1
|
Chen H, Berg CS, Samuli M, Sotola VA, Sweigart AL, Yuan YW, Fishman L. The genetic architecture of floral trait divergence between hummingbird- and self-pollinated monkeyflower (Mimulus) species. THE NEW PHYTOLOGIST 2025; 245:2255-2267. [PMID: 39697054 DOI: 10.1111/nph.20348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Pollination syndromes are a key component of flowering plant diversification, prompting questions about the architecture of single traits and genetic coordination among traits. Here, we investigate the genetics of extreme floral divergence between naturally hybridizing monkeyflowers, Mimulus parishii (self-pollinated) and M. cardinalis (hummingbird-pollinated). We mapped quantitative trait loci (QTLs) for 18 pigment, pollinator reward/handling, and dimensional traits in parallel sets of F2 hybrids plus recombinant inbred lines and generated nearly isogenic lines (NILs) for two dimensional traits, pistil length and corolla size. Our multi-population approach revealed a highly polygenic basis (n = 190 QTLs total) for pollination syndrome divergence, capturing minor QTLs even for pigment traits with leading major loci. There was significant QTL overlap within pigment and dimensional categories. Nectar volume QTLs clustered with those for floral dimensions, suggesting a partially shared module. The NILs refined two pistil length QTLs, only one of which has tightly correlated effects on other dimensional traits. An overall polygenic architecture of floral divergence is partially coordinated by genetic modules formed by linkage (pigments) and likely pleiotropy (dimensions plus nectar). This work illuminates pollinator syndrome diversification in a model radiation and generates a robust framework for molecular and ecological genomics.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Matthew Samuli
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - V Alex Sotola
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
2
|
Liang M, Ringham L, Ye C, Yan X, Schaumburger N, Cieslak M, Blinov M, Prusinkiewicz P, Yuan YW. From spots to stripes: Evolution of pigmentation patterns in monkeyflowers via modulation of a reaction-diffusion system and its prepatterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632501. [PMID: 39829766 PMCID: PMC11741427 DOI: 10.1101/2025.01.10.632501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The reaction-diffusion (RD) system is widely assumed to account for many complex, self-organized pigmentation patterns in natural organisms. However, the specific configurations of such RD networks and how RD systems interact with positional information (i.e., prepatterns) that may specify the initiation conditions for the RD operation remain largely unknown. Here, we introduced a three-substance RD system underlying the formation of repetitive pigment spots and stripes in Mimulus flowers. It consists of an R2R3-MYB activator (NEGAN), an R3-MYB inhibitor (RTO), and a coactivator represented by two paralogous bHLH proteins. Through fine-scale genetic analyses, transgenic experiments, and computer simulations, we identified the causal loci contributing to the evolutionary transition from sparsely dispersed spots to longitudinal stripes. Genetic changes at these loci modulate the prepatterns of the activator and coactivator expression and the promoter activities of the inhibitor and one of the coactivator paralogs. Our findings highlight the importance of prepatterns towards a realistic description of RD systems in natural organisms, and reveal the genetic mechanism generating pattern variation through modulation of the kinetics of the RD system and its prepatterns.
Collapse
Affiliation(s)
- Mei Liang
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- These authors contributed equally
| | - Lee Ringham
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- These authors contributed equally
| | - Changning Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Nathan Schaumburger
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Blinov
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Lead contact
| |
Collapse
|
3
|
Marie-Orleach L, Glémin S, Brandrud MK, Brysting AK, Gizaw A, Gustafsson ALS, Rieseberg LH, Brochmann C, Birkeland S. How Does Selfing Affect the Pace and Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041426. [PMID: 38503508 PMCID: PMC11529850 DOI: 10.1101/cshperspect.a041426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours 37200, France
| | - Sylvain Glémin
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Evolutionsbiologiskt Centrum EBC, Uppsala, Sweden
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Siri Birkeland
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
4
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Tisinai SL, Busch JW. Weak response to selection on stigma-anther distance in a primarily selfing population of yellow monkeyflower. Proc Biol Sci 2024; 291:20240586. [PMID: 38889787 DOI: 10.1098/rspb.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Stebbins hypothesized that selfing lineages are evolutionary dead ends because they lack adaptive potential. While selfing populations often possess limited nucleotide variability compared with closely related outcrossers, reductions in the genetic variability of quantitative characters remain unclear, especially for key traits determining selfing rates. Yellow monkeyflower (Mimulus guttatus) populations generally outcross and maintain extensive quantitative genetic variation in floral traits. Here, we study the Joy Road population (Bodega Bay, CA, USA) of M. guttatus, where individuals exhibit stigma-anther distances (SAD) typical of primarily selfing monkeyflowers. We show that this population is closely related to nearby conspecifics on the Pacific Coast with a modest 33% reduction in genome-wide variation compared with a more highly outcrossing population. A five-generation artificial selection experiment challenged the hypothesis that the Joy Road population harbours comparatively low evolutionary potential in stigma-anther distance, a critical determinant of selfing rate in Mimulus. Artificial selection generated a weak phenotypic response, with low realized heritabilities (0.020-0.028) falling 84% below those measured for floral characters in more highly outcrossing M. guttatus. These results demonstrate substantial declines in evolutionary potential with a transition toward selfing. Whether these findings explain infrequent reversals to outcrossing or general limits on adaptation in selfers requires further investigation.
Collapse
Affiliation(s)
- Shelby L Tisinai
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Frachon L, Schiestl FP. Rapid genomic evolution in Brassica rapa with bumblebee selection in experimental evolution. BMC Ecol Evol 2024; 24:7. [PMID: 38195402 PMCID: PMC10775529 DOI: 10.1186/s12862-023-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Insect pollinators shape rapid phenotypic evolution of traits related to floral attractiveness and plant reproductive success. However, the underlying genomic changes remain largely unknown despite their importance in predicting adaptive responses to natural or to artificial selection. Based on a nine-generation experimental evolution study with fast cycling Brassica rapa plants adapting to bumblebees, we investigate the genomic evolution associated with the previously observed parallel phenotypic evolution. In this current evolve and resequencing (E&R) study, we conduct a genomic scan of the allele frequency changes along the genome in bumblebee-pollinated and hand-pollinated plants and perform a genomic principal component analysis (PCA). RESULTS We highlight rapid genomic evolution associated with the observed phenotypic evolution mediated by bumblebees. Controlling for genetic drift, we observe significant changes in allelic frequencies at multiple loci. However, this pattern differs according to the replicate of bumblebee-pollinated plants, suggesting putative non-parallel genomic evolution. Finally, our study underlines an increase in genomic variance implying the putative involvement of multiple loci in short-term pollinator adaptation. CONCLUSIONS Overall, our study enhances our understanding of the complex interactions between pollinator and plants, providing a stepping stone towards unravelling the genetic basis of plant genomic adaptation to biotic factors in the environment.
Collapse
Affiliation(s)
- Léa Frachon
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland.
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Sotola VA, Berg CS, Samuli M, Chen H, Mantel SJ, Beardsley PA, Yuan YW, Sweigart AL, Fishman L. Genomic mechanisms and consequences of diverse postzygotic barriers between monkeyflower species. Genetics 2023; 225:iyad156. [PMID: 37603838 DOI: 10.1093/genetics/iyad156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
The evolution of genomic incompatibilities causing postzygotic barriers to hybridization is a key step in species divergence. Incompatibilities take 2 general forms-structural divergence between chromosomes leading to severe hybrid sterility in F1 hybrids and epistatic interactions between genes causing reduced fitness of hybrid gametes or zygotes (Dobzhansky-Muller incompatibilities). Despite substantial recent progress in understanding the molecular mechanisms and evolutionary origins of both types of incompatibility, how each behaves across multiple generations of hybridization remains relatively unexplored. Here, we use genetic mapping in F2 and recombinant inbred line (RIL) hybrid populations between the phenotypically divergent but naturally hybridizing monkeyflowers Mimulus cardinalis and M. parishii to characterize the genetic basis of hybrid incompatibility and examine its changing effects over multiple generations of experimental hybridization. In F2s, we found severe hybrid pollen inviability (<50% reduction vs parental genotypes) and pseudolinkage caused by a reciprocal translocation between Chromosomes 6 and 7 in the parental species. RILs retained excess heterozygosity around the translocation breakpoints, which caused substantial pollen inviability when interstitial crossovers had not created compatible heterokaryotypic configurations. Strong transmission ratio distortion and interchromosomal linkage disequilibrium in both F2s and RILs identified a novel 2-locus genic incompatibility causing sex-independent gametophytic (haploid) lethality. The latter interaction eliminated 3 of the expected 9 F2 genotypic classes via F1 gamete loss without detectable effects on the pollen number or viability of F2 double heterozygotes. Along with the mapping of numerous milder incompatibilities, these key findings illuminate the complex genetics of plant hybrid breakdown and are an important step toward understanding the genomic consequences of natural hybridization in this model system.
Collapse
Affiliation(s)
- V Alex Sotola
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Matthew Samuli
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Samuel J Mantel
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Paul A Beardsley
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
8
|
Liang M, Chen W, LaFountain AM, Liu Y, Peng F, Xia R, Bradshaw H, Yuan YW. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. Science 2023; 379:576-582. [PMID: 36758083 PMCID: PMC10601778 DOI: 10.1126/science.adf1323] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023]
Abstract
Taxon-specific small RNA loci are widespread in eukaryotic genomes, yet their role in lineage-specific adaptation, phenotypic diversification, and speciation is poorly understood. Here, we report that a speciation locus in monkeyflowers (Mimulus), YELLOW UPPER (YUP), contains an inverted repeat region that produces small interfering RNAs (siRNAs) in a phased pattern. Although the inverted repeat is derived from a partial duplication of a protein-coding gene that is not involved in flower pigmentation, one of the siRNAs targets and represses a master regulator of floral carotenoid pigmentation. YUP emerged with two protein-coding genes that control other aspects of flower coloration as a "superlocus" in a subclade of Mimulus and has contributed to subsequent phenotypic diversification and pollinator-mediated speciation in the descendant species.
Collapse
Affiliation(s)
- Mei Liang
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Wenjie Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Amy M. LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Foen Peng
- Department of Biology, University of Washington, Seattle, WA 98195
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - H.D. Bradshaw
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
9
|
Chen H, Xiao Z, Ding B, Diggle PK, Yuan YW. Modular regulation of floral traits by a PRE1 homolog in Mimulus verbenaceus: implications for the role of pleiotropy in floral integration. HORTICULTURE RESEARCH 2022; 9:uhac168. [PMID: 36204206 PMCID: PMC9531339 DOI: 10.1093/hr/uhac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Floral traits often show correlated variation within and among species. For species with fused petals, strong correlations among corolla tube, stamen, and pistil length are particularly prevalent, and these three traits are considered an intra-floral functional module. Pleiotropy has long been implicated in such modular integration of floral traits, but empirical evidence based on actual gene function is scarce. We tested the role of pleiotropy in the expression of intra-floral modularity in the monkeyflower species Mimulus verbenaceus by transgenic manipulation of a homolog of Arabidopsis PRE1. Downregulation of MvPRE1 by RNA interference resulted in simultaneous decreases in the lengths of corolla tube, petal lobe, stamen, and pistil, but little change in calyx and leaf lengths or organ width. Overexpression of MvPRE1 caused increased corolla tube and stamen lengths, with little effect on other floral traits. Our results suggest that genes like MvPRE1 can indeed regulate multiple floral traits in a functional module but meanwhile have little effect on other modules, and that pleiotropic effects of these genes may have played an important role in the evolution of floral integration and intra-floral modularity.
Collapse
Affiliation(s)
| | | | - Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
10
|
Poulin V, Amesefe D, Gonzalez E, Alexandre H, Joly S. Testing candidate genes linked to corolla shape variation of a pollinator shift in Rhytidophyllum (Gesneriaceae). PLoS One 2022; 17:e0267540. [PMID: 35853078 PMCID: PMC9295946 DOI: 10.1371/journal.pone.0267540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Floral adaptations to specific pollinators like corolla shape variation often result in reproductive isolation and thus speciation. But despite their ecological importance, the genetic bases of corolla shape transitions are still poorly understood, especially outside model species. Hence, our goal was to identify candidate genes potentially involved in corolla shape variation between two closely related species of the Rhytidophyllum genus (Gesneriaceae family) from the Antilles with contrasting pollination strategies. Rhytidophyllum rupincola has a tubular corolla and is strictly pollinated by hummingbirds, whereas R. auriculatum has more open flowers and is pollinated by hummingbirds, bats, and insects. We surveyed the literature and used a comparative transcriptome sequence analysis of synonymous and non-synonymous nucleotide substitutions to obtain a list of genes that could explain floral variation between R. auriculatum and R. rupincola. We then tested their association with corolla shape variation using QTL mapping in a F2 hybrid population. Out of 28 genes tested, three were found to be good candidates because of a strong association with corolla shape: RADIALIS, GLOBOSA, and JAGGED. Although the role of these genes in Rhytidophyllum corolla shape variation remains to be confirmed, these findings are a first step towards identifying the genes that have been under selection by pollinators and thus involved in reproductive isolation and speciation in this genus.
Collapse
Affiliation(s)
- Valérie Poulin
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Delase Amesefe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Emmanuel Gonzalez
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
- Department of Human Genetics, Canadian Centre for Computational Genomics (C3G), McGill University, Montréal, QC, Canada
- Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montréal, QC, Canada
| | - Hermine Alexandre
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Simon Joly
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
- Montreal Botanical Garden, Montréal, Canada
| |
Collapse
|
11
|
Xu K. The genetic basis of selfing rate evolution. Evolution 2022; 76:883-898. [PMID: 35395695 DOI: 10.1111/evo.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
Abstract
Evolution of selfing is common in plant populations, but the genetic basis of selfing rate evolution remains unclear. Although the effects of genetic properties on fixation for mating-unrelated alleles have been investigated, loci that modify the selfing rate (selfing modifiers) differ from mating-unrelated loci in several aspects. Using population genetic models, I investigate the genetic basis of selfing rate evolution. For mating-unrelated alleles, selfing promotes fixation only for recessive mutations, but for selfing modifiers, because the selection coefficient depends on the background selfing rate, selfing can promote fixation even for dominant modifiers. For mating-unrelated alleles, the fixation probability from standing variation is independent of dominance and decreases with an increased background selfing rate. However, for selfing modifiers, the fixation probability peaks at an intermediate selfing rate and when alleles are recessive, because a change of its selection coefficient necessarily involves a change of the inbreeding coefficient, because both depend on the level of inbreeding depression. Furthermore, evolution of selfing involving multiple modifier loci is more likely when selfing is controlled by few large-effect rather than many slight-effect modifiers. I discuss how these characteristics of selfing modifiers have implications for the unidirectional transition from outcrossing to selfing and other empirical patterns.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall, 120 South Road, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
12
|
Liao IT, Rifkin JL, Cao G, Rausher MD. Modularity and selection of nectar traits in the evolution of the selfing syndrome in Ipomoea lacunosa (Convolvulaceae). THE NEW PHYTOLOGIST 2022; 233:1505-1519. [PMID: 34783034 DOI: 10.1111/nph.17863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Although the evolution of the selfing syndrome often involves reductions in floral size, pollen and nectar, few studies of selfing syndrome divergence have examined nectar. We investigate whether nectar traits have evolved independently of other floral size traits in the selfing syndrome, whether nectar traits diverged due to drift or selection, and the extent to which quantitative trait locus (QTL) analyses predict genetic correlations. We use F5 recombinant inbred lines (RILs) generated from a cross between Ipomoea cordatotriloba and Ipomoea lacunosa. We calculate genetic correlations to identify evolutionary modules, test whether trait divergence was due to selection, identify QTLs and perform correlation analyses to evaluate how well QTL properties reflect genetic correlations. Nectar and floral size traits form separate evolutionary modules. Selection has acted to reduce nectar traits in the selfing I. lacunosa. Genetic correlations predicted from QTL properties are consistent with observed genetic correlations. Changes in floral traits associated with the selfing syndrome reflect independent evolution of at least two evolutionary modules: nectar and floral size traits. We also demonstrate directional selection on nectar traits, which is likely to be independent of selection on floral size traits. Our study also supports the expected mechanistic link between QTL properties and genetic correlations.
Collapse
Affiliation(s)
- Irene T Liao
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Department of Molecular, Cell, and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Gongyuan Cao
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
13
|
Outcrossing rates in an experimentally admixed population of self-compatible and self-incompatible Arabidopsis lyrata. Heredity (Edinb) 2022; 128:56-62. [PMID: 34916616 PMCID: PMC8733029 DOI: 10.1038/s41437-021-00489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
The transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tm = 0.78 ± 0.05 SE) than plants from SC populations (mean tm = 0.56 ± 0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.
Collapse
|
14
|
Ding B, Li J, Gurung V, Lin Q, Sun X, Yuan YW. The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii. THE NEW PHYTOLOGIST 2021; 232:2191-2206. [PMID: 34449905 DOI: 10.1111/nph.17702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation. We characterized the role of two classes of leaf adaxial-abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation in Mimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development. Loss of SGS3 function led to reduced style length via limiting cell division, and downregulation of YABBY genes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when both SGS3 and YABBY functions were disrupted. We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Qinghai University, Xining, 810008, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
15
|
Rifkin JL, Cao G, Rausher MD. Genetic architecture of divergence: the selfing syndrome in Ipomoea lacunosa. AMERICAN JOURNAL OF BOTANY 2021; 108:2038-2054. [PMID: 34648660 DOI: 10.1002/ajb2.1749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Highly selfing plant species frequently display a distinctive suite of traits termed the selfing syndrome. Here we tested the hypothesis that these traits are grouped into correlated evolutionary modules and determined the degree of independence between such modules. METHODS We evaluated phenotypic correlations and QTL overlaps in F2 offspring of a cross between the morning glories Ipomoea lacunosa and I. cordatotriloba and investigated how traits clustered into modules at both the phenotypic and genetic level. We then compared our findings to other QTL studies of the selfing syndrome. RESULTS In the I. lacunosa selfing syndrome, traits grouped into modules that displayed correlated evolution within but not between modules. QTL overlap predicted phenotypic correlations, and QTLs affecting the same trait module were significantly physically clustered in the genome. The genetic architecture of the selfing syndrome varied across systems, but the pattern of stronger within- than between-module correlation was widespread. CONCLUSIONS The genetic architecture we observe in the selfing syndrome is consistent with a growing understanding of floral morphological integration achieved via pleiotropy in clustered traits. This view of floral evolution is consistent with resource limitation or predation driving the evolution of the selfing syndrome, but invites further research into both the selective causes of the selfing syndrome and how genetic architecture itself evolves in response to changes in mating system.
Collapse
Affiliation(s)
- Joanna L Rifkin
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Gongyuan Cao
- Department of Biology, Duke University, 124 Science Drive, Durham, NC, 27701, USA
| | - Mark D Rausher
- Department of Biology, Duke University, 124 Science Drive, Durham, NC, 27701, USA
| |
Collapse
|
16
|
Nelson TC, Muir CD, Stathos AM, Vanderpool DD, Anderson K, Angert AL, Fishman L. Quantitative trait locus mapping reveals an independent genetic basis for joint divergence in leaf function, life-history, and floral traits between scarlet monkeyflower (Mimulus cardinalis) populations. AMERICAN JOURNAL OF BOTANY 2021; 108:844-856. [PMID: 34036561 DOI: 10.1002/ajb2.1660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
PREMISE Across taxa, vegetative and floral traits that vary along a fast-slow life-history axis are often correlated with leaf functional traits arrayed along the leaf economics spectrum, suggesting a constrained set of adaptive trait combinations. Such broad-scale convergence may arise from genetic constraints imposed by pleiotropy (or tight linkage) within species, or from natural selection alone. Understanding the genetic basis of trait syndromes and their components is key to distinguishing these alternatives and predicting evolution in novel environments. METHODS We used a line-cross approach and quantitative trait locus (QTL) mapping to characterize the genetic basis of twenty leaf functional/physiological, life history, and floral traits in hybrids between annualized and perennial populations of scarlet monkeyflower (Mimulus cardinalis). RESULTS We mapped both single and multi-trait QTLs for life history, leaf function and reproductive traits, but found no evidence of genetic co-ordination across categories. A major QTL for three leaf functional traits (thickness, photosynthetic rate, and stomatal resistance) suggests that a simple shift in leaf anatomy may be key to adaptation to seasonally dry habitats. CONCLUSIONS Our results suggest that the co-ordination of resource-acquisitive leaf physiological traits with a fast life-history and more selfing mating system results from environmental selection rather than functional or genetic constraint. Independent assortment of distinct trait modules, as well as a simple genetic basis to leaf physiological traits associated with drought escape, may facilitate adaptation to changing climates.
Collapse
Affiliation(s)
- Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Christopher D Muir
- Departments of Botany and Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, 96822, USA
| | - Angela M Stathos
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Daniel D Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Kayli Anderson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Amy L Angert
- Departments of Botany and Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| |
Collapse
|
17
|
Nelson TC, Stathos AM, Vanderpool DD, Finseth FR, Yuan YW, Fishman L. Ancient and recent introgression shape the evolutionary history of pollinator adaptation and speciation in a model monkeyflower radiation (Mimulus section Erythranthe). PLoS Genet 2021; 17:e1009095. [PMID: 33617525 PMCID: PMC7951852 DOI: 10.1371/journal.pgen.1009095] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele sharing (Patterson's D-statistic and related tests) indicate that gene tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.
Collapse
Affiliation(s)
- Thomas C. Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Angela M. Stathos
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Daniel D. Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Findley R. Finseth
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Yao-wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
18
|
Thompson KA, Urquhart-Cronish M, Whitney KD, Rieseberg LH, Schluter D. Patterns, Predictors, and Consequences of Dominance in Hybrids. Am Nat 2021; 197:E72-E88. [PMID: 33625966 DOI: 10.1086/712603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCompared to those of their parents, are the traits of first-generation (F1) hybrids typically intermediate, biased toward one parent, or mismatched for alternative parental phenotypes? To address this empirical gap, we compiled data from 233 crosses in which traits were measured in a common environment for two parent taxa and their F1 hybrids. We find that individual traits in F1s are halfway between the parental midpoint and one parental value. Considering pairs of traits together, a hybrid's bivariate phenotype tends to resemble one parent (parent bias) about 50% more than the other, while also exhibiting a similar magnitude of mismatch due to different traits having dominance in conflicting directions. Using data from an experimental field planting of recombinant hybrid sunflowers, we illustrate that parent bias improves fitness, whereas mismatch reduces fitness. Our study has three major conclusions. First, hybrids are not phenotypically intermediate but rather exhibit substantial mismatch. Second, dominance is likely determined by the idiosyncratic evolutionary trajectories of individual traits and populations. Finally, selection against hybrids likely results from selection against both intermediate and mismatched phenotypes.
Collapse
|
19
|
Gurung V, Yuan YW, Diggle PK. Comparative analysis of corolla tube development across three closely related Mimulus species with different pollination syndromes. Evol Dev 2021; 23:244-255. [PMID: 33410592 DOI: 10.1111/ede.12368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/24/2023]
Abstract
Fusion of petals to form a corolla tube is considered a key innovation contributing to the diversification of many flowering plant lineages. Corolla tube length often varies dramatically among species and is a major determinant of pollinator preference. However, our understanding of the developmental dynamics underlying corolla tube length variation is very limited. Here we examined corolla tube growth in the Mimulus lewisii species complex, an emerging model system for studying the developmental genetics and evo-devo of pollinator-associated floral traits. We compared developmental and cellular processes associated with corolla tube length variation among the bee-pollinated M. lewisii, the hummingbird-pollinated Mimulus verbenaceus, and the self-pollinated Mimulus parishii. We found that in all three species, cell size is non-uniformly distributed along the mature tube, with the longest cells just distal to the stamen insertion site. Differences in corolla tube length among the three species are not associated with processes of organogenesis or early development but are associated with variation in multiple processes occurring later in development, including the location and duration of cell division and cell elongation. The tube growth curves of the small-flowered M. parishii and large-flowered M. lewisii are essentially indistinguishable, except that M. parishii tubes stop growing earlier at a smaller size, suggesting a critical role of heterochrony in the shift from outcrossing to selfing. These results not only highlight the developmental process associated with corolla tube variation among species but also provide a baseline reference for future developmental genetic analyses of mutants or transgenic plants with altered corolla tube morphology in this emerging model system.
Collapse
Affiliation(s)
- Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
20
|
Feng C, Yi H, Yang L, Kang M. The genetic basis of hybrid male sterility in sympatric Primulina species. BMC Evol Biol 2020; 20:49. [PMID: 32349663 PMCID: PMC7191819 DOI: 10.1186/s12862-020-01617-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/21/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Sympatric sister species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain species boundaries. The persistence of morphologically and genetically distinct populations in sympatry can only occur if some degree of reproductive isolation exists. A pair of sympatric sister species of Primulina (P. depressa and P. danxiaensis) was used to explore the genetic architecture of hybrid male sterility. RESULTS We mapped one major- and seven minor-effect quantitative trait loci (QTLs) that underlie pollen fertility rate (PFR). These loci jointly explained 55.4% of the phenotypic variation in the F2 population. A Bateson-Dobzhansky-Muller (BDM) model involving three loci was observed in this system. We found genotypic correlations between hybrid male sterility and flower morphology, consistent with the weak but significant phenotypic correlations between PFR and floral traits. CONCLUSIONS Hybrid male sterility in Primulina is controlled by a polygenic genetic basis with a complex pattern. The genetic incompatibility involves a three-locus BDM model. Hybrid male sterility is genetically correlated with floral morphology and divergence hitchhiking may occur between them.
Collapse
Affiliation(s)
- Chen Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
21
|
Wedger MJ, Topp CN, Olsen KM. Convergent evolution of root system architecture in two independently evolved lineages of weedy rice. THE NEW PHYTOLOGIST 2019; 223:1031-1042. [PMID: 30883803 DOI: 10.1111/nph.15791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/11/2019] [Indexed: 05/13/2023]
Abstract
Root system architecture (RSA) is a critical aspect of plant growth and competitive ability. Here we used two independently evolved strains of weedy rice, a de-domesticated form of rice, to study the evolution of weed-associated RSA traits and the extent to which they evolve through shared or different genetic mechanisms. We characterised 98 two-dimensional and three-dimensional RSA traits in 671 plants representing parents and descendants of two recombinant inbred line populations derived from two weed × crop crosses. A random forest machine learning model was used to assess the degree to which root traits can predict genotype and the most diagnostic traits for doing so. We used quantitative trait locus (QTL) mapping to compare genetic architecture between the weed strains. The two weeds were distinguishable from the crop in similar and predictable ways, suggesting independent evolution of a 'weedy' RSA phenotype. Notably, comparative QTL mapping revealed little evidence for shared underlying genetic mechanisms. Our findings suggest that despite the double bottlenecks of domestication and de-domestication, weedy rice nonetheless shows genetic flexibility in the repeated evolution of weedy RSA traits. Whereas the root growth of cultivated rice may facilitate interactions among neighbouring plants, the weedy rice phenotype may minimise below-ground contact as a competitive strategy.
Collapse
Affiliation(s)
- Marshall J Wedger
- Biology Department, Campus Box 1137, Washington University in St Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| | - Christopher N Topp
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Kenneth M Olsen
- Biology Department, Campus Box 1137, Washington University in St Louis, 1 Brookings Dr., St Louis, MO, 63130, USA
| |
Collapse
|
22
|
Rifkin JL, Liao IT, Castillo AS, Rausher MD. Multiple aspects of the selfing syndrome of the morning glory Ipomoea lacunosa evolved in response to selection: A Qst-Fst comparison. Ecol Evol 2019; 9:7712-7725. [PMID: 31346434 PMCID: PMC6635925 DOI: 10.1002/ece3.5329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 01/05/2023] Open
Abstract
The frequent transition from outcrossing to selfing in flowering plants is often accompanied by changes in multiple aspects of floral morphology, termed the "selfing syndrome." While the repeated evolution of these changes suggests a role for natural selection, genetic drift may also be responsible. To determine whether selection or drift shaped different aspects of the pollination syndrome and mating system in the highly selfing morning glory Ipomoea lacunosa, we performed multivariate and univariate Qst-Fst comparisons using a wide sample of populations of I. lacunosa and its mixed-mating sister species Ipomoea cordatotriloba. The two species differ in early growth, floral display, inflorescence traits, corolla size, nectar, and pollen number. Our analyses support a role for natural selection driving trait divergence, specifically in corolla size and nectar traits, but not in early growth, display size, inflorescence length, or pollen traits. We also find evidence of selection for reduced herkogamy in I. lacunosa, consistent with selection driving both the transition in mating system and the correlated floral changes. Our research demonstrates that while some aspects of the selfing syndrome evolved in response to selection, others likely evolved due to drift or correlated selection, and the balance between these forces may vary across selfing species.
Collapse
Affiliation(s)
| | - Irene T. Liao
- Department of BiologyDuke UniversityDurhamNorth Carolina
| | | | | |
Collapse
|
23
|
Yuan YW. Monkeyflowers (Mimulus): new model for plant developmental genetics and evo-devo. THE NEW PHYTOLOGIST 2019; 222:694-700. [PMID: 30471231 DOI: 10.1111/nph.15560] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Contents Summary 694 I. Introduction 694 II. The system 695 III. Regulation of carotenoid pigmentation 695 IV. Formation of periodic pigmentation patterns 696 V. Developmental genetics of corolla tube formation and elaboration 697 VI. Molecular basis of floral trait variation underlying pollinator shift 698 VII. Outlook 699 Acknowledgements 699 References 699 SUMMARY: Monkeyflowers (Mimulus) have long been recognized as a classic ecological and evolutionary model system. However, only recently has it been realized that this system also holds great promise for studying the developmental genetics and evo-devo of important plant traits that are not found in well-established model systems such as Arabidopsis. Here, I review recent progress in four different areas of plant research enabled by this new model, including transcriptional regulation of carotenoid biosynthesis, formation of periodic pigmentation patterns, developmental genetics of corolla tube formation and elaboration, and the molecular basis of floral trait divergence underlying pollinator shift. These examples suggest that Mimulus offers ample opportunities to make exciting discoveries in plant development and evolution.
Collapse
Affiliation(s)
- Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
24
|
Genetic architecture of quantitative flower and leaf traits in a pair of sympatric sister species of Primulina. Heredity (Edinb) 2018; 122:864-876. [PMID: 30518967 DOI: 10.1038/s41437-018-0170-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023] Open
Abstract
Flowers and leaves each represent suites of functionally interrelated traits that are often involved in species divergence and local adaptation. However, a major unresolved issue is how the individual component traits that make up a complex trait such as a flower evolve in a coordinated fashion to retain a high degree of functionality. We use a quantitative trait loci (QTL) approach to elucidate the genetic architecture of divergence in flower and leaf traits between the sister species Primulina depressa and Primulina danxiaensis, which grow sympatrically but in contrasting microhabitats. We found that flower traits were controlled by multiple QTL of small effect, while leaf physiological and morphological traits tended to be controlled by QTL of larger effect. The observed floral integration, manifested by a high degree overlap in both individual trait QTL and QTL for principal component scores (PCA QTL), may have been critical for evolutionary divergence of floral morphology in relation to their pollinators. This overlap suggests that direct selection on only one or a few of the component traits could have caused substantial divergence in other floral traits due to genetic correlations, while the low QTL overlap between floral and vegetative traits suggests that these trait suites are genetically unlinked and can evolve independently in response to different selective pressures corresponding to their distinct functions.
Collapse
|
25
|
Liu X, Karrenberg S. Genetic architecture of traits associated with reproductive barriers in Silene: Coupling, sex chromosomes and variation. Mol Ecol 2018; 27:3889-3904. [PMID: 29577481 DOI: 10.1111/mec.14562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
The evolution of reproductive barriers and their underlying genetic architecture is of central importance for the formation of new species. Reproductive barriers can be controlled either by few large-effect loci suggesting strong selection on key traits, or by many small-effect loci, consistent with gradual divergence or with selection on polygenic or multiple traits. Genetic coupling between reproductive barrier loci further promotes divergence, particularly divergence with ongoing gene flow. In this study, we investigated the genetic architectures of ten morphological, phenological and life history traits associated with reproductive barriers between the hybridizing sister species Silene dioica and S. latifolia; both are dioecious with XY-sex determination. We used quantitative trait locus (QTL) mapping in two reciprocal F2 crosses. One to six QTLs per trait, including nine major QTLs (PVE > 20%), were detected on 11 of the 12 linkage groups. We found strong evidence for coupling of QTLs for uncorrelated traits and for an important role of sex chromosomes in the genetic architectures of reproductive barrier traits. Unexpectedly, QTLs detected in the two F2 crosses differed largely, despite limited phenotypic differences between them and sufficient statistical power. The widely dispersed genetic architectures of traits associated with reproductive barriers suggest gradual divergence or multifarious selection. Coupling of the underlying QTLs likely promoted divergence with gene flow in this system. The low congruence of QTLs between the two crosses further points to variable and possibly redundant genetic architectures of traits associated with reproductive barriers, with important implications for the evolutionary dynamics of divergence and speciation.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Campitelli BE, Kenney AM, Hopkins R, Soule J, Lovell JT, Juenger TE. Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata). Mol Biol Evol 2017; 35:807-822. [DOI: 10.1093/molbev/msx318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brandon E Campitelli
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Amanda M Kenney
- Biotechnology Risk Analysis Programs, USDA-APHIS-BRS, Riverdale, MD
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Robin Hopkins
- Department of Organismic and Evolution Biology, Harvard University, Boston, MA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Jacob Soule
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - John T Lovell
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
| |
Collapse
|
27
|
Hsu HC, Wang CN, Liang CH, Wang CC, Kuo YF. Association between Petal Form Variation and CYC2-like Genotype in a Hybrid Line of Sinningia speciosa. FRONTIERS IN PLANT SCIENCE 2017; 8:558. [PMID: 28458679 PMCID: PMC5394160 DOI: 10.3389/fpls.2017.00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 05/20/2023]
Abstract
This study used three-dimensional (3D) micro-computed tomography (μCT) imaging to examine petal form variation in a hybrid cross of Sinningia speciosa between a cultivar with actinomorphic flowers and a variety with zygomorphic flowers. The major objectives were to determine the genotype-phenotype associations between the petal form variation and CYCLOIDEA2-like alleles in S. speciosa (SsCYC) and to morphologically investigate the differences in petal types between actinomorphic and zygomorphic flowers. In this study, μCT was used to accurately acquire 3D floral images. Landmark-based geometric morphometrics (GM) was applied to evaluate the major form variations of the petals. Nine morphological traits of the petals were defined according to the form variations quantified through the GM analysis. The results indicated that the outward curvature of dorsal petals, the midrib asymmetry of lateral petals, and the dilation of ventral region of the tube were closely associated with the SsCYC genotype. Multiple analyses of form similarity between the petals suggested that the dorsal and ventral petals of actinomorphic plants resembled the ventral petals of zygomorphic plants. This observation indicated that the transition from zygomorphic to actinomorphic flowers in S. speciosa might be caused by the ventralization of the dorsal petals. We demonstrated that the 3D-GM approach can be used to determine genotype-phenotype associations and to provide morphological evidence for the transition of petal types between actinomorphic and zygomorphic flowers in S. speciosa.
Collapse
Affiliation(s)
- Hao-Chun Hsu
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipei, Taiwan
- Department of Life Science, National Taiwan UniversityTaipei, Taiwan
| | - Chia-Hao Liang
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Cheng-Chun Wang
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Yan-Fu Kuo
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
28
|
|
29
|
Ferris KG, Barnett LL, Blackman BK, Willis JH. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex. Mol Ecol 2016; 26:208-224. [PMID: 27439150 DOI: 10.1111/mec.13763] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023]
Abstract
The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects.
Collapse
Affiliation(s)
- Kathleen G Ferris
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Laryssa L Barnett
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - John H Willis
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| |
Collapse
|
30
|
Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P, Fishman L. The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in Yellowstone Mimulus guttatus. Mol Ecol 2016; 25:5647-5662. [PMID: 27393073 DOI: 10.1111/mec.13753] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Microgeographic adaptation provides a particularly interesting context for understanding the genetic basis of phenotypic divergence and may also present unique empirical challenges. In particular, plant adaptation to extreme soil mosaics may generate barriers to gene flow or shifts in mating system that confound simple genomic scans for adaptive loci. Here, we combine three approaches - quantitative trait locus (QTL) mapping of candidate intervals in controlled crosses, population resequencing (PoolSeq) and analyses of wild recombinant individuals - to investigate one trait associated with Mimulus guttatus (yellow monkeyflower) adaptation to geothermal soils in Yellowstone National Park. We mapped a major QTL causing dense leaf trichomes in thermally adapted plants to a <50-kb region of linkage Group 14 (Tr14) previously implicated in trichome divergence between independent M. guttatus populations. A PoolSeq scan of Tr14 region revealed a cluster of six genes, coincident with the inferred QTL peak, with high allele frequency differences sufficient to explain observed phenotypic differentiation. One of these, the R2R3 MYB transcription factor Migut.N02661, is a plausible functional candidate and was also strongly associated (r2 = 0.27) with trichome phenotype in analyses of wild-collected admixed individuals. Although functional analyses will be necessary to definitively link molecular variants in Tr14 with trichome divergence, our analyses are a major step in that direction. They point to a simple, and parallel, genetic basis for one axis of Mimulus guttatus adaptation to an extreme habitat, suggest a broadly conserved genetic basis for trichome variation across flowering plants and pave the way for further investigations of this challenging case of microgeographic incipient speciation.
Collapse
Affiliation(s)
- Margaret F Hendrick
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA.,Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Boston, MA, 02215, USA
| | - Findley R Finseth
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Minna E Mathiasson
- School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, ME, 04469, USA
| | - Kristen A Palmer
- Department of Biology, Wheaton College, 26 E. Main St., Norton, MA, 02766, USA
| | - Emma M Broder
- Biology Department, Wesleyan University, 45 Wyllys Ave., Middletown, CT, 06259, USA
| | - Peter Breigenzer
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| |
Collapse
|
31
|
Arunkumar R, Maddison TI, Barrett SCH, Wright SI. Recent mating-system evolution in Eichhornia is accompanied by cis-regulatory divergence. THE NEW PHYTOLOGIST 2016; 211:697-707. [PMID: 26990568 DOI: 10.1111/nph.13918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
The evolution of predominant self-fertilization from cross-fertilization in plants is accompanied by diverse changes to morphology, ecology and genetics, some of which likely result from regulatory changes in gene expression. We examined changes in gene expression during early stages in the transition to selfing in populations of animal-pollinated Eichhornia paniculata with contrasting mating patterns. We crossed plants from outcrossing and selfing populations and tested for the presence of allele-specific expression (ASE) in floral buds and leaf tissue of F1 offspring, indicative of cis-regulatory changes. We identified 1365 genes exhibiting ASE in floral buds and leaf tissue. These genes preferentially expressed alleles from outcrossing parents. Moreover, we found evidence that genes exhibiting ASE had a greater nonsynonymous diversity compared to synonymous diversity in the selfing parents. Our results suggest that the transition from outcrossing to high rates of self-fertilization may have the potential to shape the cis-regulatory genomic landscape of angiosperm species, but that the changes in ASE may be moderate, particularly during the early stages of this transition.
Collapse
Affiliation(s)
- Ramesh Arunkumar
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Teresa I Maddison
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
32
|
Garner AG, Kenney AM, Fishman L, Sweigart AL. Genetic loci with parent-of-origin effects cause hybrid seed lethality in crosses between Mimulus species. THE NEW PHYTOLOGIST 2016; 211:319-31. [PMID: 26924810 DOI: 10.1111/nph.13897] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/23/2015] [Indexed: 05/09/2023]
Abstract
In flowering plants, F1 hybrid seed lethality is a common outcome of crosses between closely related diploid species, but the genetic basis of this early-acting and potentially widespread form of postzygotic reproductive isolation is largely unknown. We intercrossed two closely related species of monkeyflower, Mimulus guttatus and Mimulus tilingii, to characterize the mechanisms and strength of postzygotic reproductive isolation. Then, using a reciprocal backcross design, we performed high-resolution genetic mapping to determine the genetic architecture of hybrid seed lethality and directly test for loci with parent-of-origin effects. We found that F1 hybrid seed lethality is an exceptionally strong isolating barrier between Mimulus species, with reciprocal crosses producing < 1% viable seeds. This form of postzygotic reproductive isolation appears to be highly polygenic, indicating that multiple incompatibility loci have accumulated rapidly between these closely related Mimulus species. It is also primarily caused by genetic loci with parent-of-origin effects, suggesting a possible role for imprinted genes in the evolution of Mimulus hybrid seed lethality. Our findings suggest that divergence in loci with parent-of-origin effects, which is probably driven by genomic coevolution within lineages, might be an important source of hybrid incompatibilities between flowering plant species.
Collapse
Affiliation(s)
- Austin G Garner
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Amanda M Kenney
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, St Edwards University, Austin, TX, 78704, USA
| | - Lila Fishman
- Department of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
33
|
Wessinger CA, Hileman LC. Accessibility, constraint, and repetition in adaptive floral evolution. Dev Biol 2016; 419:175-183. [PMID: 27153988 DOI: 10.1016/j.ydbio.2016.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Adaptive phenotypic evolution is shaped by natural selection on multiple organismal traits as well as by genetic correlations among traits. Genetic correlations can arise through pleiotropy and can bias the production of phenotypic variation to certain combinations of traits. This phenomenon is referred to as developmental bias or constraint. Developmental bias may accelerate or constrain phenotypic evolution, depending on whether selection acts parallel or in opposition to genetic correlations among traits. We discuss examples from floral evolution where genetic correlations among floral traits contribute to rapid, coordinated evolution in multiple floral organ phenotypes and suggest future research directions that will explore the relationship between the genetic basis of adaptation and the pre-existing structure of genetic correlations. On the other hand, natural selection may act perpendicular to a strong genetic correlation, for example when two traits are encoded by a subset of the same genes and natural selection favors change in one trait and stability in the second trait. In such cases, adaptation is constrained by the availability of genetic variation that can influence the focal trait with minimal pleiotropic effects. Examples from plant diversification suggest that the origin of certain adaptations depends on the prior evolution of a gene copy with reduced pleiotropic effects, generated through the process of gene duplication followed by subfunctionalization or neofunctionalization. A history of gene duplication in some developmental pathways appears to have allowed particular flowering plant linages to have repeatedly evolved adaptations that might otherwise have been developmentally constrained.
Collapse
Affiliation(s)
- Carolyn A Wessinger
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66044, United States.
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66044, United States.
| |
Collapse
|
34
|
Steige KA, Reimegård J, Koenig D, Scofield DG, Slotte T. Cis-Regulatory Changes Associated with a Recent Mating System Shift and Floral Adaptation in Capsella. Mol Biol Evol 2015; 32:2501-14. [PMID: 26318184 PMCID: PMC4576713 DOI: 10.1093/molbev/msv169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The selfing syndrome constitutes a suite of floral and reproductive trait changes that have evolved repeatedly across many evolutionary lineages in response to the shift to selfing. Convergent evolution of the selfing syndrome suggests that these changes are adaptive, yet our understanding of the detailed molecular genetic basis of the selfing syndrome remains limited. Here, we investigate the role of cis-regulatory changes during the recent evolution of the selfing syndrome in Capsella rubella, which split from the outcrosser Capsella grandiflora less than 200 ka. We assess allele-specific expression (ASE) in leaves and flower buds at a total of 18,452 genes in three interspecific F1 C. grandiflora x C. rubella hybrids. Using a hierarchical Bayesian approach that accounts for technical variation using genomic reads, we find evidence for extensive cis-regulatory changes. On average, 44% of the assayed genes show evidence of ASE; however, only 6% show strong allelic expression biases. Flower buds, but not leaves, show an enrichment of cis-regulatory changes in genomic regions responsible for floral and reproductive trait divergence between C. rubella and C. grandiflora. We further detected an excess of heterozygous transposable element (TE) insertions near genes with ASE, and TE insertions targeted by uniquely mapping 24-nt small RNAs were associated with reduced expression of nearby genes. Our results suggest that cis-regulatory changes have been important during the recent adaptive floral evolution in Capsella and that differences in TE dynamics between selfing and outcrossing species could be important for rapid regulatory divergence in association with mating system shifts.
Collapse
Affiliation(s)
- Kim A Steige
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Douglas G Scofield
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala Sweden
| | - Tanja Slotte
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|