1
|
Liu B, Li L, Cheng G, Li F, Zhang S. A pumpkin heat shock factor CmHSF30 positively regulates thermotolerance in transgenic plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109834. [PMID: 40184902 DOI: 10.1016/j.plaphy.2025.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Heat shock factors (HSFs) play a central role in regulating the responses of plants to various stresses. However, the function and regulation of HSFs in pumpkins remains largely unknown. In this study, an HSF, CmHSF30 was identified in Cucurbiamoschata, which belongs to the HSFA subfamily. The expression level of CmHSF30 was significantly upregulated in response to heat stress and exogenous phytohormone treatments, including ABA, GA, IAA, and SA. The CmHSF30 was localized in the nucleus and functions as a transcriptional activator. By overexpressing CmHSF30 in Arabidopsis and pumpkin, the function and regulation of CmHSF30 in response to heat stress were studied. The overexpression of CmHSF30 in Arabidopsis enhanced plant thermotolerance by increased germination rate and survival rate under heat stress, as evidenced by the elevated of contents chlorophyll and GSH, and SOD activity, and decreased contents of H2O2 and MDA. Furthermore, the overexpression of CmHSF30 in pumpkins also enhanced the thermotolerance of transgenic pumpkins by reducing cell death. In contrast, CRISPR/Cas9 mediated knockout of CmHSF30 decreased pumpkin thermotolerance. Besides, RT-qPCR analysis revealed that CmHSF30 plays a positive role in regulating the expression of stress-related genes, including AtHSP18.2, AtHSP20, AtHSP70, AtPP2C, and AtMYB82 from Arabidopsis and CmHSP18.2, CmHSP20, CmHSP70, CmPP2C, and CmMYB46 from pumpkin. Yeast two-hybrid showed that CmHSF30 interacts with CmMYB46. The results indicate that CmHSF30 functions as a positive regulator, enhancing plant thermotolerance by regulating target genes and reducing ROS accumulation.
Collapse
Affiliation(s)
- Bobo Liu
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, PR China
| | - Long Li
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, PR China
| | - Ganxiyu Cheng
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, PR China
| | - Fengmei Li
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, PR China.
| | - Shuxia Zhang
- Qingdao Institute of Agricultural Science Research, Qingdao, Shandong, PR China.
| |
Collapse
|
2
|
Bulgakov VP. Chromatin modifications and memory in regulation of stress-related polyphenols: finding new ways to control flavonoid biosynthesis. Crit Rev Biotechnol 2024; 44:1478-1494. [PMID: 38697923 DOI: 10.1080/07388551.2024.2336529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
The influence of epigenetic factors on plant defense responses and the balance between growth and defense is becoming a central area in plant biology. It is believed that the biosynthesis of secondary metabolites can be regulated by epigenetic factors, but this is not associated with the formation of a "memory" to the previous biosynthetic status. This review shows that some epigenetic effects can result in epigenetic memory, which opens up new areas of research in secondary metabolites, in particular flavonoids. Plant-controlled chromatin modifications can lead to the generation of stress memory, a phenomenon through which information regarding past stress cues is retained, resulting in a modified response to recurring stress. How deeply are the mechanisms of chromatin modification and memory generation involved in the control of flavonoid biosynthesis? This article collects available information from the literature and interactome databases to address this issue. Visualization of the interaction of chromatin-modifying proteins with the flavonoid biosynthetic machinery is presented. Chromatin modifiers and "bookmarks" that may be involved in the regulation of flavonoid biosynthesis through memory have been identified. Through different mechanisms of chromatin modification, plants can harmonize flavonoid metabolism with: stress responses, developmental programs, light-dependent processes, flowering, and longevity programs. The available information points to the possibility of developing chromatin-modifying technologies to control flavonoid biosynthesis.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
3
|
Kyung J, Jeong D, Eom H, Kim J, Kim JS, Lee I. C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 promotes flowering with TAF15b by repressing the floral repressor gene FLOWERING LOCUS C. Mol Cells 2024; 47:100114. [PMID: 39293741 PMCID: PMC11822305 DOI: 10.1016/j.mocell.2024.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Arabidopsis TATA-BINDING PROTEIN-ASSOCIATED FACTOR15b (TAF15b) is a plant-specific component of the transcription factor IID complex. TAF15b is involved in the autonomous pathway for flowering and represses the transcription of FLOWERING LOCUS C (FLC), a major floral repressor in Arabidopsis. While components of the autonomous flowering pathway have been extensively studied, scant attention has been directed toward elucidating the direct transcriptional regulators responsible for repressing FLC transcription. Here, we demonstrate that C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1) is a physical and functional partner of TAF15b, playing a role in FLC repression. CPL1 is a protein phosphatase that dephosphorylates the C-terminal domain of RNA polymerase II (Pol II). Through the immunoprecipitation and mass spectrometry technique, we identified CPL1 as an interacting partner of TAF15b. Similar to taf15b, the cpl1 mutant showed a late-flowering phenotype caused by an increase in FLC levels. Additionally, the increase in cpl1 was correlated with the enrichment of phosphorylated Pol II in the FLC chromatin, as expected. We also discovered that CPL1 and TAF15b share additional common target genes through transcriptome analysis. These results suggest that TAF15b and CPL1 cooperatively repress transcription through the dephosphorylation of Pol II, especially at the FLC locus.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Daesong Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
| | - Hyunjoo Eom
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
4
|
Mou S, He W, Jiang H, Meng Q, Zhang T, Liu Z, Qiu A, He S. Transcription factor CaHDZ15 promotes pepper basal thermotolerance by activating HEAT SHOCK FACTORA6a. PLANT PHYSIOLOGY 2024; 195:812-831. [PMID: 38270532 DOI: 10.1093/plphys/kiae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Weihong He
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Haitao Jiang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qianqian Meng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tingting Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
5
|
Liu W, Chen G, He M, Wu J, Wen W, Gu Q, Guo S, Wang Y, Sun J. ABI5 promotes heat stress-induced chlorophyll degradation by modulating the stability of MYB44 in cucumber. HORTICULTURE RESEARCH 2023; 10:uhad089. [PMID: 37334179 PMCID: PMC10273075 DOI: 10.1093/hr/uhad089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/27/2023] [Indexed: 06/20/2023]
Abstract
The yellowing of leaves caused by the decomposition of chlorophyll (Chl) is a characteristic event during senescence, which can be induced by various environmental stresses. However, the molecular mechanisms of high temperature-induced Chl degradation in horticultural plants remain poorly understood. Here, we found that heat stress induced Chl degradation and the expression of ABI5 and MYB44 in cucumber. Silencing of ABI5 compromised heat stress-induced Chl degradation, and the transcription of pheophytinase (PPH) and pheophorbide a oxygenase (PAO), two key genes in Chl catabolic pathway, but silencing of MYB44 exhibited the opposite results. Furthermore, ABI5 interacted with MYB44 in vitro and in vivo. ABI5 positively regulated heat stress-induced Chl degradation through two pathways. ABI5 directly bound to PPH and PAO promoters to promote their expression, leading to accelerating Chl degradation. On the other hand, the interaction between ABI5 and MYB44 reduced the binding of MYB44 to PPH and PAO promoters and led to the ubiquitination-depended protein degradation of MYB44, thereby alleviating the transcription inhibitory effect of MYB44 on PPH and PAO. Taken together, our findings propose a new regulatory network for ABI5 in regulating heat stress-induced Chl degradation.
Collapse
Affiliation(s)
- Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenxu Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Corresponding authors: E-mails: ;
| | - Jin Sun
- Corresponding authors: E-mails: ;
| |
Collapse
|
6
|
Hendrix S, Dard A, Meyer AJ, Reichheld JP. Redox-mediated responses to high temperature in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2489-2507. [PMID: 36794477 DOI: 10.1093/jxb/erad053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
As sessile organisms, plants are particularly affected by climate change and will face more frequent and extreme temperature variations in the future. Plants have developed a diverse range of mechanisms allowing them to perceive and respond to these environmental constraints, which requires sophisticated signalling mechanisms. Reactive oxygen species (ROS) are generated in plants exposed to various stress conditions including high temperatures and are presumed to be involved in stress response reactions. The diversity of ROS-generating pathways and the ability of ROS to propagate from cell to cell and to diffuse through cellular compartments and even across membranes between subcellular compartments put them at the centre of signalling pathways. In addition, their capacity to modify the cellular redox status and to modulate functions of target proteins, notably through cysteine oxidation, show their involvement in major stress response transduction pathways. ROS scavenging and thiol reductase systems also participate in the transmission of oxidation-dependent stress signals. In this review, we summarize current knowledge on the functions of ROS and oxidoreductase systems in integrating high temperature signals, towards the activation of stress responses and developmental acclimation mechanisms.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
7
|
Global Analysis of Dark- and Heat-Regulated Alternative Splicing in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065299. [PMID: 36982373 PMCID: PMC10049525 DOI: 10.3390/ijms24065299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.
Collapse
|
8
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
9
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
10
|
Boulanger HG, Guo W, Monteiro LDFR, Calixto CPG. Co-expression network of heat-response transcripts: A glimpse into how splicing factors impact rice basal thermotolerance. Front Mol Biosci 2023; 10:1122201. [PMID: 36818043 PMCID: PMC9932781 DOI: 10.3389/fmolb.2023.1122201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
To identify novel solutions to improve rice yield under rising temperatures, molecular components of thermotolerance must be better understood. Alternative splicing (AS) is a major post-transcriptional mechanism impacting plant tolerance against stresses, including heat stress (HS). AS is largely regulated by splicing factors (SFs) and recent studies have shown their involvement in temperature response. However, little is known about the splicing networks between SFs and AS transcripts in the HS response. To expand this knowledge, we constructed a co-expression network based on a publicly available RNA-seq dataset that explored rice basal thermotolerance over a time-course. Our analyses suggest that the HS-dependent control of the abundance of specific transcripts coding for SFs might explain the widespread, coordinated, complex, and delicate AS regulation of critical genes during a plant's inherent response to extreme temperatures. AS changes in these critical genes might affect many aspects of plant biology, from organellar functions to cell death, providing relevant regulatory candidates for future functional studies of basal thermotolerance.
Collapse
Affiliation(s)
- Hadrien Georges Boulanger
- Université Paris-Saclay, Gif-sur-Yvette, France,École Nationale Supérieure d'Informatique pour l'Industrie et l’Entreprise, Evry-Courcouronnes, France,Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | | | - Cristiane Paula Gomes Calixto
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Cristiane Paula Gomes Calixto,
| |
Collapse
|
11
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|
12
|
Janda T, Prerostová S, Vanková R, Darkó É. Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants. Int J Mol Sci 2021; 22:ijms22168602. [PMID: 34445308 PMCID: PMC8395339 DOI: 10.3390/ijms22168602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.
Collapse
Affiliation(s)
- Tibor Janda
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
- Correspondence:
| | - Sylva Prerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Éva Darkó
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
| |
Collapse
|
13
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
14
|
Plant RNA Binding Proteins as Critical Modulators in Drought, High Salinity, Heat, and Cold Stress Responses: An Updated Overview. Int J Mol Sci 2021; 22:ijms22136731. [PMID: 34201749 PMCID: PMC8269355 DOI: 10.3390/ijms22136731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.
Collapse
|
15
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
16
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
17
|
Bulgakov VP, Koren OG. Basic Protein Modules Combining Abscisic Acid and Light Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:808960. [PMID: 35046987 PMCID: PMC8762054 DOI: 10.3389/fpls.2021.808960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 05/02/2023]
Abstract
It is generally accepted that plants use the complex signaling system regulated by light and abscisic acid (ABA) signaling components to optimize growth and development in different situations. The role of ABA-light interactions is evident in the coupling of stress defense reactions with seed germination and root development, maintaining of stem cell identity and stem cell specification, stem elongation and leaf development, flowering and fruit formation, senescence, and shade avoidance. All these processes are regulated jointly by the ABA-light signaling system. Although a lot of work has been devoted to ABA-light signal interactions, there is still no systematic description of central signaling components and protein modules, which jointly regulate plant development. New data have emerged to promote understanding of how ABA and light signals are integrated at the molecular level, representing an extensively growing area of research. This work is intended to fill existing gaps by using literature data combined with bioinformatics analysis.
Collapse
|
18
|
Molecular Profiling and Optimization Studies for Growth and PHB Production Conditions in Rhodobacter sphaeroides. ENERGIES 2020. [DOI: 10.3390/en13236471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the recent climate change regime, industrial demand for renewable materials to replace petroleum-derived polymers continues to rise. Of particular interest is polyhydroxybutyrate (PHB) as a substitute for polypropylene. Accumulating evidence indicates that PHB is highly produced as a carbon storage material in various microorganisms. The effects of growth conditions on PHB production have been widely studied in chemolithotrophs, particularly in Rhodobacter. However, the results on PHB production in Rhodobacter have been somewhat inconsistent due to different strains and experimental conditions, and it is currently unclear how diverse environmental factors are linked with PHB production. Here, we report optimized growth conditions for PHB production and show that the growth conditions are closely related to reactive oxygen species (ROS) regulation. PHB accumulates in cells up to approximately 50% at the highest level under dark-aerobic conditions as opposed to light aerobic/anaerobic conditions. According to the time-course, PHB contents increased at 48 h and then gradually decreased. When observing the effect of temperature and medium composition on PHB production, 30 °C and a carbon/nitrogen ratio of 9:1 or more were found to be most effective. Among PHB biosynthetic genes, PhaA and PhaB are highly correlated with PHB production, whereas PhaC and PhaZ showed little change in overall expression levels. We found that, while the amount of hydrogen peroxide in cells under dark conditions was relatively low compared to the light conditions, peroxidase activities and expression levels of antioxidant-related genes were high. These observations suggest optimal culture conditions for growth and PHB production and the importance of ROS-scavenging signaling with regard to PHB production.
Collapse
|
19
|
Linking Brassinosteroid and ABA Signaling in the Context of Stress Acclimation. Int J Mol Sci 2020; 21:ijms21145108. [PMID: 32698312 PMCID: PMC7404222 DOI: 10.3390/ijms21145108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The important regulatory role of brassinosteroids (BRs) in the mechanisms of tolerance to multiple stresses is well known. Growing data indicate that the phenomenon of BR-mediated drought stress tolerance can be explained by the generation of stress memory (the process known as ‘priming’ or ‘acclimation’). In this review, we summarize the data on BR and abscisic acid (ABA) signaling to show the interconnection between the pathways in the stress memory acquisition. Starting from brassinosteroid receptors brassinosteroid insensitive 1 (BRI1) and receptor-like protein kinase BRI1-like 3 (BRL3) and propagating through BR-signaling kinases 1 and 3 (BSK1/3) → BRI1 suppressor 1 (BSU1) ―‖ brassinosteroid insensitive 2 (BIN2) pathway, BR and ABA signaling are linked through BIN2 kinase. Bioinformatics data suggest possible modules by which BRs can affect the memory to drought or cold stresses. These are the BIN2 → SNF1-related protein kinases (SnRK2s) → abscisic acid responsive elements-binding factor 2 (ABF2) module; BRI1-EMS-supressor 1 (BES1) or brassinazole-resistant 1 protein (BZR1)–TOPLESS (TPL)–histone deacetylase 19 (HDA19) repressor complexes, and the BZR1/BES1 → flowering locus C (FLC)/flowering time control protein FCA (FCA) pathway. Acclimation processes can be also regulated by BR signaling associated with stress reactions caused by an accumulation of misfolded proteins in the endoplasmic reticulum.
Collapse
|
20
|
Xi Y, Han X, Zhang Z, Joshi J, Borza T, Mohammad Aqa M, Zhang B, Yuan H, Wang-Pruski G. Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110048. [PMID: 31837570 DOI: 10.1016/j.ecoenv.2019.110048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 05/07/2023]
Abstract
Phosphite (Phi), an analog of phosphate (Pi) anion, is emerging as a potential biostimulator, fungicide and insecticide. Here, we reported that Phi also significantly enhanced thermotolerance in potatoes under heat stress. Potato plants with and without Phi pretreatment were exposed to heat stress and their heat tolerance was examined by assessing the morphological characteristics, photosynthetic pigment content, photosystem II (PS II) efficiency, levels of oxidative stress, and level of DNA damage. In addition, RNA-sequencing (RNA-Seq) was adopted to investigate the roles of Phi signals and the underlying heat resistance mechanism. RNA-Seq revealed that Phi orchestrated plant immune responses against heat stress by reprograming global gene expressions. Results from physiological data combined with RNA-Seq suggested that the supply of Phi not only was essential for the better plant performance, but also improved thermotolerance of the plants by alleviating oxidative stress and DNA damage, and improved biosynthesis of osmolytes and defense metabolites when exposed to unfavorable thermal conditions. This is the first study to explore the role of Phi in thermotolerance in plants, and the work can be applied to other crops under the challenging environment.
Collapse
Affiliation(s)
- Yupei Xi
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyun Han
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jyoti Joshi
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Tudor Borza
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Mohammadi Mohammad Aqa
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beibei Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huimin Yuan
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
21
|
Zhang Z, Fan J, Wu J, Zhang L, Wang J, Zhang B, Wang-Pruski G. Alleviating effect of silicon on melon seed germination under autotoxicity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109901. [PMID: 31704323 DOI: 10.1016/j.ecoenv.2019.109901] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 05/25/2023]
Abstract
Melon (Cucumis melo L.) is an important horticultural crop worldwide. Continuous cropping obstacle occurs in many melon cultivation area, resulting in poor plant growth and fruit quality, autotoxicity is the main reason for the obstacle. Silicon (Si) plays an important role in improving the resistance of plants to biotic and abiotic stresses. In this study, melon plant water extracts (MPWE) were used to simulate the autotoxicity stress. Different concentrations of Na2SiO3 (0, 1, 2, 4, 8, 16, 32 mM) were added into MPWE for preliminary concentration screening and alleviating effect determination of Si on melon seed autotoxicity. The results showed that autotoxicity reduced the seed germination index, inhibited the growth of germinated seeds. 2 mM Si significantly increased seed germination index and improved subsequent growth under autotoxicity. The effect of Si showed a concentration-dependent manner, which can be counteracted or even reversed at high concentration. Three treatment combinations, double distilled water, 0.02 g/mL MPWE and 2 mM Na2SiO3 + 0.02 g/mL MPWE were used for subsequent physiology, biochemistry and gene analysis. During the germination of melon seed under autotoxicity, starch degradation ability decreased, amylase activity and amylase gene expression were inhibited, cell membrane lipid peroxidation increased, and antioxidant enzyme activity was abnormal. In Si-addition group, the radicle growth, lateral roots number, starch degradation ability, amylase activity and amylase gene expression level increased. The addition of Si also maintained the activities of superoxide dismutase, catalase and peroxidase and the content of malondialdehyde in a relatively normal state. The change trend of amylase gene and antioxidant enzyme activity was complex, but the acute change coincided with the key stage of seed germination, which occurred when the seed was about to break through or just broken through the seed coat. Appropriate concentration of Si is an effective strategy to alleviate the autotoxicity on melon seed.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jiaru Fan
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinghua Wu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhen Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingrong Wang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Beibei Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada; Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
22
|
Han SH, Park YJ, Park CM. Light priming of thermotolerance development in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:1554469. [PMID: 30516434 PMCID: PMC6351087 DOI: 10.1080/15592324.2018.1554469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It is widely perceived that plant responses to environmental temperatures are profoundly influenced by light conditions. However, it is unknown how light signals modulate plant thermal responses and what photoreceptors are responsible for the light regulation of thermal adaptive process. We have recently reported that phytochrome B (phyB)-mediated red light signals prime the ASCORBATE PEROXIDASE 2 (APX2)-mediated detoxification reaction of reactive oxygen species (ROS), a well-known biochemical process that mediates the acquisition of thermotolerance under high temperature conditions. It is interesting that red light influences the HEAT SHOCK FACTOR A1 (HSFA1)-stimulated activation of the APX2 transcription, which is otherwise responsive primarily to stressful high temperatures. Blue light also efficiently primes the APX2-mediated induction of thermotolerance. In natural habitats, temperatures fluctuate according to the light/dark cycles with temperature peaks occurring during the daytime. It is thus apparent that plants utilize light information to prepare for upcoming high temperature spells.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- CONTACT Chung-Mo Park Department of Chemistry, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
23
|
Zhang H, Zhang Y, Deng C, Deng S, Li N, Zhao C, Zhao R, Liang S, Chen S. The Arabidopsis Ca 2+-Dependent Protein Kinase CPK12 Is Involved in Plant Response to Salt Stress. Int J Mol Sci 2018; 19:ijms19124062. [PMID: 30558245 PMCID: PMC6321221 DOI: 10.3390/ijms19124062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
CDPKs (Ca2+-Dependent Protein Kinases) are very important regulators in plant response to abiotic stress. The molecular regulatory mechanism of CDPKs involved in salt stress tolerance remains unclear, although some CDPKs have been identified in salt-stress signaling. Here, we investigated the function of an Arabidopsis CDPK, CPK12, in salt-stress signaling. The CPK12-RNA interference (RNAi) mutant was much more sensitive to salt stress than the wild-type plant GL1 in terms of seedling growth. Under NaCl treatment, Na+ levels in the roots of CPK12-RNAi plants increased and were higher than levels in GL1 plants. In addition, the level of salt-elicited H2O2 production was higher in CPK12-RNAi mutants than in wild-type GL1 plants after NaCl treatment. Collectively, our results suggest that CPK12 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nianfei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chenjing Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Katano K, Honda K, Suzuki N. Integration between ROS Regulatory Systems and Other Signals in the Regulation of Various Types of Heat Responses in Plants. Int J Mol Sci 2018; 19:ijms19113370. [PMID: 30373292 PMCID: PMC6274784 DOI: 10.3390/ijms19113370] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022] Open
Abstract
Because of their sessile lifestyle, plants cannot escape from heat stress and are forced to alter their cellular state to prevent damage. Plants, therefore, evolved complex mechanisms to adapt to irregular increases in temperature in the natural environment. In addition to the ability to adapt to an abrupt increase in temperature, plants possess strategies to reprogram their cellular state during pre-exposure to sublethal heat stress so that they are able to survive under subsequent severe heat stress. Such an acclimatory response to heat, i.e., acquired thermotolerance, might depend on the maintenance of heat memory and propagation of long-distance signaling. In addition, plants are able to tailor their specific cellular state to adapt to heat stress combined with other abiotic stresses. Many studies revealed significant roles of reactive oxygen species (ROS) regulatory systems in the regulation of these various heat responses in plants. However, the mode of coordination between ROS regulatory systems and other pathways is still largely unknown. In this review, we address how ROS regulatory systems are integrated with other signaling networks to control various types of heat responses in plants. In addition, differences and similarities in heat response signals between different growth stages are also addressed.
Collapse
Affiliation(s)
- Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan.
| | | | | |
Collapse
|
25
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
26
|
Ha JH, Kim JH, Kim SG, Sim HJ, Lee G, Halitschke R, Baldwin IT, Kim JI, Park CM. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:790-798. [PMID: 29570885 DOI: 10.1111/tpj.13902] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 05/14/2023]
Abstract
Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS-induced growth promotion facilitates rapid escape of the roots from non-natural light. Meanwhile, long-term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far-red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot-derived ABA signals induce a peroxidase-mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark-grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot-to-root ABA signaling links shoot phyB-mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA-mediated shoot-to-root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants.
Collapse
Affiliation(s)
- Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hee-Jung Sim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Gyeongnam, 52834, Korea
| | - Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
27
|
A Single-Nucleotide Insertion in a Drug Transporter Gene Induces a Thermotolerance Phenotype in Gluconobacter frateurii by Increasing the NADPH/NADP + Ratio via Metabolic Change. Appl Environ Microbiol 2018; 84:AEM.00354-18. [PMID: 29549098 DOI: 10.1128/aem.00354-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
Abstract
Thermotolerant microorganisms are beneficial to the fermentation industry because they reduce the need for cooling and offer other operational advantages. Previously, we obtained a thermally adapted Gluconobacter frateurii strain by experimental evolution. In the present study, we found only a single G insertion in the adapted strain, which causes a frameshift in a gene encoding a putative drug transporter. A mutant derivative strain with the single G insertion in the transporter gene (Wild-G) was constructed from the wild-type strain and showed increased thermotolerance. We found that the thermotolerant strains accumulated substantial intracellular trehalose and manifested a defect in sorbose assimilation, suggesting that the transporter is partly involved in trehalose efflux and sorbose uptake and that the defect in the transporter can improve thermotolerance. The ΔotsAB strain, constructed by elimination of the trehalose synthesis gene in the wild type, showed no trehalose production but, unexpectedly, much better growth than the adapted strain at high temperatures. The ΔotsAB mutant produced more acetate as the final metabolite than the wild-type strain did. We hypothesized that trehalose does not contribute to thermotolerance directly; rather, a metabolic change including increased carbon flux to the pentose phosphate pathway may be the key factor. The NADPH/NADP+ ratio was higher in strain Wild-G, and much higher in the ΔotsAB strain, than in the wild-type strain. Levels of reactive oxygen species (ROS) were lower in the thermotolerant strains. We propose that the defect of the transporter causes the metabolic flux to generate more NADPH, which may enhance thermotolerance in G. frateuriiIMPORTANCE The biorefinery industry has to ensure that microorganisms are robust and retain their viability and function at high temperatures. Here we show that Gluconobacterfrateurii, an industrially important member of the acetic acid bacteria, exhibited enhanced thermotolerance through the reduction of trehalose excretion after thermal adaptation. Although intracellular trehalose may play a key role in thermotolerance, the molecular mechanisms of action of trehalose in thermotolerance are a matter of debate. Our mutated strain that was defective in trehalose synthase genes, producing no trehalose but a larger amount of acetic acid as the end metabolite instead, unexpectedly showed higher thermotolerance than the wild type. Our adapted and mutated thermotolerant strains showed increased NADPH/NADP+ ratios and reductions in ROS levels. We concluded that in G. frateurii, trehalose does not contribute to thermotolerance directly; rather, the metabolic change increases the NADPH/NADP+ ratio to enhance thermotolerance.
Collapse
|
28
|
Lee KC, Jang YH, Kim SK, Park HY, Thu MP, Lee JH, Kim JK. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. PLANT CELL REPORTS 2017; 36:1083-1095. [PMID: 28401337 DOI: 10.1007/s00299-017-2140-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/04/2017] [Indexed: 05/20/2023]
Abstract
The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.
Collapse
Affiliation(s)
- Keh Chien Lee
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yun Hee Jang
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hyo-Young Park
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - May Phyo Thu
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Hwan Lee
- Department of Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
29
|
Ha JH, Lee HJ, Jung JH, Park CM. Thermo-Induced Maintenance of Photo-oxidoreductases Underlies Plant Autotrophic Development. Dev Cell 2017; 41:170-179.e4. [PMID: 28392197 DOI: 10.1016/j.devcel.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/07/2017] [Accepted: 03/12/2017] [Indexed: 12/31/2022]
Abstract
Chlorophyll biosynthesis enables autotrophic development of developing seedlings. Upon light exposure, the chlorophyll precursor protochlorophyllide produces reactive oxygen species (ROS). Developing seedlings acquire photosynthetic competence through the action of protochlorophyllide oxidoreductases (PORs) that convert protochlorophyllide to chlorophyllide, reducing ROS production that would otherwise induce cellular damage and chlorophyll bleaching. Here, we show that FCA mediates the thermostabilization of PORs to trigger the conversion of protochlorophyllide to chlorophyllide in developing seedlings. FCA also facilitates the thermal induction of POR genes through histone acetylation that promotes the accessibility of RNA polymerases to the gene promoters. The combined action of FCA maintains PORs at warm temperatures, shifting the chlorophyll-ROS balance toward autotrophic development. We propose that the FCA-mediated thermal adaptation of autotrophic development allows developing seedlings to cope with the heat-absorbing soil surface layer under natural conditions. The thermal adaptive mechanism would provide a potential basis for studying crop performance at warm temperatures.
Collapse
Affiliation(s)
- Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
30
|
Lecourieux F, Kappel C, Pieri P, Charon J, Pillet J, Hilbert G, Renaud C, Gomès E, Delrot S, Lecourieux D. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:53. [PMID: 28197155 PMCID: PMC5281624 DOI: 10.3389/fpls.2017.00053] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HT-induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.
Collapse
Affiliation(s)
- Fatma Lecourieux
- Centre National de la Recherche Scientifique, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Christian Kappel
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Philippe Pieri
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Justine Charon
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Jérémy Pillet
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Ghislaine Hilbert
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Christel Renaud
- Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Eric Gomès
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - Serge Delrot
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
| | - David Lecourieux
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR Ecophysiologie et Génomique Fonctionnelle de la VigneVillenave d'Ornon, France
- *Correspondence: David Lecourieux
| |
Collapse
|
31
|
Czesnick H, Lenhard M. Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:570-583. [PMID: 27447095 DOI: 10.1111/tpj.13280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 05/24/2023]
Abstract
Polyadenylation is a critical 3'-end processing step during maturation of pre-mRNAs, and the length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerase (PAPS) isoforms fulfilling specialized functions, as reflected by their different mutant phenotypes. While PAPS1 affects several processes, such as the immune response, organ growth and male gametophyte development, the roles of PAPS2 and PAPS4 are largely unknown. Here we demonstrate that PAPS2 and PAPS4 promote flowering in a partially redundant manner. The enzymes act antagonistically to PAPS1, which delays the transition to flowering. The opposite flowering-time phenotypes in paps1 and paps2 paps4 mutants are at least partly due to decreased or increased FLC activity, respectively. In contrast to paps2 paps4 mutants, plants with increased PAPS4 activity flower earlier than the wild-type, concomitant with reduced FLC expression. Double mutant analyses suggest that PAPS2 and PAPS4 act independently of the autonomous pathway components FCA, FY and CstF64. The direct polyadenylation targets of the three PAPS isoforms that mediate their effects on flowering time do not include FLC sense mRNA and remain to be identified. Thus, our results uncover a role for canonical PAPS isoforms in flowering-time control, raising the possibility that modulating the balance of the isoform activities could be used to fine tune the transition to flowering.
Collapse
Affiliation(s)
- Hjördis Czesnick
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, House 26, D-14476, Potsdam-Golm, Germany
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, House 26, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
32
|
de Pinto MC, Locato V, Paradiso A, De Gara L. Role of redox homeostasis in thermo-tolerance under a climate change scenario. ANNALS OF BOTANY 2015; 116:487-96. [PMID: 26034009 PMCID: PMC4577993 DOI: 10.1093/aob/mcv071] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 03/30/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change predictions indicate a progressive increase in average temperatures and an increase in the frequency of heatwaves, which will have a negative impact on crop productivity. Over the last decade, a number of studies have addressed the question of how model plants or specific crops modify their metabolism when exposed to heat stress. SCOPE This review provides an overview of the redox pathways that contribute to how plants cope with heat stress. The focus is on the role of reactive oxygen species (ROS), redox metabolites and enzymes in the signalling pathways leading to the activation of defence responses. Additional attention is paid to the regulating mechanisms that lead to an increase in specific ROS-scavenging systems during heat stress, which have been studied in different model systems. Finally, increasing thermo-tolerance in model and crop plants by exposing them to heat acclimation or to exogenous treatments is discussed. CONCLUSIONS Although there is clear evidence that several strategies are specifically activated according to the intensity and the duration of heat stress, as well as the capacity of the different species or genotypes to overcome stress, an alteration in redox homeostasis seems to be a common event. Different mechanisms that act to enhance redox systems enable crops to overcome heat stress more effectively. Knowledge of thermo-tolerance within agronomic biodiversity is thus of key importance to enable researchers to identify new strategies for overcoming the impacts of climate change, and for decision-makers in planning for an uncertain future with new choices and options open to them.
Collapse
Affiliation(s)
- Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', via E. Orabona 4, I-70125 Bari, Italy and
| | - Vittoria Locato
- Laboratory of Plant Biochemistry and Food Sciences, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, I-00128 Roma, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', via E. Orabona 4, I-70125 Bari, Italy and
| | - Laura De Gara
- Laboratory of Plant Biochemistry and Food Sciences, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, I-00128 Roma, Italy
| |
Collapse
|