1
|
Sasaki S, Iwamoto H, Takashima K, Toyota M, Higashitani A, Kaneko T. Induction of systemic resistance through calcium signaling in Arabidopsis exposed to air plasma-generated dinitrogen pentoxide. PLoS One 2025; 20:e0318757. [PMID: 39913392 PMCID: PMC11801567 DOI: 10.1371/journal.pone.0318757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Plasma technology, which can instantaneously transform air molecules into reactive species stimulating plants, potentially contributes to developing a sustainable agricultural system with high productivity and low environmental impact. In fact, plant immunity activation by exposure to a reactive gas mainly consisting of dinitrogen pentoxide (N2O5) was recently discovered, while physiological responses to N2O5 are rarely known. Here, we demonstrate early (within 10 min) physiological responses to N2O5 gas in Arabidopsis. Exposure to N2O5 gas induced an increase in cytosolic Ca2+ concentration within seconds in directly exposed leaves, followed by systemic long-distance Ca2+-based signaling within tens of seconds. In addition, jasmonic acid (JA)-related gene expression was induced within 10 minutes, and a significant upregulation of the defense-related gene PDF1.2 was observed after 1 day of exposure to N2O5 gas. These systemic resistant responses to N2O5 were found unique among air-plasma-generated species such as ozone (O3) and nitric oxide (NO)/nitrogen dioxide (NO2). Our results provide new insights into understanding of plant physiological responses to air-derived reactive species, in addition to facilitating the development of plasma applications in agriculture.
Collapse
Affiliation(s)
- Shota Sasaki
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hiroto Iwamoto
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
- College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei, China
| | | | - Toshiro Kaneko
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Kolbert Z, Barroso JB, Boscari A, Corpas FJ, Gupta KJ, Hancock JT, Lindermayr C, Palma JM, Petřivalský M, Wendehenne D, Loake GJ. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. THE NEW PHYTOLOGIST 2024; 244:786-797. [PMID: 39223868 DOI: 10.1111/nph.20085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root-shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726, Szeged, Hungary
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, E-23071, Jaén, Spain
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d'Azur, CNRS 7254, 400 route des Chappes, BP 167, 06903, Sophia Antipolis, France
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | | | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Christian Lindermayr
- Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Munich/Neuherberg, Germany
| | - José Manuel Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - David Wendehenne
- Agroécologie, INRAE, Institut Agro Dijon, Univiversité de Bourgogne, 21000, Dijon, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
3
|
Takahashi M, Sakamoto A, Morikawa H. Atmospheric nitrogen dioxide suppresses the activity of phytochrome interacting factor 4 to suppress hypocotyl elongation. PLANTA 2024; 260:42. [PMID: 38958765 PMCID: PMC11222245 DOI: 10.1007/s00425-024-04468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.
Collapse
Affiliation(s)
- Misa Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan.
| | - Atsushi Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| | - Hiromichi Morikawa
- School of Science, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
4
|
Liang Y, Li D, Sheng Q, Zhu Z. Exogenous Salicylic Acid Alleviates NO 2 Damage by Maintaining Cell Stability and Physiological Metabolism in Bougainvillea × buttiana 'Miss Manila' Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3283. [PMID: 37765447 PMCID: PMC10535129 DOI: 10.3390/plants12183283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Exogenous substances can alleviate plant damage under adverse conditions. In order to explore whether different concentrations of salicylic acid (SA) can play a role in the resistance of Bougainvillea × buttiana 'Miss Manila' to nitrogen dioxide (NO2) stress and the relevant mechanisms of their effects, different concentrations of SA were applied locally under the control experiment condition of 4.0 μL·L-1 NO2, and the role of SA in alleviating injury was studied. The findings noted a significant increase in metabolic adaptations and antioxidant enzyme activities following 0.25-0.75 mM SA application (p < 0.05), except 1 mM. Superoxide dismutase (SOD) and catalase (CAT) in particular increased by 21.88% and 59.71%, respectively. Such an increase led to effective control of the reduction in photosynthetic pigments and the photosynthetic rate and protection of the structural stability of chloroplasts and other organelles. In addition, the activity of nitrate reductase (NR) increased by 83.85%, and the content of nitrate nitrogen (NO3--N) decreased by 29.23% in nitrogen metabolism. Concurrently, a principal component analysis (PCA) and a membership function analysis further indicated that 0.75 mM SA provided the most notable improvement in NO2 resistance among the different gradients. These findings suggest that 0.25-0.75 mM SA can relieve the stress at 4 μL·L-1 NO2 injury by effectively improving the antioxidant enzyme activity and nitrogen metabolizing enzyme activity, protecting the photosynthetic system and cell structure, but 1 mM SA had the opposite effect. In the future, the specific reasons for inhibition of SA at high concentrations and the comprehensive effects of the application of other exogenous compounds should be further studied.
Collapse
Affiliation(s)
- Yuxiang Liang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Dalu Li
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Gámez-Arcas S, Baroja-Fernández E, García-Gómez P, Muñoz FJ, Almagro G, Bahaji A, Sánchez-López ÁM, Pozueta-Romero J. Action mechanisms of small microbial volatile compounds in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:498-510. [PMID: 34687197 DOI: 10.1093/jxb/erab463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/21/2021] [Indexed: 05/22/2023]
Abstract
Microorganisms communicate with plants by exchanging chemical signals throughout the phytosphere. Before direct contact with plants occurs, beneficial microorganisms emit a plethora of volatile compounds that promote plant growth and photosynthesis as well as developmental, metabolic, transcriptional, and proteomic changes in plants. These compounds can also induce systemic drought tolerance and improve water and nutrient acquisition. Recent studies have shown that this capacity is not restricted to beneficial microbes; it also extends to phytopathogens. Plant responses to microbial volatile compounds have frequently been associated with volatile organic compounds with molecular masses ranging between ~ 45Da and 300Da. However, microorganisms also release a limited number of volatile compounds with molecular masses of less than ~45Da that react with proteins and/or act as signaling molecules. Some of these compounds promote photosynthesis and growth when exogenously applied in low concentrations. Recently, evidence has shown that small volatile compounds are important determinants of plant responses to microbial volatile emissions. However, the regulatory mechanisms involved in these responses remain poorly understood. This review summarizes current knowledge of biochemical and molecular mechanisms involved in plant growth, development, and metabolic responses to small microbial volatile compounds.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada (CEBAS-CSIC), Campus Universitario de Espinardo, Espinardo, 30100 Murcia, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' (IHSM-UMA-CSIC), Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| |
Collapse
|
6
|
Xu P, Wang Y, Sun F, Wu R, Du H, Wang Y, Jiang L, Wu X, Wu X, Yang L, Xing N, Hu Y, Wang B, Huang Y, Tao Y, Gao Q, Liang C, Li Y, Lu Z, Li G. Long-read genome assembly and genetic architecture of fruit shape in the bottle gourd. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:956-968. [PMID: 34043857 DOI: 10.1111/tpj.15358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The bottle gourd (Lagenaria siceraria, Cucurbitaceae) is an important horticultural crop exhibiting tremendous diversity in fruit shape. The genetic architecture of fruit shape variation in this species remains unknown. We assembled a long-read-based, high-quality reference genome (ZAAS_Lsic_2.0) with a contig N50 value over 390-fold greater than the existing reference genomes. We then focused on dissection of fruit shape using a one-step geometric morphometrics-based functional mapping approach. We identified 11 quantitative trait loci (QTLs) responsible for fruit shape (fsQTLs), reconstructed their visible effects and revealed syntenic relationships of bottle gourd fsQTLs with 12 fsQTLs previously reported in cucumber, melon or watermelon. Homologs of several well-known and newly identified fruit shape genes, including SUN, OFP, AP2 and auxin transporters, were comapped with bottle gourd QTLs.
Collapse
Affiliation(s)
- Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Fengshuo Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, USA
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Wang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Nailin Xing
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yaowen Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yunping Huang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ye Tao
- Biozeron Biotechnology Co., Ltd, Shanghai, China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanwei Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Yue W, Jiechen W, Huihui Z, Dandan G, Guoqiang H, Guangyu S. A intermediate concentration of atmospheric nitrogen dioxide enhances PSII activity and inhibits PSI activity in expanded leaves of tobacco seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111844. [PMID: 33383337 DOI: 10.1016/j.ecoenv.2020.111844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen dioxide (NO2) is a major air pollutant that affects plant growth, development and yields. Previous studies have found that atmospheric NO2 changes plant photosynthesis in a concentration-dependent manner. Low concentrations of NO2 (4.0 μL L-1) can increase photosynthetic rates, while high concentrations of NO2 (16.0 μL L-1) can have an inhibitory effect. However, the specific effects of a critical intermediate concentration of NO2 on the photosynthetic apparatus of plants has remained unknown. Therefore, in this study, tobacco seedlings at three-leaf ages were fumigated with a intermediate concentration of 8.0 μL L-1 NO2 for 15 days to determine the effects on leaf weight, leaf number per plant, chlorophyll content, net photosynthetic rate, the reaction center activity of photosystems I and II (PSI and PSII, respectively) and core protein gene expression (PsbA and PsaA). Fumigation with 8.0 μL L-1 NO2 increased the number of leaves per plant and the weight of leaves, and the leaves became dark green and curly after 10 days of fumigation. During NO2 fumigation for 15 days, the chlorophyll content, PSII maximum photochemical efficiency (Fv/Fm), electron transfer rate (ETR) and non-photochemical quenching (NPQ) increased most in the oldest leaves (Lmax leaves), but decreased PSI activity (∆I/Io). The Fv/Fm, ETR and NPQ in the youngest leaves (Lmin leaves) were lower than those of Lmax leaves, but the actual photochemical efficiency (ΦPSII) of PSII increased most and ∆I/Io was the highest in these samples. The Fv/Fm, ETR, NPQ and ΦPSII in the leaves at the middle leaf age (Lmid leaves) were lower than those of Lmin and Lmax leaves, but the relative fluorescence intensity of point L (VL) and the relative fluorescence intensity of point K (VK) decreased the most in these samples. Thus, this critical concentration of atmospheric NO2 increased the activity of PSII and inhibited PSI activity in expanded leaves of tobacco seedlings.
Collapse
Affiliation(s)
- Wang Yue
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wang Jiechen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhang Huihui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guo Dandan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - He Guoqiang
- Mudanjang Institute of Tobacco Science, Harbin, China
| | - Sun Guangyu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
9
|
Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L.) root. Sci Rep 2020; 10:16509. [PMID: 33020554 PMCID: PMC7536229 DOI: 10.1038/s41598-020-73613-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
Flooding periods, as one probable consequence of climate change, will lead more frequently to plant hypoxic stress. Hypoxia sensing and signaling in the root, as the first organ encountering low oxygen, is therefore crucial for plant survival under flooding. Nitric oxide has been shown to be one of the main players involved in hypoxia signaling through the regulation of ERFVII transcription factors stability. Using SNP as NO donor, we investigated the NO-responsive genes, which showed a significant response to hypoxia. We identified 395 genes being differentially regulated under both hypoxia and SNP-treatment. Among them, 251 genes showed up- or down-regulation under both conditions which were used for further biological analysis. Functional classification of these genes showed that they belong to different biological categories such as primary carbon and nitrogen metabolism (e.g. glycolysis, fermentation, protein and amino acid metabolism), nutrient and metabolites transport, redox homeostasis, hormone metabolism, regulation of transcription as well as response to biotic and abiotic stresses. Our data shed light on the NO-mediated gene expression modulation under hypoxia and provides potential targets playing a role in hypoxia tolerance. These genes are interesting candidates for further investigating their role in hypoxia signaling and survival.
Collapse
|
10
|
García-Gómez P, Bahaji A, Gámez-Arcas S, Muñoz FJ, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, Ameztoy K, De Diego N, Ugena L, Spíchal L, Doležal K, Hajirezaei MR, Romero LC, García I, Pozueta-Romero J. Volatiles from the fungal phytopathogen Penicillium aurantiogriseum modulate root metabolism and architecture through proteome resetting. PLANT, CELL & ENVIRONMENT 2020; 43:2551-2570. [PMID: 32515071 DOI: 10.1111/pce.13817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 05/19/2023]
Abstract
Volatile compounds (VCs) emitted by the fungal phytopathogen Penicillium aurantiogriseum promote root growth and developmental changes in Arabidopsis. Here we characterised the metabolic and molecular responses of roots to fungal volatiles. Proteomic analyses revealed that these compounds reduce the levels of aquaporins, the iron carrier IRT1 and apoplastic peroxidases. Fungal VCs also increased the levels of enzymes involved in the production of mevalonate (MVA)-derived isoprenoids, nitrogen assimilation and conversion of methionine to ethylene and cyanide. Consistently, fungal VC-treated roots accumulated high levels of hydrogen peroxide (H2 O2 ), MVA-derived cytokinins, ethylene, cyanide and long-distance nitrogen transport amino acids. qRT-PCR analyses showed that many proteins differentially expressed by fungal VCs are encoded by VC non-responsive genes. Expression patterns of hormone reporters and developmental characterisation of mutants provided evidence for the involvement of cyanide scavenging and enhanced auxin, ethylene, cytokinin and H2 O2 signalling in the root architecture changes promoted by fungal VCs. Our findings show that VCs from P. aurantiogriseum modify root metabolism and architecture, and improve nutrient and water use efficiencies through transcriptionally and non-transcriptionally regulated proteome resetting mechanisms. Some of these mechanisms are subject to long-distance regulation by photosynthesis and differ from those triggered by VCs emitted by beneficial microorganisms.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| |
Collapse
|
11
|
Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, Ugena L, Spíchal L, Doležal K, Kaneko K, Mitsui T, Cejudo FJ, Pozueta-Romero J. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:2627-2644. [PMID: 31222760 DOI: 10.1111/pce.13601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 05/22/2023]
Abstract
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.
Collapse
Affiliation(s)
- Kinia Ameztoy
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Kentaro Kaneko
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| |
Collapse
|
12
|
Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4521-4537. [PMID: 31245808 PMCID: PMC6736386 DOI: 10.1093/jxb/erz249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
To investigate the effect of high atmospheric NO concentrations on crop plants and the role of phytoglobins under these conditions, we performed a long-term study on barley 'Golden Promise' wild type (WT), class 1 phytoglobin knockdown (HvPgb1.1-) and class 1 phytoglobin overexpression (HvPgb1.1+) lines. Plants were cultivated with nitrogen-free nutrient solution during the entire growth period and were fumigated with different NO concentration (ambient, 800, 1500, and 3000 ppb). Analysis of fresh weight, stem number, chlorophyll content, and effective quantum yield of PSII showed that NO fumigation promoted plant growth and tillering significantly in the HvPgb1.1+ line. After 80 d of NO fumigation, dry matter weight, spikes number, kernel number, and plant kernel weight were significantly increased in HvPgb1.1+ plants with increasing NO concentration. In contrast, yield decreased in WT and HvPgb1.1- plants the higher the NO level. Application of atmospheric 15NO and 15NO2 demonstrated NO specificity of phytoglobins. 15N from 15NO could be detected in RNA, DNA, and proteins of barley leaves and the 15N levels were significantly higher in HvPgb1.1+ plants in comparison with HvPgb1.1- and WT plants. Our results demonstrate that overexpression of phytoglobins allows plants to more efficiently use atmospheric NO as N source.
Collapse
Affiliation(s)
- Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Correspondence:
| |
Collapse
|
13
|
Takahashi M, Morikawa H. Nitrogen Dioxide at Ambient Concentrations Induces Nitration and Degradation of PYR/PYL/RCAR Receptors to Stimulate Plant Growth: A Hypothetical Model. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8070198. [PMID: 31262027 PMCID: PMC6681506 DOI: 10.3390/plants8070198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
Exposing Arabidopsis thaliana (Arabidopsis) seedlings fed with soil nitrogen to 10-50 ppb nitrogen dioxide (NO2) for several weeks stimulated the uptake of major elements, photosynthesis, and cellular metabolisms to more than double the biomass of shoot, total leaf area and contents of N, C P, K, S, Ca and Mg per shoot relative to non-exposed control seedlings. The 15N/14N ratio analysis by mass spectrometry revealed that N derived from NO2 (NO2-N) comprised < 5% of the total plant N, showing that the contribution of NO2-N as N source was minor. Moreover, histological analysis showed that leaf size and biomass were increased upon NO2 treatment, and that these increases were attributable to leaf age-dependent enhancement of cell proliferation and enlargement. Thus, NO2 may act as a plant growth signal rather than an N source. Exposure of Arabidopsis leaves to 40 ppm NO2 induced virtually exclusive nitration of PsbO and PsbP proteins (a high concentration of NO2 was used). The PMF analysis identified the ninth tyrosine residue of PsbO1 (9Tyr) as a nitration site. 9Tyr of PsbO1 was exclusively nitrated after incubation of the thylakoid membranes with a buffer containing NO2 and NO2- or a buffer containing NO2- alone. Nitration was catalyzed by illumination and repressed by photosystem II (PSII) electron transport inhibitors, and decreased oxygen evolution. Thus, protein tyrosine nitration altered (downregulated) the physiological function of cellular proteins of Arabidopsis leaves. This indicates that NO2-induced protein tyrosine nitration may stimulate plant growth. We hypothesized that atmospheric NO2 at ambient concentrations may induce tyrosine nitration of PYR/PYL/RCAR receptors in Arabidopsis leaves, followed by degradation of PYR/PYL/RCAR, upregulation of target of rapamycin (TOR) regulatory complexes, and stimulation of plant growth.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
14
|
García-Gómez P, Almagro G, Sánchez-López ÁM, Bahaji A, Ameztoy K, Ricarte-Bermejo A, Baslam M, Antolín MC, Urdiain A, López-Belchi MD, López-Gómez P, Morán JF, Garrido J, Muñoz FJ, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds other than CO 2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:1729-1746. [PMID: 30480826 DOI: 10.1111/pce.13490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 05/23/2023]
Abstract
A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2 . Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the "box-in-box" system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Niigata University, Niigata, 950-2181, Japan
| | - María Carmen Antolín
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - Amadeo Urdiain
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - María Dolores López-Belchi
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Departamento de Producción Vegetal, Universidad de Concepción, Avenue Vicente Méndez 595, Chillán, Chile
| | - Pedro López-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - José Fernando Morán
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Julián Garrido
- Departamento de Ciencias, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
- Institute for Advanced Materials, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| |
Collapse
|
15
|
Atmospheric Nitrogen Dioxide Improves Photosynthesis in Mulberry Leaves via Effective Utilization of Excess Absorbed Light Energy. FORESTS 2019. [DOI: 10.3390/f10040312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrogen dioxide (NO2) is recognized as a toxic gaseous air pollutant. However, atmospheric NO2 can be absorbed by plant leaves and subsequently participate in plant nitrogen metabolism. The metabolism of atmospheric NO2 utilizes and consumes the light energy that leaves absorb. As such, it remains unclear whether the consumption of photosynthetic energy through nitrogen metabolism can decrease the photosynthetic capacity of plant leaves or not. In this study, we fumigated mulberry (Morus alba L.) plants with 4 μL·L−1 NO2 and analyzed the distribution of light energy absorbed by plants in NO2 metabolism using gas exchange and chlorophyll a fluorescence technology, as well as biochemical methods. NO2 fumigation enhanced the nitrogen metabolism of mulberry leaves, improved the photorespiration rate, and consumed excess light energy to protect the photosynthetic apparatus. Additionally, the excess light energy absorbed by the photosystem II reaction center in leaves of mulberry was dissipated in the form of heat dissipation. Thus, light energy was absorbed more efficiently in photosynthetic carbon assimilation in mulberry plants fumigated with 4 μL·L−1 NO2, which in turn increased the photosynthetic efficiency of mulberry leaves.
Collapse
|
16
|
Takahashi M, Arimura GI, Morikawa H. Dual nitrogen species involved in foliar uptake of nitrogen dioxide in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2019; 14:e1582263. [PMID: 30810449 PMCID: PMC6512919 DOI: 10.1080/15592324.2019.1582263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Foliar uptake of nitrogen dioxide (NO2) is governed by its reactive absorption mechanism, by which NO2 molecules diffuse through cell wall layers and simultaneously react with apoplastic ascorbate to form nitrous acid, which freely diffuses across plasmalemma. However, whether free diffusion of nitrous acid is the sole mechanism of foliar uptake of NO2 remains unknown. The involvement of ammonia-inhibitable nitrite transporters in the foliar uptake of NO2, as reported in nitrite transport in Arabidopsis roots, is also unknown. In this study, we treated Arabidopsis thaliana leaves with methionine sulfoximine (MSX) to inhibit incorporation of ammonia into glutamate and exposed them to 4 ppm 15N-labeled NO2 for 4 h in light followed by quantification of total nitrogen, reduced nitrogen, and ammonia nitrogen derived from NO2 using mass spectrometry and capillary electrophoresis. The total nitrogen derived from NO2 in leaves without MSX treatment was 587.0 nmol NO2/g fresh weight, of which more than 65% was recovered as reduced nitrogen. In comparison, MSX treatment decreased the total nitrogen and reduced nitrogen derived from NO2 by half. Thus, half of the foliar uptake of NO2 is not attributable to passive diffusion of nitrous acid but to ammonia-inhibitable nitrite transport. Foliar uptake of NO2 is mediated by a dual mechanism in A. thaliana: nitrous acid-free diffusion and nitrite transporter-mediated transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Gen-Ichiro Arimura
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
17
|
Takahashi M, Morikawa H. Nitrate, but not nitrite, derived from nitrogen dioxide accumulates in Arabidopsis leaves following exposure to 15N-labeled nitrogen dioxide. PLANT SIGNALING & BEHAVIOR 2019; 14:1559579. [PMID: 30601096 PMCID: PMC6373841 DOI: 10.1080/15592324.2018.1559579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
It is known that when plant leaves are exposed to exogenously applied nitrogen dioxide (NO2), nitrogen derived from NO2 is reduced to amino acid nitrogen. However, whether this is the sole metabolic fate of exogenously applied NO2 is unclear. In this study, Arabidopsis leaves were exposed to 4 ppm 15N-labeled NO2 for 4 h in light, followed by capillary ion analysis and elemental analysis-mass spectrometry with an elemental analyzer connected directly to a mass spectrometer. We found that leaf cells exposed to 15N-labeled NO2 accumulated a large amount of 15N-labeled nitrate. Neither 15N-labeled nitrite nor endogenous nitrite was present in exposed leaves. It is likely that exogenously applied NO2 is first converted to nitrite, and that nitrite is oxidized to nitrate in Arabidopsis leaf cells. The complete disappearance of nitrite derived from exogenously applied NO2 and endogenous nitrite supports this mechanism.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
18
|
Correa-Aragunde N, Foresi N, Del Castello F, Lamattina L. A singular nitric oxide synthase with a globin domain found in Synechococcus PCC 7335 mobilizes N from arginine to nitrate. Sci Rep 2018; 8:12505. [PMID: 30131503 PMCID: PMC6104048 DOI: 10.1038/s41598-018-30889-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
The enzyme nitric oxide synthase (NOS) oxidizes L-arginine to NO and citrulline. In this work, we characterise the NOS from the cyanobacteria Synechococcus PCC 7335 (SyNOS). SyNOS possesses a canonical mammalian NOS architecture consisting of oxygenase and reductase domains. In addition, SyNOS possesses an unusual globin domain at the N-terminus. Recombinant SyNOS expressed in bacteria is active, and its activity is suppressed by the NOS inhibitor L-NAME. SyNOS allows E. coli to grow in minimum media containing L-arginine as the sole N source, and has a higher growth rate during N deficiency. SyNOS is expressed in Synechococcus PCC 7335 where NO generation is dependent on L-arginine concentration. The growth of Synechococcus is dramatically inhibited by L-NAME, suggesting that SyNOS is essential for this cyanobacterium. Addition of arginine in Synechococcus increases the phycoerythrin content, an N reservoir. The role of the novel globin domain in SyNOS is discussed as an evolutionary advantage, conferring new functional capabilities for N metabolism.
Collapse
Affiliation(s)
- Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, CC 1245, 7600, Mar del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, CC 1245, 7600, Mar del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, CC 1245, 7600, Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, CC 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
19
|
Takahashi M, Shigeto J, Sakamoto A, Morikawa H. Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1376157. [PMID: 28895781 PMCID: PMC5647944 DOI: 10.1080/15592324.2017.1376157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exposure of intact Arabidopsis leaves to 40 ppm nitrogen dioxide (NO2) in light resulted almost exclusively in nitration of PsbO1, PsbO2, and PsbP1 of photosystem II (PSII), with minor nitration of four non-PS II proteins, including peroxiredoxin II E, as reported previously. Our previous findings that light-triggered selective nitration of PsbO1 decreased oxygen evolution and that inhibition of photoelectric electron transport inhibited nitration of PsbO1 implied that the nitratable tyrosine residue of PsbO1 is redox-active. However, whether the nitratable tyrosine residues of PsbO2 and PsbP1 are redox-active is unknown. In this study, we determined the oxygen evolution and maximal photochemical efficiency of PSII in intact Arabidopsis leaves following exposure to 40 ppm NO2 in light and found that these parameters were decreased to 60 and 70% of the non-exposed control, respectively. Because PsbO1, PsbO2, and PsbP1 accounted for > 80% of anti-3-nitrotyrosine antibody signal intensities, observed decreases in the oxygen evolution and maximal photochemical efficiency of PSII were mainly attributable to nitration of the tyrosine residues of these PSII proteins. Thus, it is postulated that nitratable tyrosine residues of PsbO2 and PsbP1 are redox-active, as in the case of PsbO1. A new hypothetical model is proposed.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- CONTACT Misa Takahashi , Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8526, Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
20
|
Van Dingenen J, Antoniou C, Filippou P, Pollier J, Gonzalez N, Dhondt S, Goossens A, Fotopoulos V, Inzé D. Strobilurins as growth-promoting compounds: how Stroby regulates Arabidopsis leaf growth. PLANT, CELL & ENVIRONMENT 2017; 40:1748-1760. [PMID: 28444690 DOI: 10.1111/pce.12980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Strobilurins are an important class of agrochemical fungicides used throughout the world on a wide variety of crops as protection against fungal pathogens. In addition to this protective role, they are reported to also positively influence plant physiology. In this study, we analysed the effect of Stroby® WG, a commercially available fungicide consisting of 50% (w/w) kresoxim-methyl (KM) as active strobilurin compound, on Arabidopsis leaf growth. Treatment of seedlings with Stroby resulted in larger leaves due to an increase in cell number. Transcriptome analysis of Stroby-treated rosettes demonstrated an increased expression of genes involved in redox homeostasis, iron metabolism and sugar transport. Stroby treatment strongly induced the expression of the subgroup Ib basic helix-loop-helix (bHLH) transcription factors, which have a role in iron homeostasis under iron-limiting conditions. Single loss-of-function mutants of three bHLHs and their triple bhlh039, bhlh100 and bhlh101 mutant did not respond to Stroby treatment. Although iron and sucrose content was not affected, nitric oxide (NO) levels and nitrate reductase (NR) activity were significantly increased in Stroby-treated rosettes as compared with control plants. In conclusion, we suggest that the Stroby-mediated effects on growth depend on the increased expression of the subgroup Ib bHLHs and higher NO levels.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, PO Box 50329, 3603, Limassol, Cyprus
| | - Panagiota Filippou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, PO Box 50329, 3603, Limassol, Cyprus
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, PO Box 50329, 3603, Limassol, Cyprus
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| |
Collapse
|
21
|
Wu Y, Gong W, Yang W. Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean. Sci Rep 2017; 7:9259. [PMID: 28835715 PMCID: PMC5569092 DOI: 10.1038/s41598-017-10026-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/02/2017] [Indexed: 11/23/2022] Open
Abstract
To gain more insight into the physiological function of shade and how shade affects leaf size, we investigated the growth, leaf anatomical structure, hormones and genes expressions in soybean. Soybean seeds were sown in plastic pots and were allowed to germinate and grow for 30 days under shade or full sunlight conditions. Shade treated plants showed significantly increase on stem length and petiole length, and decrease on stem diameters, shoot biomass and its partition to leaf also were significantly lower than that in full sunlight. Smaller and thinner on shade treated leaves than corresponding leaves on full sunlight plants. The decreased leaf size caused by shade was largely attributable to cell proliferation in young leaves and both cell proliferation and enlargement in old leaves. Shade induced the expression of a set of genes related to cell proliferation and/or enlargement, but depended on the developmental stage of leaf. Shade significantly increased the auxin and gibberellin content, and significantly decreased the cytokinin content in young, middle and old leaves. Taken together, these results indicated that shade inhibited leaf size by controlling cell proliferation and enlargement, auxin, gibberellin and cytokinin may play important roles in this process.
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China
| | - Wanzhuo Gong
- Characteristic Crops Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, P.R. China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China.
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China.
| |
Collapse
|
22
|
Takahashi M, Shigeto J, Sakamoto A, Morikawa H. Selective nitration of PsbO1 inhibits oxygen evolution from isolated Arabidopsis thylakoid membranes. PLANT SIGNALING & BEHAVIOR 2017; 12:e1304342. [PMID: 28323554 PMCID: PMC5437824 DOI: 10.1080/15592324.2017.1304342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 05/19/2023]
Abstract
Treatment of isolated Arabidopsis thaliana thylakoid membranes with nitrogen dioxide (NO2) induces selective nitration of the tyrosine residue at the ninth amino acid (9Tyr) of PsbO1. This selective nitration is triggered by light and is inhibited by photosynthetic electron transport inhibitors. Therefore, we postulated that, similar to 161Tyr of D1 (YZ), 9Tyr of PsbO1 is redox active and is selectively oxidized by photosynthetic electron transport in response to illumination to a tyrosyl radical that is highly susceptible to nitration. This tyrosyl radical may combine rapidly at diffusion-controlled rates with NO2 to form 3-nitrotyrosine. If this postulation is correct, the nitration of 9Tyr of PsbO1 should decrease oxygen evolution activity. We investigated the effects of PsbO1 nitration on oxygen evolution from isolated thylakoid membranes, and found that nitration decreased oxygen evolution to ≥ 0% of the control. Oxygen evolution and nitration were significantly negatively correlated. This finding is consistent with redox active properties of the 9Tyr gene of PsbO1, and suggests that PsbO1 9Tyr acts as an electron relay, such as YZ in the photosystem II oxygenic electron transport chain.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- CONTACT Misa Takahashi , Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama,Higashi-Hiroshima, Hiroshima 739–8526, Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
23
|
Kasten D, Durner J, Gaupels F. Gas Alert: The NO 2 Pitfall during NO Fumigation of Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:85. [PMID: 28197162 PMCID: PMC5281616 DOI: 10.3389/fpls.2017.00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 05/06/2023]
Affiliation(s)
| | | | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| |
Collapse
|
24
|
Kuruthukulangarakoola GT, Zhang J, Albert A, Winkler B, Lang H, Buegger F, Gaupels F, Heller W, Michalke B, Sarioglu H, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Nitric oxide-fixation by non-symbiotic haemoglobin proteins in Arabidopsis thaliana under N-limited conditions. PLANT, CELL & ENVIRONMENT 2017; 40:36-50. [PMID: 27245884 DOI: 10.1111/pce.12773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is an important signalling molecule that is involved in many different physiological processes in plants. Here, we report about a NO-fixing mechanism in Arabidopsis, which allows the fixation of atmospheric NO into nitrogen metabolism. We fumigated Arabidopsis plants cultivated in soil or as hydroponic cultures during the whole growing period with up to 3 ppmv of NO gas. Transcriptomic, proteomic and metabolomic analyses were used to identify non-symbiotic haemoglobin proteins as key components of the NO-fixing process. Overexpressing non-symbiotic haemoglobin 1 or 2 genes resulted in fourfold higher nitrate levels in these plants compared with NO-treated wild-type. Correspondingly, rosettes size and weight, vegetative shoot thickness and seed yield were 25, 40, 30, and 50% higher, respectively, than in wild-type plants. Fumigation with 250 ppbv 15 NO confirmed the importance of non-symbiotic haemoglobin 1 and 2 for the NO-fixation pathway, and we calculated a daily uptake for non-symbiotic haemoglobin 2 overexpressing plants of 250 mg N/kg dry weight. This mechanism is probably important under conditions with limited N supply via the soil. Moreover, the plant-based NO uptake lowers the concentration of insanitary atmospheric NOx, and in this context, NO-fixation can be beneficial to air quality.
Collapse
Affiliation(s)
| | - Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Hans Lang
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Germany
| | - Franz Buegger
- Institute of Soil Ecology, Helmholtz Zentrum München, Germany
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Werner Heller
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Germany
| | - Hakan Sarioglu
- Research Unit Protein Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg/Munich, Germany
| | | | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
25
|
Takahashi M, Shigeto J, Sakamoto A, Morikawa H. Light-triggered selective nitration of PsbO1 in isolated Arabidopsis thylakoid membranes is inhibited by photosynthetic electron transport inhibitors. PLANT SIGNALING & BEHAVIOR 2016; 11:e1263413. [PMID: 27901641 PMCID: PMC5225929 DOI: 10.1080/15592324.2016.1263413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PsbO1 is exclusively nitrated when isolated thylakoid membranes are incubated in a buffer bubbled with nitrogen dioxide (NO2) containing NO2 and nitrite. NO2 is the primary intermediate for this selective nitration. Isolated thylakoid membranes were incubated in NO2-bubbled buffer at 25°C in the light or dark. Protein analysis confirmed the selective nitration of PsbO1. Illumination was found to be essential in PsbO1 nitration. A nitration mechanism whereby nitratable tyrosine residues of PsbO1 are, prior to nitration, selectively photo-oxidized by photosynthetic electron transport to tyrosyl radicals to combine with NO2 to form 3-nitrotyrosine was hypothesized. We tested the electron transport inhibitors 3-(3,4-dichlorophenyl)-1,1- dimethylurea, sodium azide, and 1,5-diphenylcarbazide and found distinct inhibition of nitration of PsbO1. We also propose a possible nitration mechanism.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- CONTACT Misa Takahashi , Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1–3–1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
26
|
Roose JL, Frankel LK, Mummadisetti MP, Bricker TM. The extrinsic proteins of photosystem II: update. PLANTA 2016; 243:889-908. [PMID: 26759350 DOI: 10.1007/s00425-015-2462-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/25/2015] [Indexed: 05/24/2023]
Abstract
Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II. This review is an update of the last major review on the extrinsic proteins of Photosystem II (Bricker et al., Biochemistry 31:4623-4628 2012). In this report, we will examine advances in our understanding of the structure and function of these components. These proteins include PsbO, which is uniformly present in all oxygenic organisms, the PsbU, PsbV, CyanoQ, and CyanoP proteins, found in the cyanobacteria, and the PsbP, PsbQ and PsbR proteins, found in the green plant lineage. These proteins serve to stabilize the Mn4CaO5 cluster and optimize oxygen evolution at physiological calcium and chloride concentrations. The mechanisms used to perform these functions, however, remain poorly understood. Recently, important new findings have significantly advanced our understanding of the structures, locations and functions of these important subunits. We will discuss the biochemical, structural and genetic studies that have been used to elucidate the roles played by these proteins within the photosystem and their locations within the photosynthetic complex. Additionally, we will examine open questions needing to be addressed to provide a coherent picture of the role of these components within the photosystem.
Collapse
Affiliation(s)
- Johnna L Roose
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
27
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
28
|
|
29
|
Takahashi M, Shigeto J, Sakamoto A, Izumi S, Asada K, Morikawa H. Dual selective nitration in Arabidopsis: Almost exclusive nitration of PsbO and PsbP, and highly susceptible nitration of four non-PSII proteins, including peroxiredoxin II E. Electrophoresis 2015; 36:2569-78. [DOI: 10.1002/elps.201500145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 06/24/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| | - Kozi Asada
- Faculty of Engineering; Fukuyama University; Fukuyama Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Graduate School of Science, Hiroshima University; Hiroshima Japan
| |
Collapse
|
30
|
Takahashi M, Morikawa H. Kinematic evidence that atmospheric nitrogen dioxide increases the rates of cell proliferation and enlargement to stimulate leaf expansion in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1022011. [PMID: 26786010 PMCID: PMC4854335 DOI: 10.1080/15592324.2015.1022011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/18/2015] [Indexed: 06/05/2023]
Abstract
To elucidate the stimulation of leaf growth by atmospheric nitrogen dioxide (NO2), we performed a kinematic analysis of the eighth leaves of Arabidopsis thaliana (accession C24) plants grown for 17-35 days after sowing in the presence or absence of 50 ppb NO2 (designated +NO2 plants and -NO2 plants, respectively). We found that the peak and mean values of the relative rates of leaf expansion, cell division and cell expansion were always greater in +NO2 plants than in -NO2 plants. No evidence for prolonged duration was obtained. Thus, NO2 treatment increased the rates of both cell proliferation and enlargement to increase leaf size. Furthermore, a fold-change analysis showed that cell proliferation and enlargement differentially regulated NO2-induced leaf expansion.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| |
Collapse
|
31
|
Hu Y, Fernández V, Ma L. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide. FRONTIERS IN PLANT SCIENCE 2014; 5:360. [PMID: 25126090 PMCID: PMC4115617 DOI: 10.3389/fpls.2014.00360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/04/2014] [Indexed: 05/07/2023]
Abstract
While plant roots are specialized organs for the uptake and transport of water and nutrients, the absorption of gaseous or liquid mineral elements by aerial plant parts has been recognized since more than one century. Nitrogen (N) is an essential macronutrient which generally absorbed either as nitrate (NO(-) 3) or ammonium (NH(+) 4) by plant roots. Gaseous nitrogen pollutants like N dioxide (NO2) can also be absorbed by plant surfaces and assimilated via the NO(-) 3 assimilation pathway. The subsequent NO(-) 3 flux may induce or repress the expression of various NO(-) 3-responsive genes encoding for instance, the transmembrane transporters, NO(-) 3/NO(-) 2 (nitrite) reductase, or assimilatory enzymes involved in N metabolism. Based on the existing information, the aim of this review was to theoretically analyze the potential link between foliar NO2 absorption and N transport and metabolism. For such purpose, an overview of the state of knowledge on the NO(-) 3 transporter genes identified in leaves or shoots of various species and their roles for NO(-) 3 transport across the tonoplast and plasma membrane, in addition to the process of phloem loading is briefly provided. It is assumed that a NO2-induced accumulation of NO(-) 3/NO(-) 2 may alter the expression of such genes, hence linking transmembrane NO(-) 3 transporters and foliar uptake of NO2. It is likely that NRT1/NRT2 gene expression and species-dependent apoplastic buffer capacity may be also related to the species-specific foliar NO2 uptake process. It is concluded that further work focusing on the expression of NRT1 (NRT1.1, NRT1.7, NRT1.11, and NRT1.12), NRT2 (NRT2.1, NRT2.4, and NRT2.5) and chloride channel family genes (CLCa and CLCd) may help us elucidate the physiological and metabolic response of plants fumigated with NO2.
Collapse
Affiliation(s)
- Yanbo Hu
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Technical University of MadridMadrid, Spain
| | - Ling Ma
- School of Forestry, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
32
|
Takahashi M, Morikawa H. Differential responses of Arabidopsis thaliana accessions to atmospheric nitrogen dioxide at ambient concentrations. PLANT SIGNALING & BEHAVIOR 2014; 9:e28563. [PMID: 24675109 PMCID: PMC4161610 DOI: 10.4161/psb.28563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/17/2014] [Indexed: 05/29/2023]
Abstract
To better understand the response of plants to atmospheric nitrogen dioxide (NO2), we investigated biomass accumulation in 3 accessions of Arabidopsis thaliana: C24, Columbia (Col-0), and Landsberg erecta (Ler). Plants were grown in NO2-free air for 1 week after sowing, followed by 3 (Col-0 and Ler) to 4 (C24) weeks in air with or without NO 2 (10 or 50 ppb). NO2 treatment increased the biomass of all 3 accessions to varying extents. Treatment with 10 ppb NO2 increased shoot biomass in C24, Col-0, and Ler by 3.2-, 1.4-, and 2.3-fold, respectively, compared with control. Treatment with 50 ppb gave similar increases, except in C24 (2.7-fold). The physiological, evolutionary, and genetic significance of these results are discussed below.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| |
Collapse
|
33
|
Takahashi M, Morikawa H. Nitrogen dioxide is a positive regulator of plant growth. PLANT SIGNALING & BEHAVIOR 2014; 9:e28033. [PMID: 24525764 PMCID: PMC4091254 DOI: 10.4161/psb.28033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 01/29/2014] [Indexed: 05/19/2023]
Abstract
Atmospheric nitric oxide (NO) and nitrogen dioxide (NO₂) have long been recognized as either detrimental or beneficial for plant development. Recent research has established that NO is a phytohormone. Our present knowledge of the physiological role of NO₂ is incomplete. We do know, however, that exogenous NO₂ positively regulates the vegetative and reproductive growth of plants. We may therefore postulate that NO₂ is a positive growth regulator for plants. We are now in a position to coherently summarize what is known of NO₂ physiology; collated information on the topic is presented here.
Collapse
|
34
|
Takahashi M, Morikawa H. Nitrogen dioxide accelerates flowering without changing the number of leaves at flowering in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e970433. [PMID: 25482805 PMCID: PMC4623349 DOI: 10.4161/15592316.2014.970433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 05/19/2023]
Abstract
A negative correlation has consistently been reported between the change in flowering time and the change in leaf number at flowering in response to environmental stimuli, such as the application of exogenous compounds, cold temperature, day length and light quality treatments in Arabidopsis thaliana (Arabidopsis). However, we show here that the application of exogenous nitrogen dioxide (NO2) did not change the number of rosette leaves at flowering, but actually accelerated flowering in Arabidopsis. Furthermore, NO2 treatment was found to increase the rate of leaf appearance. Based on these results, reaching the maximum rosette leaf number earlier in response to NO2 treatment resulted in earlier flowering relative to controls.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
- Correspondence to: Misa Takahashi;
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| |
Collapse
|