1
|
Floc'h JB, Hamel C, Laterrière M, Tidemann B, St-Arnaud M, Hijri M. Inter-Kingdom Networks of Canola Microbiome Reveal Bradyrhizobium as Keystone Species and Underline the Importance of Bulk Soil in Microbial Studies to Enhance Canola Production. MICROBIAL ECOLOGY 2022; 84:1166-1181. [PMID: 34727198 DOI: 10.1007/s00248-021-01905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The subterranean microbiota of plants is of great importance for plant growth and health, as root-associated microbes can perform crucial ecological functions. As the microbial environment of roots is extremely diverse, identifying keystone microorganisms in plant roots, rhizosphere, and bulk soil is a necessary step towards understanding the network of influence within the microbial community associated with roots and enhancing its beneficial elements. To target these hot spots of microbial interaction, we used inter-kingdom network analysis on the canola growth phase of a long-term cropping system diversification experiment conducted at four locations in the Canadian Prairies. Our aims were to verify whether bacterial and fungal communities of canola roots, rhizosphere, and bulk soil are related and influenced by diversification of the crop rotation system; to determine whether there are common or specific core fungi and bacteria in the roots, rhizosphere, and bulk soil under canola grown in different environments and with different levels of cropping system diversification; and to identify hub taxa at the inter-kingdom level that could play an important ecological role in the microbiota of canola. Our results showed that fungi were influenced by crop diversification, which was not the case on bacteria. We found no core microbiota in canola roots but identified three core fungi in the rhizosphere, one core mycobiota in the bulk soil, and one core bacterium shared by the rhizosphere and bulk soil. We identified two bacterial and one fungal hub taxa in the inter-kingdom networks of the canola rhizosphere, and one bacterial and two fungal hub taxa in the bulk soil. Among these inter-kingdom hub taxa, Bradyrhizobium sp. and Mortierella sp. are particularly influential on the microbial community and the plant. To our knowledge, this is the first inter-kingdom network analysis utilized to identify hot spots of interaction in canola microbial communities.
Collapse
Affiliation(s)
- Jean-Baptiste Floc'h
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - Chantal Hamel
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - Breanne Tidemann
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada.
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| |
Collapse
|
2
|
Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I. Deep Soil Layers of Drought-Exposed Forests Harbor Poorly Known Bacterial and Fungal Communities. Front Microbiol 2021; 12:674160. [PMID: 34025630 PMCID: PMC8137989 DOI: 10.3389/fmicb.2021.674160] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Soil microorganisms such as bacteria and fungi play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of the soil microbiome to a depth of 2 m in Swiss drought-exposed forests of European beech and oaks on calcareous bedrock. We aimed to disentangle the effects of soil depth, tree (beech, oak), and substrate (soil, roots) on microbial abundance, diversity, and community structure. With increasing soil depth, organic carbon, nitrogen, and clay content decreased significantly. Similarly, fine root biomass, microbial biomass (DNA content, fungal abundance), and microbial alpha-diversity decreased and were consequently significantly related to these physicochemical parameters. In contrast, bacterial abundance tended to increase with soil depth, and the bacteria to fungi ratio increased significantly with greater depth. Tree species was only significantly related to the fungal Shannon index but not to the bacterial Shannon index. Microbial community analyses revealed that bacterial and fungal communities varied significantly across the soil layers, more strongly for bacteria than for fungi. Both communities were also significantly affected by tree species and substrate. In deep soil layers, poorly known bacterial taxa from Nitrospirae, Chloroflexi, Rokubacteria, Gemmatimonadetes, Firmicutes and GAL 15 were overrepresented. Furthermore, archaeal phyla such as Thaumarchaeota and Euryarchaeota were more abundant in subsoils than topsoils. Fungal taxa that were predominantly found in deep soil layers belong to the ectomycorrhizal Boletus luridus and Hydnum vesterholtii. Both taxa are reported for the first time in such deep soil layers. Saprotrophic fungal taxa predominantly recorded in deep soil layers were unknown species of Xylaria. Finally, our results show that the microbial community structure found in fine roots was well represented in the bulk soil. Overall, we recorded poorly known bacterial and archaeal phyla, as well as ectomycorrhizal fungi that were not previously known to colonize deep soil layers. Our study contributes to an integrated perspective on the vertical distribution of the soil microbiome at a fine spatial scale in drought-exposed forests.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lorenz Walthert
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roger Köchli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alexander Dharmarajah
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
3
|
Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada. FRONTIERS IN PLANT SCIENCE 2019; 10:643. [PMID: 31191571 PMCID: PMC6547044 DOI: 10.3389/fpls.2019.00643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Large-scale studies that examine the responses of ectomycorrhizal fungi across biogeographic gradients are necessary to assess their role in mediating current and predicted future alterations in forest ecosystem processes. We assessed the extent of environmental filtering on interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) ectomycorrhizal fungal communities across regional gradients in precipitation, temperature, and soil fertility in interior Douglas-fir dominated forests of western Canada. We also examined relationships between fine-root traits and mycorrhizal fungal exploration types by combining root and fungal trait measurements with next-generation sequencing. Temperature, precipitation, and soil C:N ratio affected fungal community dissimilarity and exploration type abundance but had no effect on α-diversity. Fungi with rhizomorphs (e.g., Piloderma sp.) or proteolytic abilities (e.g., Cortinarius sp.) dominated communities in warmer and less fertile environments. Ascomycetes (e.g., Cenococcum geophilum) or shorter distance explorers, which potentially cost the plant less C, were favored in colder/drier climates where soils were richer in total nitrogen. Environmental filtering of ectomycorrhizal fungal communities is potentially related to co-evolutionary history between Douglas-fir populations and fungal symbionts, suggesting success of interior Douglas-fir as climate changes may be dependent on maintaining strong associations with local communities of mycorrhizal fungi. No evidence for a link between root and fungal resource foraging strategies was found at the regional scale. This lack of evidence further supports the need for a mycorrhizal symbiosis framework that is independent of root trait frameworks, to aid in understanding belowground plant uptake strategies across environments.
Collapse
Affiliation(s)
- Camille E. Defrenne
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Philpott
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Cariboo-Chilcotin Natural Resource District, Williams Lake, BC, Canada
| | - Shannon H. A. Guichon
- Stable Isotope Facility, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - W. Jean Roach
- Skyline Forestry Consultants Ltd., Kamloops, BC, Canada
| | - Brian J. Pickles
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Suzanne W. Simard
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
León-Sánchez L, Nicolás E, Goberna M, Prieto I, Maestre FT, Querejeta JI. Poor plant performance under simulated climate change is linked to mycorrhizal responses in a semiarid shrubland. THE JOURNAL OF ECOLOGY 2018; 106:960-976. [PMID: 30078910 PMCID: PMC6071827 DOI: 10.1111/1365-2745.12888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Warmer and drier conditions associated with ongoing climate change will increase abiotic stress for plants and mycorrhizal fungi in drylands worldwide, thereby potentially reducing vegetation cover and productivity and increasing the risk of land degradation and desertification. Rhizosphere microbial interactions and feedbacks are critical processes that could either mitigate or aggravate the vulnerability of dryland vegetation to forecasted climate change.We conducted a four-year manipulative study in a semiarid shrubland in the Iberian Peninsula to assess the effects of warming (~2.5ºC; W), rainfall reduction (~30%; RR) and their combination (W+RR) on the performance of native shrubs (Helianthemum squamatum) and their associated mycorrhizal fungi.Warming (W and W+RR) decreased the net photosynthetic rates of H. squamatum shrubs by ~31% despite concurrent increases in stomatal conductance (~33%), leading to sharp decreases (~50%) in water use efficiency. Warming also advanced growth phenology, decreased leaf nitrogen and phosphorus contents per unit area, reduced shoot biomass production by ~36% and decreased survival during a dry year in both W and W+RR plants. Plants under RR showed more moderate decreases (~10-20%) in photosynthesis, stomatal conductance and shoot growth.Warming, RR and W+RR altered ectomycorrhizal fungal (EMF) community structure and drastically reduced the relative abundance of EMF sequences obtained by high-throughput sequencing, a response associated with decreases in the leaf nitrogen, phosphorus and dry matter contents of their host plants. In contrast to EMF, the community structure and relative sequence abundances of other non-mycorrhizal fungal guilds were not significantly affected by the climate manipulation treatments.Synthesis: Our findings highlight the vulnerability of both native plants and their symbiotic mycorrhizal fungi to climate warming and drying in semiarid shrublands, and point to the importance of a deeper understanding of plant-soil feedbacks to predict dryland vegetation responses to forecasted aridification. The interdependent responses of plants and ectomycorrhizal fungi to warming and rainfall reduction may lead to a detrimental feedback loop on vegetation productivity and nutrient pool size, which could amplify the adverse impacts of forecasted climate change on ecosystem functioning in EMF-dominated drylands.
Collapse
Affiliation(s)
- Lupe León-Sánchez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Emilio Nicolás
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Marta Goberna
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC, UVEG, GV), Moncada, Valencia, Spain
| | - Iván Prieto
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Fernando T. Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | | |
Collapse
|
5
|
Vašutová M, Edwards-Jonášová M, Veselá P, Effenberková L, Fleischer P, Cudlín P. Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. MYCORRHIZA 2018; 28:221-233. [PMID: 29352412 DOI: 10.1007/s00572-018-0820-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Ectomycorrhizal (ECM) fungi, as symbionts of many tree species in temperate forests, are thought to play an important role in forest regeneration processes after large disturbances. Their reaction to different disturbance and management regimes was studied in spruce forests (Lariceto-Piceetum) 10 years after a severe windthrow in the Tatra National Park (Slovak Republic). ECM community structure was compared between different "management types″-cleared area (EXT), area affected by wildfire (FIRE), uncleared area left for natural development (NEX), and mature forest as a control (REF). Based on Illumina sequencing of soil samples, we determined that the percentage of sequences assigned to ECM fungi decreased with increasing disturbance and management intensity (REF → NEX → EXT → FIRE). Similarly, the total number of ECM species per each of ten sampling points per plot (100 ha) differed between managed (EXT-11 species, FIRE-9) and unmanaged (NEX-16, REF-14) treatments. On the other hand, the percentage of sequences belonging to ericoid mycorrhizal fungi increased. Management type significantly influenced the composition of the ECM community, while vegetation and soil characteristics explained less data variation. The ECM species assemblage of the unmanaged site (NEX) was the most similar to the mature forest, while that of the burnt site was the most different. Thelephora terrestris dominated in all treatments affected by windthrow, accompanied by Tylospora fibrillosa (NEX) and Tylospora asterophora (EXT and FIRE). Management regime was also the most important factor affecting ECM species composition on the roots of spruce seedlings assessed by Sanger sequencing.
Collapse
Affiliation(s)
- Martina Vašutová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
- Global Change Research Institute, Czech Academy of Sciences, Lipová 1789/9, 37005, České Budějovice, Czech Republic.
| | - Magda Edwards-Jonášová
- Global Change Research Institute, Czech Academy of Sciences, Lipová 1789/9, 37005, České Budějovice, Czech Republic
| | - Petra Veselá
- Global Change Research Institute, Czech Academy of Sciences, Lipová 1789/9, 37005, České Budějovice, Czech Republic
| | - Lenka Effenberková
- Global Change Research Institute, Czech Academy of Sciences, Lipová 1789/9, 37005, České Budějovice, Czech Republic
| | - Peter Fleischer
- Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 2117/24, 960 53, Zvolen, Slovakia
- Research Station of TANAP, State Forest of TANAP, 059 60, Tatranská Lomnica, Slovakia
| | - Pavel Cudlín
- Global Change Research Institute, Czech Academy of Sciences, Lipová 1789/9, 37005, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Pither J, Pickles BJ. The paleosymbiosis hypothesis: host plants can be colonised by root symbionts that have been inactive for centuries to millenia. FEMS Microbiol Ecol 2017; 93:3806672. [PMID: 28486678 DOI: 10.1093/femsec/fix061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 11/14/2022] Open
Abstract
Paleoecologists have speculated that post-glacial migration of tree species could have been facilitated by mycorrhizal symbionts surviving glaciation as resistant propagules belowground. The general premise of this idea, which we call the 'paleosymbiosis hypothesis', is that host plants can access and be colonised by fungal root symbionts that have been inactive for millennia. Here, we explore the plausibility of this hypothesis by synthesising relevant findings from a diverse literature. For example, the paleoecology literature provided evidence of modern roots penetrating paleosols containing ancient (>6000 years) fungal propagules, though these were of unknown condition. With respect to propagule longevity, the available evidence is of mixed quality, but includes convincing examples consistent with the paleosymbiosis hypothesis (i.e. >1000 years viable propagules). We describe symbiont traits and environmental conditions that should favour the development and preservation of an ancient propagule bank, and discuss the implications for our understanding of soil symbiont diversity and ecosystem functioning. We conclude that the paleosymbiosis hypothesis is plausible in locations where propagule deposition and preservation conditions are favourable (e.g. permafrost regions). We encourage future belowground research to consider and explore the potential temporal origins of root symbioses.
Collapse
Affiliation(s)
- Jason Pither
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Okanagan campus, ASC 367, 3187 University Way, Kelowna, BC V1V 1V7, Canada
| | - Brian J Pickles
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading RG6 8AS, UK
| |
Collapse
|
7
|
Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2016.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Pec GJ, Karst J, Taylor DL, Cigan PW, Erbilgin N, Cooke JEK, Simard SW, Cahill JF. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. THE NEW PHYTOLOGIST 2017; 213:864-873. [PMID: 27659418 DOI: 10.1111/nph.14195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi.
Collapse
Affiliation(s)
- Gregory J Pec
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Justine Karst
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 104, Albuquerque, NM, 87131, USA
| | - Paul W Cigan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre #3601-2424 Main Hall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
9
|
Moonjely S, Barelli L, Bidochka MJ. Insect Pathogenic Fungi as Endophytes. ADVANCES IN GENETICS 2016; 94:107-35. [PMID: 27131324 DOI: 10.1016/bs.adgen.2015.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this chapter, we explore some of the evolutionary, ecological, molecular genetics, and applied aspects of a subset of insect pathogenic fungi that also have a lifestyle as endophytes and we term endophytic insect pathogenic fungi (EIPF). We focus particularly on Metarhizium spp. and Beauveria bassiana as EIPF. The discussion of the evolution of EIPF challenges a view that these fungi were first and foremost insect pathogens that eventually evolved to colonize plants. Phylogenetic evidence shows that the lineages of EIPF are most closely related to grass endophytes that diverged c. 100MYA. We discuss the relationship between genes involved in "insect pathogenesis" and those involved in "endophytism" and provide examples of genes with potential importance in lifestyle transitions toward insect pathogenicity. That is, some genes for insect pathogenesis may have been coopted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. The interactions of EIPF with their host plants are discussed in some detail. The genetic basis for rhizospheric competence, plant communication, and nutrient exchange is examined and we highlight, with examples, the benefits of EIPF to plants, and the potential reservoir of secondary metabolites hidden within these beneficial symbioses.
Collapse
Affiliation(s)
- S Moonjely
- Brock University, St. Catharines, ON, Canada
| | - L Barelli
- Brock University, St. Catharines, ON, Canada
| | | |
Collapse
|
10
|
Hart MM, Aleklett K, Chagnon PL, Egan C, Ghignone S, Helgason T, Lekberg Y, Öpik M, Pickles BJ, Waller L. Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2015; 207:235-247. [PMID: 25737096 DOI: 10.1111/nph.13340] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/18/2015] [Indexed: 05/02/2023]
Abstract
Data generated from next generation sequencing (NGS) will soon comprise the majority of information about arbuscular mycorrhizal fungal (AMF) communities. Although these approaches give deeper insight, analysing NGS data involves decisions that can significantly affect results and conclusions. This is particularly true for AMF community studies, because much remains to be known about their basic biology and genetics. During a workshop in 2013, representatives from seven research groups using NGS for AMF community ecology gathered to discuss common challenges and directions for future research. Our goal was to improve the quality and accessibility of NGS data for the AMF research community. Discussions spanned sampling design, sample preservation, sequencing, bioinformatics and data archiving. With concrete examples we demonstrated how different approaches can significantly alter analysis outcomes. Failure to consider the consequences of these decisions may compound bias introduced at each step along the workflow. The products of these discussions have been summarized in this paper in order to serve as a guide for any researcher undertaking NGS sequencing of AMF communities.
Collapse
Affiliation(s)
- Miranda M Hart
- Biology University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Kristin Aleklett
- Biology University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Pierre-Luc Chagnon
- Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l'université, Sherbrooke, QC, Canada
| | - Cameron Egan
- Biology University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Stefano Ghignone
- Istituto per la Protezione Sostenibile delle Piante (UOS Torino), C.N.R., Torino, Italy
| | - Thorunn Helgason
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ylva Lekberg
- MPG Ranch and Department for Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA
| | - Maarja Öpik
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Brian J Pickles
- Biology University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Lauren Waller
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
11
|
Rincón A, Santamaría-Pérez B, Rabasa SG, Coince A, Marçais B, Buée M. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ Microbiol 2015; 17:3009-24. [DOI: 10.1111/1462-2920.12894] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Rincón
- Instituto de Ciencias Agrarias, ICA; CSIC; Serrano 115bis 28006 Madrid Spain
| | | | - Sonia G. Rabasa
- Museo Nacional de Ciencias Naturales, MNCN; CSIC; Serrano 115bis 28006 Madrid Spain
| | - Aurore Coince
- UMR1136 INRA Nancy - Université de Lorraine; Interactions Arbres-Microorganismes; Lab of Excellence ARBRE; INRA; 54280 Champenoux France
| | - Benoit Marçais
- UMR1136 INRA Nancy - Université de Lorraine; Interactions Arbres-Microorganismes; Lab of Excellence ARBRE; INRA; 54280 Champenoux France
| | - Marc Buée
- UMR1136 INRA Nancy - Université de Lorraine; Interactions Arbres-Microorganismes; Lab of Excellence ARBRE; INRA; 54280 Champenoux France
| |
Collapse
|
12
|
Dickie IA, Koide RT. Deep thoughts on ectomycorrhizal fungal communities. THE NEW PHYTOLOGIST 2014; 201:1083-1085. [PMID: 24491112 DOI: 10.1111/nph.12674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Ian A Dickie
- Bio-Protection Research Centre, Lincoln University, Lincoln, 7640, New Zealand
| | - Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|