. This study deepens our understanding of the role of Si in mitigating toxic metal stress in plants and is instructive for the research and use of Si-based materials to improve food security.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongkui Luo
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Lixue Qiu
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Enqiang Zhao
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingxu Ma
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Hassan MU, Lihong W, Nawaz M, Ali B, Tang H, Rasheed A, Zain M, Alqahtani FM, Hashem M, Qari SH, Zaid A. Silicon a key player to mitigate chromium toxicity in plants: Mechanisms and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108529. [PMID: 38507837 DOI: 10.1016/j.plaphy.2024.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chromium is a serious heavy metal (HM) and its concentration in plant-soil interface is soaring due to anthropogenic activities, unregulated disposals, and lack of efficient treatments. High concentration of Cr is toxic to ecosystems and human health. Cr stress also diminishes the plant performance by changing the plant's vegetative and reproductive development that ultimately affects sustainable crop production. Silicon (Si) is the second-most prevalent element in the crust of the planet, and has demonstrated a remarkable potential to minimize the HM toxicity. Amending soils with Si mitigates adverse effects of Cr by improving plant physiological, biochemical, and molecular functioning and ensuring better Cr immobilization, compartmentation, and co-precipitation. However, there is no comprehensive review on the role of Si to mitigate Cr toxicity in plants. Thus, in this present review; the discussion has been carried on; 1) the source of Cr, 2) underlying mechanisms of Cr uptake by plants, 3) how Si affects the plant functioning to reduce Cr toxicity, 4) how Si can cause immobilization, compartmentation, and co-precipitation 5) strategies to improve Si accumulation in plants to counter Cr toxicity. We also discussed the knowledge gaps and future research needs. The present review reports up-to-date knowledge about the role of Si to mitigate Cr toxicity and it will help to get better crop productivity in Cr-contaminated soils. The findings of the current review will educate the readers on Si functions in reducing Cr toxicity and will offer new ideas to develop Cr tolerance in plants through the use of Si.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wang Lihong
- College of Tourism and Geographic Science, Baicheng Normal University, Baicheng, Jilin, China.
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 62400, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 62400, Pakistan
| | - Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Fatmah M Alqahtani
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Abbu Zaid
- Department of Botany, Govt. Gandhi Memorial Science College, Cluster University, Canal Road, 180001, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
18
|
Pang Z, Zhu Y, Guan DX, Wang Y, Peng H, Liang Y. Unveiling mechanisms of silicon-mediated resistance to chromium stress in rice using a newly-developed hierarchical system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108368. [PMID: 38237424 DOI: 10.1016/j.plaphy.2024.108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/16/2024]
Abstract
Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|
20
|
Pang Z, Yin W, Wang Y, Zeng W, Peng H, Liang Y. Silicon-phosphorus pathway mitigates heavy metal stress by buffering rhizosphere acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166887. [PMID: 37683860 DOI: 10.1016/j.scitotenv.2023.166887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Heavy metal pollution threatens food security, and rhizosphere acidification will increase the bioavailability of heavy metals. As a beneficial element in plants, silicon can relieve heavy metal stress. However, less attention has been paid to its effects on plant rhizosphere processes. Here, we show that for Japonica (Nipponbare and Oochikara) and Indica (Jinzao 47) rice cultivars, the degree of root acidification was significantly reduced after silicon uptake, and the total organic carbon, citric acid, and malic acid concentrations in rice root exudates were significantly reduced. We further confirmed the results by q-PCR that the expressions of proton pump and organic acid secretion genes were down-regulated by 35-61 % after silicon treatment. Intriguingly, phosphorus allocation, an intensively studied mechanism of rhizosphere acidification, was altered by silicon treatment. Specifically, among total phosphorus in rice seedlings, the soluble proportion increased from 52.0 % to 61.7 %, while cell wall phosphorus decreased from 48.0 % to 32.3 %. Additionally, silicon-mediated alleviation of rhizosphere acidification has positive effects on relieving heavy metal stress. Simulation revealed that low acidification of the nutrient solution resulted in a decrease in bioavailable heavy metal concentrations, thereby reducing rice uptake. We further confirmed that the impediment of rhizosphere acidification led to free-state Cr3+ in solutions decreasing by 43 % and contributed up to 63 % of silicon's mitigation of Cr(III) stress. Overall, we propose a novel mechanism in which silicon reduces heavy metal absorption by increasing plant soluble phosphorus concentration and buffering rhizosphere acidification. This paper provides a unique insight into the role of silicon in plants and, more importantly, a theoretical reference for the rational application of silicon fertilizer to improve phosphorus utilization efficiency, alleviate heavy metal stress, and balance soil pH.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weisong Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Limmer MA, Linam FA, Seyfferth AL. The effect of rice residue management on rice paddy Si, Fe, As, and methane biogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166496. [PMID: 37611706 DOI: 10.1016/j.scitotenv.2023.166496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Rice production results in residues of straw and husk, and the management of these residues has implications for the sustainability of the rice agroecosystem. Rice straw is typically incorporated into soil either as fresh residue or is burned prior to incorporation. Rice husk is not typically returned to rice fields. However, rice husk contains high levels of silicon, which has been shown to decrease rice accumulation of arsenic. In this work, we studied the resulting biogeochemical changes in rice paddy soils when paddies were amended with either straw or burned straw and either no husk, husk, or burned husk over two years. Using a full-factorial design, we observed that the higher lability of rice straw carbon controlled redox-sensitive processes despite the application of husk and straw at similar carbon rates. Amending paddies with straw, rather than burned straw, increased porewater Fe and As, plant As, and methane emissions regardless of husk amendment. Husk addition provided insignificant Si to the plant despite its high concentration of Si, suggesting limited short-term mobility of Si and that long-term additions of husk or higher rates may need to be studied.
Collapse
Affiliation(s)
- Matt A Limmer
- University of Delaware, Department of Plant and Soil Sciences, Newark, DE 19716, United States of America
| | - Franklin A Linam
- University of Delaware, Department of Plant and Soil Sciences, Newark, DE 19716, United States of America
| | - Angelia L Seyfferth
- University of Delaware, Department of Plant and Soil Sciences, Newark, DE 19716, United States of America.
| |
Collapse
|
22
|
Elazab D, Lambardi M, Capuana M. In Vitro Culture Studies for the Mitigation of Heavy Metal Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3387. [PMID: 37836127 PMCID: PMC10574448 DOI: 10.3390/plants12193387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Heavy metals are among the most common and dangerous contaminants; their action on plants, as well as the possibility for plants to effectively absorb and translocate them, have been studied for several years, mainly for exploitation in phytoremediation, an environmentally friendly and potentially effective technology proposed and studied for the recovery of contaminated soils and waters. In this work, the analysis has focused on the studies developed using in vitro techniques on the possibilities of mitigating, in plants, the stress due to the presence of heavy metals and/or improving their absorption. These objectives can be pursued with the use of different substances and organisms, which have been examined in detail. The following are therefore presented in this review: an analysis of the role of metals and metalloids; the use of several plant growth regulators, with their mechanisms of action in different physiological phases of the plant; the activity of bacteria and fungi; and the role of other effective compounds, such as ascorbic acid and glutathione.
Collapse
Affiliation(s)
- Doaa Elazab
- IBE—Institute of BioEconomy, National Research Council (CNR), 50019 Florence, Italy; (D.E.); (M.L.)
- Department of Pomology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Maurizio Lambardi
- IBE—Institute of BioEconomy, National Research Council (CNR), 50019 Florence, Italy; (D.E.); (M.L.)
| | - Maurizio Capuana
- IBBR—Institute of Biosciences and Bioresources, National Research Council (CNR), 50019 Florence, Italy
| |
Collapse
|
23
|
Jiang Y, Wei C, Jiao Q, Li G, Alyemeni MN, Ahmad P, Shah T, Fahad S, Zhang J, Zhao Y, Liu F, Liu S, Liu H. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131933. [PMID: 37421854 DOI: 10.1016/j.jhazmat.2023.131933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Silicon (Si) and Zinc (Zn) have been frequently used to alleviate cadmium (Cd) toxicity, which are feasible strategies for crop safety production. However, the mechanisms underlying the interaction of Si and Zn on alleviating Cd toxicity are not well understood. A hydroponic system was adopted to evaluate morphological, physiological-biochemical responses, and related gene expression of wheat seedlings to Si (1 mM) and Zn (50 µM) addition under Cd stress (10 µM). Cd induced obvious inhibition of wheat growth by disturbing photosynthesis and chlorophyll synthesis, provoking generation of reactive oxygen species (ROS) and interfering ion homeostasis. Cd concentration was decreased by 68.3%, 43.1% and 73.3% in shoot, and 78.9%, 44.1% and 85.8% in root by Si, Zn, and combination of Si with Zn, relative to Cd only, respectively. Si and Zn effectively ameliorated Cd toxicity and enhanced wheat growth; but single Si or combination of Si with Zn had more efficient ability on alleviating Cd stress than only Zn, indicating Si and Zn have synergistic effect on Cd toxicity; Interaction of them alleviated oxidative stress by reducing ROS content, improving AsA-GSH cycle and antioxidant enzymes activities, and regulating Cd into vacuole through PC-Cd complexes transported by HMA3 transporter. Our results suggest that fertilizers including Si and Zn should be made to reduce Cd content, which will beneficial for food production and safety.
Collapse
Affiliation(s)
- Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chang Wei
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301 Jammu and Kashmir, India
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
24
|
Sun Q, Feng S, Li G, Qi Y, Hu C. Influence of Different Treatments on the Structure and Conversion of Silicon Species in Rice Straw to Tetraethyl Orthosilicate (TEOS). ChemistryOpen 2023; 12:e202300111. [PMID: 37551028 PMCID: PMC10407258 DOI: 10.1002/open.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Indexed: 08/09/2023] Open
Abstract
The production of tetraethyl orthosilicate (TEOS) from biomass provides a new way for TEOS production and biomass valorization. In this study, rice straw was treated using different fractionation methods, and the content, state, and reactivity of Si in the treated samples were investigated. It was found that acid treatment and ethanol extraction kept most Si in the biomass, while alkali treatment caused significant Si loss. Si was mainly present in the SiOx , Si-O-C, and Si-O-Si states in the surface of raw rice straw, cellulose and Klason lignin. The results showed that the Si-O-Si state in rice straw was beneficial for the formation of TEOS. The removal of lipids from rice straw facilitated the production of TEOS, giving the highest TEOS yield of 76.2 %. In contrast, the production of TEOS from other samples became difficult; the simultaneous conversion of the three organic components of rice straw also facilitated the production of TEOS.
Collapse
Affiliation(s)
- Qianxin Sun
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Shanshan Feng
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Guiying Li
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Yue Qi
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Changwei Hu
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| |
Collapse
|
25
|
Liu J, Feng X, Qiu G, Li H, Wang Y, Chen X, Fu Q, Guo B. Inhibition Roles of Calcium in Cadmium Uptake and Translocation in Rice: A Review. Int J Mol Sci 2023; 24:11587. [PMID: 37511349 PMCID: PMC10380254 DOI: 10.3390/ijms241411587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cadmium (Cd) contamination in rice grains is posing a significant threat to global food security. To restrict the transport of Cd in the soil-rice system, an efficient way is to use the ionomics strategy. Since calcium (Ca) and Cd have similar ionic radii, their uptake and translocation may be linked in multiple aspects in rice. However, the underlying antagonistic mechanisms are still not fully understood. Therefore, we first summarized the current knowledge on the physiological and molecular footprints of Cd translocation in plants and then explored the potential antagonistic points between Ca and Cd in rice, including exchange adsorption on roots, plant cell-wall composition, co-transporter gene expression, and transpiration inhibition. This review provides suggestions for Ca/Cd interaction studies on rice and introduces ionomics research as a means of better controlling the accumulation of Cd in plants.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaoyu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Qinglin Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.F.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| |
Collapse
|
26
|
Zheng HX, Yang YL, Liu WS, Zhong Y, Cao Y, Qiu RL, Liu C, van der Ent A, Hodson MJ, Tang YT. Rare earth elements detoxification mechanism in the hyperaccumulator Dicranopteris linearis: [silicon-pectin] matrix fixation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131254. [PMID: 36965356 DOI: 10.1016/j.jhazmat.2023.131254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Dicranopteris linearis is the best-known hyperaccumulator species of rare earth elements (REEs) and silicon (Si), capable of dealing with toxic level of REEs. Hence, this study aimed to clarify how D. linearis leaves cope with excessive REE stress, and whether Si plays a role in REE detoxification. The results show that lanthanum (La - as a representative of the REEs) stress led to decreased biomass and an increase of metabolism related to leaf cell wall synthesis and modification. However, the La stress-induced responses, especially the increase of pectin-related gene expression level, pectin polysaccharides concentration, and methylesterase activity, could be mitigated by Si supply. Approximately 70% of the Si in D. linearis leaves interacted with the cell walls to form organosilicon Si-O-C linkages. The Si-modified cell walls contained more hydroxyl groups, leading to a more efficient REE retention compared to the Si-free ones. Moreover, this [Si-cell wall] matrix increased the pectin-La accumulation capacity by 64%, with no effect on hemicellulose-La and cellulose-La accumulation capacity. These results suggest that [Si-pectin] matrix fixation is key in REE detoxification in D. linearis, laying the foundation for the development of phytotechnological applications (e.g., REE phytomining) using this species in REE-contaminated sites.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Lu Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ying Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, The Netherlands; Laboratoire Sols et Environnement, INRAE, Université de Lorraine, France; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Martin J Hodson
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
27
|
Liu L, Song Z, Tang J, Li Q, Sarkar B, Ellam RM, Wang Y, Zhu X, Bolan N, Wang H. New insight into the mechanisms of preferential encapsulation of metal(loid)s by wheat phytoliths under silicon nanoparticle amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162680. [PMID: 36889405 DOI: 10.1016/j.scitotenv.2023.162680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Silicon nanoparticles (SiNPs) have been widely used to immobilize toxic trace metal(loid)s (TTMs) in contaminated croplands. However, the effect and mechanisms of SiNP application on TTM transportation in response to phytolith formation and phytolith-encapsulated-TTM (PhytTTM) production in plants are unclear. This study demonstrates the promotion effect of SiNP amendment on phytolith development and explores the associated mechanisms of TTM encapsulation in wheat phytoliths grown on multi-TTM contaminated soil. The bioconcentration factors between organic tissues and phytoliths of As and Cr (> 1) were significantly higher than those of Cd, Pb, Zn and Cu, and about 10 % and 40 % of the total As and Cr that bioaccumulated in wheat organic tissues were encapsulated into the corresponding phytoliths under high-level SiNP treatment. These observations demonstrate that the potential interaction of plant silica with TTMs is highly variable among elements, with As and Cr being the two most strongly concentrated TTMs in the phytoliths of wheat treated with SiNPs. The qualitative and semi-quantitative analyses of the phytoliths extracted from wheat tissues suggest that the high pore space and surface area (≈ 200 m2 g-1) of phytolith particles could have contributed to the embedding of TTMs during silica gel polymerization and concentration to form PhytTTMs. The abundant SiO functional groups and high silicate-minerals in phytoliths are dominant chemical mechanisms for the preferential encapsulation of TTMs (i.e., As and Cr) by wheat phytoliths. Notably, the organic carbon and bioavailable Si of soils and the translocation of minerals from soil to plant aerial parts can impact TTM sequestration by phytoliths. Thus, this study has implications for the distribution or detoxification of TTMs in plants via preferential PhytTTM production and biogeochemical cycling of PhytTTMs in contaminated cropland following exogenous Si supplementation.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Robert Mark Ellam
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China
| | - Xiangyu Zhu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
28
|
Pang Z, Mei Y, Nikolic N, Nikolic M, Li T, Peng H, Liang Y. From promoting aggregation to enhancing obstruction: A negative feedback regulatory mechanism of alleviation of trivalent chromium toxicity by silicon in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131720. [PMID: 37257379 DOI: 10.1016/j.jhazmat.2023.131720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Trivalent chromium [Cr(III)] is a threat to the environment and crop production. Silicon (Si) has been shown to be effective in mitigating Cr(III) toxicity in rice. However, the mechanisms by which Si reduces Cr(III) uptake in rice are unclear. Herein, we hypothesized that the ability of Si to obstruct Cr(III) diffusion via apoplastic bypass is related to silicic acid polymerization, which may be affected by Cr(III) in rice roots. To test this hypothesis, we employed hydroponics experiments on rice (Oryza sativa L.) and utilized apoplastic bypass tracer techniques, as well as model simulations, to investigate 1) the effect of Si on Cr(III) toxicity and its obstruction capacity via apoplastic bypass, 2) the effect of Cr(III) on silicic acid polymerization, and 3) the relationship between the degree of silicic acid polymerization and its Cr(III) obstruction capacity. We found that Si reversed the damage caused by Cr(III) stress in rice. Si exerted an obstruction effect in the apoplast, significantly decreasing the share of Cr(III) uptake via the apoplastic bypass from 18% to 11%. Moreover, Cr(III) reduced silica particles' radii and increased Si concentration in roots. Modeling revealed that a 5-fold reduction in their radii decreased the diffusion of Cr(III) in apoplast by approximately 17%. We revealed that Cr(III) promoted silicic acid polymerization, resulting in the formation of a higher number of Si particles with a smaller radius in roots, which in turn increased the ability of Si to obstruct Cr(III) diffusion. This negative feedback regulatory mechanism is novel and crucially important for maintaining homeostasis in rice, unveiling the unique role of Si under Cr(III) ion stress and providing a theoretical basis for promoting the use of Si fertilizer in the field.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Mei
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
30
|
Lou F, Fu T, He G, Tian W, Wen J, Yang M, Wei X, He Y, He T. Different composites inhibit Cd accumulation in grains under the rice-oilseed rape rotation mode of karst area: A field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114884. [PMID: 37054472 DOI: 10.1016/j.ecoenv.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ensuring the safe production of food and oil crops in soils with elevated cadmium (Cd) content in karst regions is crucial. We tested a field experiment to examine the long-term remediation effects of compound microorganisms (CM), strong anion exchange adsorbent (SAX), processed oyster shell (POS), and composite humic acids (CHA) on Cd contamination in paddy fields under a rice-oilseed rape rotation system. In comparison to the control group (CK), the application of amendments significantly increased soil pH, cation exchange capacity (CEC), and soil organic matter (SOM) content while markedly decreasing the content of available Cd (ACd). During the rice cultivation season, Cd was predominantly concentrated in the roots. Relative to the control (CK), the Cd content in each organ was significantly reduced. The Cd content in brown rice decreased by 19.18-85.45%. The Cd content in brown rice following different treatments exhibited the order of CM > POS > CHA > SAX, which was lower than the Chinese Food Safety Standard (GB 2762-2017) (0.20 mg/kg). Intriguingly, during the oilseed rape cultivation season, we discovered that oilseed rape possesses potential phytoremediation capabilities, with Cd mainly accumulating in roots and stems. Notably, CHA treatment alone significantly decreased the Cd content in oilseed rape grains to 0.156 mg/kg. CHA treatment also maintained soil pH and SOM content, consistently reduced soil ACd content, and stabilized Cd content in RSF within the rice-oilseed rape rotation system. Importantly, CHA treatment not only enhances crop production but also has a low total cost (1255.230 US$/hm2). Our research demonstrated that CHA provides a consistent and stable remediation effect on Cd-contaminated rice fields within the crop rotation system, as evidenced by the analysis of Cd reduction efficiency, crop yield, soil environmental change, and total cost. These findings offer valuable guidance for sustainable soil utilization and safe production of grain and oil crops in the context of high Cd concentrations in karst mountainous regions.
Collapse
Affiliation(s)
- Fei Lou
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Tianling Fu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Weijun Tian
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jichang Wen
- Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
31
|
Su Y, Huang X, Li L, Muhammad ZA, Li M, Zheng T, Guo Z, Zhang Y, Luo D, Ye X, Jia X, Hussain Panhwar F, Tun MT, Zhu J. Comparative Responses of Silicon to Reduce Cadmium and Enrich Selenium in Rice Varieties. Foods 2023; 12:foods12081656. [PMID: 37107451 PMCID: PMC10138079 DOI: 10.3390/foods12081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Cadmium (Cd), a highly toxic heavy metal for crops in China, poses a significant threat to rice cultivation. It is crucial to identify the genotypes with robust resistance to heavy metals, including Cd, in rice. The experiment was conducted to examine the mitigation effect of silicon (Si) on Cd toxicity levels in Se-enriched Z3055B and non-Se-enriched G46B rice genotypes. A basal dose of Si improved the growth and the quality of rice significantly by reducing the Cd content in rice roots, stems, leaves and grains and increased the yield, biomass and selenium (Se) content of brown rice in both genotypes. Additionally, Se content in brown rice and polished rice was notably higher in Se-enriched rice than in non-Se-enriched rice, with the highest amount at 0.129 mg/kg and 0.085 mg/kg, respectively. The results demonstrated that a basal fertilizer concentration of 30 mg/kg of Si was more effective in reducing Cd transport from roots to shoots in Se-enriched rice than in non-Se-enriched rice genotypes. Therefore, it can be concluded that Se-enriched rice genotypes are a viable option for food crop production in Cd-contaminated areas.
Collapse
Affiliation(s)
- Yang Su
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xin Huang
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Ling Li
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zahir Ahsan Muhammad
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Meilin Li
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Tengda Zheng
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zhe Guo
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yue Zhang
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Dan Luo
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaoying Ye
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaomei Jia
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Faiz Hussain Panhwar
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Myo Thuzar Tun
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
32
|
Hou L, Ji S, Zhang Y, Wu X, Zhang L, Liu P. The mechanism of silicon on alleviating cadmium toxicity in plants: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1141138. [PMID: 37035070 PMCID: PMC10076724 DOI: 10.3389/fpls.2023.1141138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Cadmium is one of the most toxic heavy metal elements that seriously threaten food safety and agricultural production worldwide. Because of its high solubility, cadmium can easily enter plants, inhibiting plant growth and reducing crop yield. Therefore, finding a way to alleviate the inhibitory effects of cadmium on plant growth is critical. Silicon, the second most abundant element in the Earth's crust, has been widely reported to promote plant growth and alleviate cadmium toxicity. This review summarizes the recent progress made to elucidate how silicon mitigates cadmium toxicity in plants. We describe the role of silicon in reducing cadmium uptake and transport, improving plant mineral nutrient supply, regulating antioxidant systems and optimizing plant architecture. We also summarize in detail the regulation of plant water balance by silicon, and the role of this phenomenon in enhancing plant resistance to cadmium toxicity. An in-depth analysis of literature has been conducted to identify the current problems related to cadmium toxicity and to propose future research directions.
Collapse
|
33
|
Labancová E, Vivodová Z, Šípošová K, Kollárová K. Silicon Actuates Poplar Calli Tolerance after Longer Exposure to Antimony. PLANTS (BASEL, SWITZERLAND) 2023; 12:689. [PMID: 36771773 PMCID: PMC9919072 DOI: 10.3390/plants12030689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The presence of antimony (Sb) in high concentrations in the environment is recognized as an emerging problem worldwide. The toxicity of Sb in plant tissues is known; however, new methods of plant tolerance improvement must be addressed. Here, poplar callus (Populus alba L. var. pyramidallis) exposed to Sb(III) in 0.2 mM concentration and/or to silicon (Si) in 5 mM concentration was cultivated in vitro to determine the impact of Sb/Si interaction in the tissue. The Sb and Si uptake, growth, the activity of superoxide dismutase (SOD), catalase (CAT), guaiacol-peroxidase (G-POX), nutrient concentrations, and the concentrations of photosynthetic pigments were investigated. To elucidate the action of Si during the Sb-induced stress, the impact of short and long cultivations was determined. Silicon decreased the accumulation of Sb in the calli, regardless of the length of the cultivation (by approx. 34%). Antimony lowered the callus biomass (by approx. 37%) and decreased the concentrations of photosynthetic pigments (up to 78.5%) and nutrients in the tissue (up to 21.7%). Silicon supported the plant tolerance to Sb via the modification of antioxidant enzyme activity, which resulted in higher biomass production (increased by approx. 35%) and a higher uptake of nutrients from the media (increased by approx. 10%). Silicon aided the development of Sb-tolerance over the longer cultivation period. These results are key in understanding the action of Si-developed tolerance against metalloids.
Collapse
|
34
|
Pan T, Dong Q, Cai Y, Cai K. Silicon-mediated regulation of cadmium transport and activation of antioxidant defense system enhances Pennisetum glaucum resistance to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:206-213. [PMID: 36641944 DOI: 10.1016/j.plaphy.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/10/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pennisetum glaucum is an important forage grass for livestock. However, the large accumulation of cadmium (Cd) in plant tissues increases the risk of heavy metals entering the food chain in Cd-contaminated soils. Silicon (Si) can inhibit cadmium (Cd) uptake and enhance tolerance of plant to Cd toxicity, but whether and how Si alleviates Cd toxicity in grass and the underlying mechanisms are unclear. The present study explored the differential mechanisms of silicon-induced Cd transport in apoplast and symplast, Cd distribution in root tissue and antioxidant defense system in P. glaucum under Cd stress through hydroponic and pot experiments. The present results showed that exogenous Si supply significantly reduced Cd concentrations in apoplast and symplast; Si treatment increased monosilicic acid concentration in apoplast and symplast of the roots and shoots under Cd stress. Elemental analysis of root microdomains showed that Si treatment increased the distribution of Cd and Si in the endodermis by 42.6% and 14.0%, respectively. Si alleviated the adverse influences of Cd on plant growth, which were manifested in root morphological traits and root activity. In addition, Si addition significantly increased the activities of catalase and superoxide dismutase by 37.0% and 72.7%, and improved the efficiency of the ascorbate-glutathione cycle in Cd-stress shoots. Furthermore, Si significantly reduced the contents of hydrogen peroxide and superoxide anion in Cd-stressed shoots by 16.6% and 48.7%, respectively. These findings demonstrate that Si enhances the resistance of P. glaucum to Cd stress through regulating Cd transport pathways and activating antioxidant defense systems.
Collapse
Affiliation(s)
- Taowen Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiyu Dong
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yixia Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
35
|
Pu J, Ma J, Li J, Wang S, Zhang W. Organosilicon and inorganic silica inhibit polystyrene nanoparticles uptake in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130012. [PMID: 36182889 DOI: 10.1016/j.jhazmat.2022.130012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoplastics (NPs) have become an emerging global environmental problem, and the toxicity of polystyrene nanoplastics (PS-NPs) in rice plants has received widespread attention. However, few studies have focused on silicon (Si)-mediated interactions between PS-NPs and rice. Thus, two forms of Si (organosilicon/inorganic silica) treated rice cells were exposure of positively or negatively charged NPs, PS-NH2 and PS-COOH, to evaluate the effects of Si for defense against PS-NPs toxicity in rice. The result showed PS-NH2 nanoparticles were accumulated at relatively low levels in cells compared with that of PS-COOH, but induced a higher accumulation of hydrogen peroxide (H2O2) and superoxide radicals (O2•-). However, both organosilicon and inorganic silica can generate more negative potential on the surfaces of cell wall to absorb large numbers of positively charged PS-NH2. In addition, they can prevent the uptake of both PS-NH2 and PS-COOH through reducing the porosity on the surface of the cell walls. These finally alleviated the toxicity of oxidative stress caused by PS-NPs and improved the viability of rice cells. Our findings demonstrated the significant contribution of Si in combating PS-NPs in rice.
Collapse
Affiliation(s)
- Junbao Pu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Yu F, Liang X, Li Y, Su Y, Tang S, Wei J, Liu K, Ma J, Li Y. A modified diatomite additive alleviates cadmium-induced oxidative stress in Bidens pilosa L. by altering soil microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41766-41781. [PMID: 36637652 DOI: 10.1007/s11356-023-25216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
In the present study, a modified silicon adsorbent (MDSA) was used as a passivator, and we explored the mechanism by which the MDSA helps B. pilosa L. alleviate Cd-induced oxidative stress and its effect on the rhizosphere microbial community. Therefore, a field study was conducted, and MDSA was applied at four levels (control (0 mg m-2), A1 (100 mg m-2), A2 (200 mg m-2), and A3 (400 mg m-2)). The application of MDSA significantly increased the soil pH and decreased the acid-soluble Cd content, which decreased by 30.3% with A3 addition. The addition of MDSA increased the relative abundance of Sordariomycetes due to the increased invertase activity and total nitrogen (TN) and total phosphorus (TP) contents, and the increased soil pH led to increased relative abundances of Alphaproteobacteria and Thermoleophilia. Meanwhile, MDSA addition significantly decreased the Cd concentrations in leaves and stems, which decreased by 19.7 to 39.5% in stems and 24.6 to 43.2% in leaves. All MDSA additions significantly decreased the translocation factor (TF) values of Cd, which decreased by 30.5% (A1), 50.9% (A2), and 52.7% (A3). Moreover, peroxidase (POD) from the antioxidant enzyme system and glutathione (GSH) from the nonenzymatic system played vital roles in scavenging reactive oxygen intermediates (ROIs) such as H2O2 and ⋅O2- in leaves, thereby helping B. pilosa L. alleviate Cd-induced oxidative stress and promote plant growth. Hence, our study indicated that MDSA application improved the rhizosphere soil environment, reconstructed the soil microbial community, helped B. pilosa L. alleviate Cd-induced oxidative stress, and promoted plant growth.
Collapse
Affiliation(s)
- Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Xin Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Yanying Li
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Yanlan Su
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Shuting Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Jiayu Wei
- College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China.,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China.,College of Life Science, Guangxi Normal University, Guilin, 541004, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China. .,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, China. .,College of Environment and Resources, Guangxi Normal University, 15Th YuCai St. QiXing District, Guilin, 541004, China.
| |
Collapse
|
37
|
Li GZ, Zheng YX, Liu HT, Liu J, Kang GZ. WRKY74 regulates cadmium tolerance through glutathione-dependent pathway in wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68191-68201. [PMID: 35538337 DOI: 10.1007/s11356-022-20672-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal to plants and human health. Ascorbate (ASA)-glutathione (GSH) synthesis pathway plays key roles in Cd detoxification, while its molecular regulatory mechanism remains largely unknown, especially in wheat. Here, we found a WRKY transcription factor-TaWRKY74, and its function in wheat Cd stress is not clear in previous studies. The expression levels of TaWRKY74 were significantly induced by Cd stress. Compared to control, the activities of GST, GR, or APX were significantly increased by 1.55-, 1.43-, or 1.75-fold and 1.63-, 2.65-, or 2.30-fold in shoots and roots of transiently TaWRKY74-silenced wheat plants under Cd stress. Similarly, the contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), GSH, or Cd were also significantly increased by 2.39- or 1.25-fold, 1.54- or 1.20-fold, and 1.34- or 5.94-fold in shoots or roots in transiently TaWRKY74-silenced wheat plants, while ASA content was decreased by 47.4 or 43.3% in shoots, 10.7 or 6.5% in roots in these silenced wheat plants, respectively. Moreover, the expression levels of GSH, GPX, GR, DHAR, MDHAR, and APX genes, which are involved in ASA-GSH synthesis, were separately induced by 2.42-, 2.16-, 3.28-, 2.08-, 1.92-, and 2.23-fold in shoots, or by 10.69-, 3.33-, 3.26-, 1.81-, 16.53-, and 3.57-fold in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants, respectively. However, the expression levels of TaNramp1, TaNramp5, TaHMA2, TaHMA3, TaLCT1, and TaIRT1 metal transporters genes were decreased by 21.2-76.3% (56.6%, 59.2%, 76.3%, 53.6%, 35.8%, and 21.2%) in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants. Taken together, our results suggested that TaWRKY74 alleviated Cd toxicity in wheat by affecting the expression of ASA-GSH synthesis genes and suppressing the expression of Cd transporter genes, and further affecting Cd uptake and translocation in wheat plants.
Collapse
Affiliation(s)
- Ge-Zi Li
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong-Xing Zheng
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hai-Tao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jin Liu
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guo-Zhang Kang
- The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
38
|
Singh S, Prasad SM, Sharma S, Dubey NK, Ramawat N, Prasad R, Singh VP, Tripathi DK, Chauhan DK. Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. PHYSIOLOGIA PLANTARUM 2022; 174:e13065. [PMID: 31916585 DOI: 10.1111/ppl.13065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 05/12/2023]
Abstract
The individual impact of silicon (Si) and nitric oxide (NO, as sodium nitroprusside) on metal toxicity in various plant species has been well documented; however, their combined action in the regulation of metal stress has never been tested yet. Therefore, this study investigates the effects of the combined application of Si and NO in the mitigation of Cd toxicity in wheat seedlings. Seedlings grown on Cd has a significantly declined growth due to an increased accumulation of Cd and oxidative stress markers (due to downregulation of antioxidant defense system particularly ascorbate-glutathione cycle) and a decreased accumulation of NO and Si. Additionally, the altered leaf and root structures resulted into a declined photosynthetic efficiency. However, the addition of Si and NO alone as well as combined significantly alleviated Cd toxicity in wheat seedlings by lowering the accumulation of Cd and oxidative stress markers and improving leaf and root structures, which are collectively responsible for a better photosynthetic rate under Cd toxicity, and hence an improved growth was noticed. Particularly, the application of Si and NO in combination lowered the oxidative stress markers via upregulating the antioxidant defense system (particularly AsA-GSH cycle) suggesting the increased efficacy of Si + NO against the Cd toxicity in wheat seedlings as compared to their alone treatments.
Collapse
Affiliation(s)
- Swati Singh
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagraj, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Rajendra Prasad
- Department of Horticulture, Kulbhasker Ashram Post Graduate College, Prayagraj, Uttar Pradesh, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree Collage, A Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | | | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, India
| |
Collapse
|
39
|
Altaf MM, Diao XP, Altaf MA, Ur Rehman A, Shakoor A, Khan LU, Jan BL, Ahmad P. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129145. [PMID: 35739696 DOI: 10.1016/j.jhazmat.2022.129145] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although beneficial metalloid silicon (Si) has been proven to reduce the toxicity of several heavy metals, there is a lack of understanding regarding Si potential function in mitigating phytotoxicity induced by vanadium (V). In this study, effect of Si (1.5 mM) on growth, biomass production, V uptake, reactive oxygen species (ROS), methylglyoxal (MG) formation, selected antioxidants enzymes activities, glyoxalase enzymes under V stress (35 mg L-1) was investigated in hydroponic experiment. The results showed that V stress reduced rice growth, caused V accumulation in rice. Addition of Si to the nutritional medium increased plant growth, biomass yield, root length, root diameter, chlorophyll parameters, photosynthetic assimilation, ion leakage, antioxidant enzymes activities under V stress. Notably, Si sustained V-homeostasis and alleviated V caused oxidative stress by boosting ascorbate (AsA) levels and the activity of antioxidant enzymes in V stressed rice plants. Furthermore, Si protected rice seedlings against the harmful effects of methylglyoxal by increasing the activity of glyoxalase enzymes. Additionally, Si increased the expression of numerous genes involved in the detoxification of reactive oxygen species (e.g., OsCuZnSOD1, OsCaTB, OsGPX1, OsAPX1, OsGR2, and OsGSTU37) and methylglyoxal (e.g., OsGLYI-1 and OsGLYII-2). The findings supported that Si can be applied to plants to minimize the V availability to plant, and also induced V stress tolerance.
Collapse
Affiliation(s)
- Muhammad Mohsin Altaf
- College of Ecology and Environment, Hainan University, Haikou 570228, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Biology, Hainan Normal University, Haikou 571158, PR China.
| | | | - Atique Ur Rehman
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Latif Ullah Khan
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India
| |
Collapse
|
40
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
41
|
Wang S, Dai H, Skuza L, Chen Y, Wei S. Difference in Cd 2+ flux around the root tips of different soybean (Glycine max L.) cultivars and physiological response under mild cadmium stress. CHEMOSPHERE 2022; 297:134120. [PMID: 35227753 DOI: 10.1016/j.chemosphere.2022.134120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The purpose of the study was to compare differences in Cd2+ flux in the vicinity of root tips of 20 soybean cultivars under mild Cd stress conditions using non-invasive micro-test technology (NMT). The results indicated that Cd2+ influx to the root tips under mild Cd treatment was higher compared to controls. Cd2+ influx showed an obvious spatial distribution, with the highest Cd2+ influx measured 300 μm from the root tips, and a gradually decrease above and below this site. The cultivar Liaodou32 had a lower Cd uptake (3.40 pmol cm-2 s-1), while Liaodou23 had a relatively higher Cd uptake (66.37 pmol cm-2 s-1). Cluster analysis showed that the order of the average Cd2+ influx of the cultivars at a distance of 300 μm from the root tips was as follows: high-uptake cultivars (61.80 pmol cm-2 s-1)>medium-high-uptake cultivars (33.92 pmol cm-2 s-1)>medium-low-uptake cultivars (19.78 pmol cm-2 s-1)>low-uptake cultivars (4.84 pmol cm-2 s-1). We also analyzed physiological responses of different soybean cultivars to mild Cd stress. The results indicated that mild Cd stress could inhibit soluble protein production and root vigor among individual soybean cultivars. Moreover, stress increased SOD, CAT and POD activities and MDA content in root tissues. It should be noted that the physio-biochemical indicators of low-uptake cultivars did not change significantly after exposure to mild Cd stress compared to controls. Pearson's correlation analyses showed that all physio-biochemical indicators were significantly positively associated with influx, except of root SP and biomass. PCA analysis demonstrated that root vigor was a dominant factor causing the differences in Cd tolerance among different soybean seedling cultivars. NMT is of great significance for safe utilization of contaminated soil to distinguish the cultivars with different enrichment capacity for heavy metals from different crop cultivars.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Wastewater Treatment Technology of Liaoning Province, Academy of Environmental & Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, Liaoning, China; Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built by Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Yanqiu Chen
- Crop Institute of Liaoning Academy of Agricultural Science, Shenyang, Liaoning, 110161, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
42
|
Yang L, Huang S, Liu Y, Zheng S, Liu H, Rensing C, Fan Z, Feng R. Selenate regulates the activity of cell wall enzymes to influence cell wall component concentration and thereby affects the uptake and translocation of Cd in the roots of Brassica rapa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153156. [PMID: 35041952 DOI: 10.1016/j.scitotenv.2022.153156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) can be used to counteract cadmium (Cd) toxicity in plants. However, mechanisms underlying the alleviation of Cd toxicity by Se have not been completely elucidated, especially those by which Se reduces Cd translocation. A hydroponic experiment was performed to illustrate the regulatory mechanisms of Cd transport by selenate (Se (VI)) in pakchoi (Brassica rapa L., LvYou 102). The results showed that this plant had a high accumulation capacity for Cd, and Se(VI) addition restricted Cd translocation from roots to shoots. Se(VI) exposure stimulated the concentrations of pectins and hemicellulose II but reduced the concentration of hemicellulose I in the roots. In many cases, the enzymes pectin methylesterase, polygalacturonase, and β-galactosidase were dose-dependently triggered by Se(VI) under Cd exposure, but root calcium concentration was significantly lowered (p < 0.05). Xyloglucan endoglycosidase (hydrolase) was triggered by Se(VI) under 2 mg L-1 Cd exposure and cellulase was generally activated by Se(VI) under Cd stress. The above results suggest that Se(VI) up-regulates pectin methylesterase activity, stimulates synthesis of pectins, and down-regulates root Ca concentration to release free carboxyl groups to combine Cd. In this study, the relationships between enzyme activity (e.g., peroxidase, superoxidase and β-galactosidase), hydrogen peroxide, cell wall structure strengthening/loosening, and Cd toxicity affected by Se(VI) were also discussed.
Collapse
Affiliation(s)
- Li Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ShuangQin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yang Liu
- Agricultural College, Guangxi University, Nanning, China
| | - ShunAn Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZhiLian Fan
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
43
|
Sun C, Liang X, Gong X, Chen H, Liu X, Zhang S, Li F, Zhao J, Yi J. Comparative transcriptomics provide new insights into the mechanisms by which foliar silicon alleviates the effects of cadmium exposure in rice. J Environ Sci (China) 2022; 115:294-307. [PMID: 34969457 DOI: 10.1016/j.jes.2021.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 06/14/2023]
Abstract
Silicon (Si) has been shown to alleviate Cd stress in rice. Here, we investigated the beneficial effects of foliar Si in an indica rice Huanghuazhan (HHZ). Our results showed that foliar Si increases the dry weight and decreases Cd translocation in Cd-exposed rice at the grain-filling stage only, implying that the filling stage is critical for foliar Si to reduce Cd accumulation. We also investigated the transcriptomics in flag leaves (FLs), spikelets (SPs), and node Is (NIs) of Cd-exposed HHZ after foliar Si application at the filling stage. Importantly, the gene expression profiles associated with the Si-mediated alleviation of Cd stress were tissue specific, while shared pathways were mediated by Si in Cd-exposed rice tissues. Furthermore, after the Si treatment of Cd-exposed rice, the ATP-binding cassette (ABC)-transporters were mostly upregulated in FL and SP, while the bivalent cation transporters were mostly downregulated in FL and NI, possibly helping to reduce Cd accumulation. The genes associated with essential nutrient transporters, carbohydrate and secondary metabolite biosynthesis, and cytochrome oxidase activity were mostly upregulated in Cd-exposed FL and SP, which may help to alleviate oxidative stress and improve plant growth under Cd exposure. Interestingly, genes responsible for signal transduction were negatively regulated in FL, but positively regulated in SP, by foliar Si. Our results provide transcriptomic evidence that foliar Si plays an active role in alleviating the effects of Cd exposure in rice. In particular, foliar Si may alter the expression pattern of genes associated with transport, biosynthesis and metabolism, and oxidation reduction.
Collapse
Affiliation(s)
- Chongjun Sun
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huamei Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiulian Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuchang Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangbai Li
- Guangdong Institute of Eco-environmental Science and Technology, Guangzhou 510650, China
| | - Junliang Zhao
- Rice Research Institute and Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
44
|
Pinson SRM, Heuschele DJ, Edwards JD, Jackson AK, Sharma S, Barnaby JY. Relationships Among Arsenic-Related Traits, Including Rice Grain Arsenic Concentration and Straighthead Resistance, as Revealed by Genome-Wide Association. Front Genet 2022; 12:787767. [PMID: 35371188 PMCID: PMC8974240 DOI: 10.3389/fgene.2021.787767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
There is global concern that rice grains and foods can contain harmful amounts of arsenic (As), motivating breeders to produce cultivars that restrict As accumulation in grains to protect human health. Arsenic is also toxic to plants, with straighthead disorder (StHD), causing panicle sterility, being observed in rice. The genetic variation in StHD resistance suggests that plants have evolved mechanisms that reduce As toxicity, possibly via regulation of As uptake, transport, or detoxification/sequestration. Because these mechanisms could also underlie the wide (3- to 100-fold) differences in grain As concentration (grain-As) observed among diverse rice genotypes, it was hypothesized that some genes reduce both grain-As content and StHD susceptibility and may be detectable as co-located StDH and As quantitative trait loci (QTL). We used a machine-learning Bayesian network approach plus high-resolution genome-wide association study (GWAS) to identify QTL for grain-As and StHD resistance within the USDA Rice Minicore Collection (RMC). Arsenic enters roots through phosphorus (P) and silica (Si) transporters, As detoxification involves sulfur (S), and cell signaling to activate stress tolerance mechanisms is impacted by Si, calcium (Ca), and copper (Cu). Therefore, concentrations of Si, P, S, Ca, and Cu were included in this study to elucidate physiological mechanisms underlying grain-As and StHD QTL. Multiple QTL (from 9 to 33) were identified for each of the investigated As-associated traits. Although the QTL for StHD, Si, and grain-As did not overlap as heavily as our hypothesis predicted (4/33 StHD and 4/15 As QTL co-located), they do provide useful guidance to future research. Furthermore, these are the first StHD and Si QTL to be identified using high-density mapping, resulting in their being mapped to shorter, more precise genomic regions than previously reported QTL. The candidate genes identified provide guidance for future research, such as gene editing or mutation studies to further investigate the role of antioxidants and ROS scavenging to StHD resistance, as indicated by candidate genes around the commonly reported qStHD8-2 QTL. Other genes indicated for future study for improving grain-As and StHD include several multidrug and toxic compound extrusion (MATE) genes, F-box genes, and NIPs not documented to date to transport As.
Collapse
Affiliation(s)
- Shannon R M Pinson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - D Jo Heuschele
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, St. Paul, CO, United States
| | - Jeremy D Edwards
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - Aaron K Jackson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - Santosh Sharma
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - Jinyoung Y Barnaby
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| |
Collapse
|
45
|
Zhao K, Yang Y, Zhang L, Zhang J, Zhou Y, Huang H, Luo S, Luo L. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives. ENVIRONMENTAL RESEARCH 2022; 205:112244. [PMID: 34688645 DOI: 10.1016/j.envres.2021.112244] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Chemical fertilizer is gaining increasing attention and has been the center of much research which indicating complex beneficial and harmful effects. Chemical fertilizer might cause some environmental hazards to the biosphere, especially in the agricultural ecosystem. The application of silicon (Si) fertilizer in agriculture has been proved to be able to create good economic and environmental benefits. Si is the second most abundant earth crust element. Si fertilizer improves soil quality and alleviates biotic and abiotic crop stress. It is of great significance to understand the function of Si fertilizer in agricultural utilization and environmental remediation. This paper reviews the Si-based fertilizer in farmland use and summarizes prior research relevant with characterization, soil quality improvement, and pollution remediation effects. Its use in agriculture enhances plant silicon uptake, mediates plant salt and drought stress and remediates heavy metals such as Al, As, Cd, Cu, Zn and Cr. This article also summarizes the detoxification mechanism of silicon and its effects on plant physiological activity such as photosynthesis and transpiration. Fertilizer materials and crop fertilizer management were also considered. Foliar spraying is an effective method to improve crop growth and yield and reduce biotic or abiotic stress. Silicon nanoparticle material provides potential with great potential and prospects. More investigation and research are prospected to better understand how silicon impacts the environment and whether it is a beneficial additive.
Collapse
Affiliation(s)
- Keqi Zhao
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Shuang Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| |
Collapse
|
46
|
Radotić K, Djikanović D, Kalauzi A, Tanasijević G, Maksimović V, Dragišić Maksimović J. Influence of silicon on polymerization process during lignin synthesis. Implications for cell wall properties. Int J Biol Macromol 2022; 198:168-174. [PMID: 34968543 DOI: 10.1016/j.ijbiomac.2021.12.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Silicon (Si) is considered a beneficial element for plants, mostly accumulating in cell walls, where its location and content are primed by the chemistry and structure of lignin. It is unrevealed how Si interacts with the process of lignin formation in the CWs. We studied, in an in vitro system, the interaction of SiO2 with the peroxidase-catalyzed polymerization of a lignin monomer into the lignin model compound, imitating conditions of the last step of lignin formation. FTIR and fluorescence spectroscopy and microscopy showed that Si is bound to the final polymer, and the structure of the Si-DHP differs from pure DHP. Fluorescence spectroscopy showed that Si does not bind to the monomers, so Si probably inhibits the formation of the larger lignin fragments, as evidenced by HPLC-DAD, by binding to dimmers formed during DHP synthesis. The structural changes of the polymer are related to the changed proportion of the fractions of various MW. The enzyme catalyzing DHP synthesis was not inhibited by Si. HRP activity was increased in presence of Si except for 6 mM Si. This may indicate that the complex formed with Si and short oligomers activates the enzyme, and prevents the formation of the large fragments.
Collapse
Affiliation(s)
- Ksenija Radotić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia.
| | - Daniela Djikanović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Aleksandar Kalauzi
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Gordana Tanasijević
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Vuk Maksimović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Jelena Dragišić Maksimović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia.
| |
Collapse
|
47
|
Liu L, Song Z, Li Q, Ellam RM, Tang J, Wang Y, Sarkar B, Wang H. Accumulation and partitioning of toxic trace metal(loid)s in phytoliths of wheat grown in a multi-element contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118645. [PMID: 34883150 DOI: 10.1016/j.envpol.2021.118645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Cropland contamination by toxic trace metal (loid)s (TTMs) has attracted increasing attention due to the serious consequential threat to crop quality and human health. Mitigation of plant TTM stress by silica amendment has been proposed recently. However, the relationship between the siliceous structure of phytoliths and TTMs in plants, and the environmental implications of phytolith-occluded trace metal (loid)s (PhytTMs) remain unclear. This study assessed the accumulation of five metal (loid)s, including lead (Pb), zinc (Zn), cadmium (Cd), copper (Cu) and arsenic (As), in the organic tissues and phytoliths of wheat grown in a mixed-TTM contaminated soil under both lightly and heavily contaminated conditions. The results show that the concentrations of plant TTMs and PhytTMs were significantly (p < 0.05) positively correlated, and higher in heavily contaminated wheats than those in lightly contaminated ones. The bio-enrichment factors between phytoliths and organic tissues were higher for As (1.83), Pb (0.27) and Zn (0.30) than for Cd (0.03) and Cu (0.14), implying that As, Pb and Zn were more readily co-precipitated with silicon (Si) in phytolith structures than Cd and Cu. Network analysis of the relationship between soil and plant elements with PhytTMs showed that severe contamination could impact the homeostasis of elements in plants by altering the translocation of TTMs between soils, plants, and phytoliths. The accumulation of TTMs in phytoliths was affected by the capacity of Si deposition in tissues and chelation of TTMs with silica, which could impact the role of PhytTMs in global biogeochemical TTM cycles.
Collapse
Affiliation(s)
- Linan Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rob M Ellam
- Scottish Universities Environmental Research Centre, East Kilbride, G750QF, Scotland, United Kingdom
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
48
|
Guo J, Ye D, Zhang X, Huang H, Wang Y, Zheng Z, Li T, Yu H. Characterization of cadmium accumulation in the cell walls of leaves in a low-cadmium rice line and strengthening by foliar silicon application. CHEMOSPHERE 2022; 287:132374. [PMID: 34592211 DOI: 10.1016/j.chemosphere.2021.132374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) remobilization in leaves is affected by whether Cd is stored in nonlabile subcellular compartments, which might be regulated by silicon (Si) application. However, the underlying mechanism is still far from being completely understood. In this research, the Cd distribution pattern in leaves and a Cd-binding characterization in the cell wall of the low-Cd rice line YaHui2816 were investigated through one hydroponic experiment with 10 μM Cd in solutions. Foliar Si application was further adopted to explore its influence on the Cd accumulation in the cell walls of leaves in YaHui2816. Most of the Cd (69.4%) was distributed in the cell walls of YaHui2816 leaves, whereas the isolated cell walls of leaves from YaHui2816 exhibited a lower capacity for Cd chemisorption than the contrasting line C268A, which was resulted from its fewer relative peak areas of functional groups in the cell wall, such as carboxyl CO and OH stretching. Foliar Si application significantly increased the Cd concentration in leaves and various cell wall fractions (pectin, hemicellulose 1 and residue) by 191% and 137-160%, respectively. RNA-seq analysis revealed that foliar Si application depressed the expression of the metal transporters OsZIP7 and OsZIP8, up-regulated the expression of genes participating in the glutathione metabolism and the cellulose synthesis. Overall, the influence of foliar Si application on Cd-accumulation in the cell wall of leaves in a low-Cd rice line was demonstrated in this research, which inspires further avenues to ensure the food safety of rice grains.
Collapse
Affiliation(s)
- Jingyi Guo
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
49
|
Wei W, Peng H, Xie Y, Wang X, Huang R, Chen H, Ji X. The role of silicon in cadmium alleviation by rice root cell wall retention and vacuole compartmentalization under different durations of Cd exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112810. [PMID: 34571424 DOI: 10.1016/j.ecoenv.2021.112810] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 05/22/2023]
Abstract
Silicon (Si) plays a pivotal role in mitigating phytotoxicity caused by cadmium (Cd). However, few former reports focused on the internal mechanism how Si assisted in alleviating Cd stress in rice under different durations of Cd exposure. Herein, the effects of Si on subcellular distribution of Cd in rice roots under short-term (12 h) and long-term (20 d) Cd exposure were explored. Results showed that Si decreased shoot Cd concentration but had little impact on root Cd levels. Under short-term Cd exposure, subcellular distribution analysis showed that Si increased the ratio of Cd in root cell wall by 23.2~24.0%, and decreased the ratio of Cd in root soluble fraction by 20.6~21.5%. This suggested that Si supply improved root retention of Cd by fixing it on the cell wall and thus restricted intracellular transportation of Cd. Further analysis unraveled that pectin (especially ionic-soluble pectin) of the cell wall was the main binding component, and Si supply induced more Cd accumulation in covalent-soluble pectin and hemicellulose. Moreover, the overexpression of germin-like proteins (GLPs) proved the role of cell wall in moderating Cd toxicity. Under long-term Cd exposure, Si promoted phytochelatin 2 (PC2) and phytochelatin 3 (PC3) synthesis in cytosol, at the same time, Si down-regulated the expression of the Cd efflux-related protein multidrug resistance-associated protein-like ATP-binding cassette transporters (MRP-like ABC transporters) and limited Cd transportation from vacuole to cytosol. Taken together, Si rather predominates in limiting Cd translocation by the cell wall of root under short-term Cd exposure and promoting vacuole compartmentalization to mitigate the Cd toxicity under long-term exposure, instead of reducing the absorption of Cd in rice roots, thereby decreasing Cd delivery into shoots.
Collapse
Affiliation(s)
- Wei Wei
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Hua Peng
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China
| | - Yunhe Xie
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China
| | - Xin Wang
- School of Geographic Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Rui Huang
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Haoyu Chen
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Xionghui Ji
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural, Science (HAAS), Changsha 410125, China.
| |
Collapse
|
50
|
Chen H, Liang X, Gong X, Reinfelder JR, Chen H, Sun C, Liu X, Zhang S, Li F, Liu C, Zhao J, Yi J. Comparative physiological and transcriptomic analyses illuminate common mechanisms by which silicon alleviates cadmium and arsenic toxicity in rice seedlings. J Environ Sci (China) 2021; 109:88-101. [PMID: 34607677 DOI: 10.1016/j.jes.2021.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 06/13/2023]
Abstract
The inessential heavy metal/loids cadmium (Cd) and arsenic (As), which often co-occur in polluted paddy soils, are toxic to rice. Silicon (Si) treatment is known to reduce Cd and As toxicity in rice plants. To better understand the shared mechanisms by which Si alleviates Cd and As stress, rice seedlings were hydroponically exposed to Cd or As, then treated with Si. The addition of Si significantly ameliorated the inhibitory effects of Cd and As on rice seedling growth. Si supplementation decreased Cd and As translocation from roots to shoots, and significantly reduced Cd- and As-induced reactive oxygen species generation in rice seedlings. Transcriptomics analyses were conducted to elucidate molecular mechanisms underlying the Si-mediated response to Cd or As stress in rice. The expression patterns of the differentially expressed genes in Cd- or As-stressed rice roots with and without Si application were compared. The transcriptomes of the Cd- and As-stressed rice roots were similarly and profoundly reshaped by Si application, suggesting that Si may play a fundamental, active role in plant defense against heavy metal/loid stresses by modulating whole genome expression. We also identified two novel genes, Os01g0524500 and Os06g0514800, encoding a myeloblastosis (MYB) transcription factor and a thionin, respectively, which may be candidate targets for Si to alleviate Cd and As stress in rice, as well as for the generation of Cd- and/or As-resistant plants. This study provides valuable resources for further clarification of the shared molecular mechanisms underlying the Si-mediated alleviation of Cd and As toxicity in rice.
Collapse
Affiliation(s)
- Huiqiong Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomei Gong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Huamei Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chongjun Sun
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiulian Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuchang Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fangbai Li
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|