1
|
Dudka D, Nguyen AL, Boese KG, Marescal O, Akins RB, Black BE, Cheeseman IM, Lampson MA. Adaptive evolution of CENP-T modulates centromere binding. Curr Biol 2025; 35:1012-1022.e5. [PMID: 39947176 PMCID: PMC11903153 DOI: 10.1016/j.cub.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Centromeric DNA and proteins evolve rapidly despite conserved function in mediating kinetochore-microtubule attachments during cell division. This paradox is explained by selfish DNA sequences preferentially binding centromeric proteins to disrupt attachments and bias their segregation into the egg (drive) during female meiosis. Adaptive centromeric protein evolution is predicted to prevent preferential binding to these sequences and suppress drive. Here, we test this prediction by defining the impact of adaptive evolution of the DNA-binding histone fold domain of CENP-T, a major link between centromeric DNA and microtubules. We reversed adaptive changes by creating chimeric variants of mouse CENP-T with the histone fold domain from closely related species, expressed exogenously in mouse oocytes or in a transgenic mouse model. We show that adaptive evolution of mouse CENP-T reduced centromere binding, which supports robust female gametogenesis. However, this innovation is independent of the centromeric DNA sequence, as shown by comparing the binding of divergent CENP-T variants to distinct centromere satellite arrays in mouse oocytes and in somatic cells from other species. Overall, our findings support a model in which selfish sequences drive to fixation, disrupting attachments of all centromeres to the spindle. DNA sequence-specific innovations are not needed to mitigate fitness costs in this model, so centromeric proteins adapt by modulating their binding to all centromeres in the aftermath of drive.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra L Nguyen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Katelyn G Boese
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Océane Marescal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - R Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Tang Z, Liu Q, Pan Z, Liu C, Dong J, Han F, Fu S. Stable minichromosome and functional neocentromere derived from rye 7R chromosome arm. BMC PLANT BIOLOGY 2024; 24:1185. [PMID: 39695363 DOI: 10.1186/s12870-024-05918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The study of newly formed centromere with stable transmission ability can provide theoretical guidance for the construction of artificial chromosomes. More neocentromeres are needed to study the mechanisms of their formation. RESULTS In this study, a minichromosome 7RLmini was derived from the progeny of wheat-rye 7R monosomic addition line. The minichromosome 7RLmini contained subtelomeric tandem repeats pSc119.2 and rye-specific pSc200, and it came from the distal region of the long arm of 7R chromosome. A neocentromere was formed in this minichromosome, and it did not contain centromeric repetitive sequences CCS1 and pAWRC.1. CENH3 ChIP-seq and ssDRIP-seq data confirmed that a 2.4 Mb segment from the rye 7R chromosome was involved in the neocentromere formation and enrichment of R-loops in this region. Within the 2.4 Mb segment, the GC content was higher that of AT, and a major binding position of CENH3 nucleosomes was identified on a 6 kb unknown LTR retrotransposon TE00002448. This unknown LTR retrotransposon was rye-specific and distributed through all the arms of rye chromosomes. The minichromosome exhibited stable generational transmission. CONCLUSION A minichromosome from rye 7R with neocentromere was obtained in this study and the neocentromere was formed at the position far away from its native equivalent. This minichromosome provides additional material for the research on the mechanism of neocentromere formation. We theorize that R-loops and transposable element might be involved in the positioning of CENH3 nucleosomes in a functional neocentromere.
Collapse
Affiliation(s)
- Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zijin Pan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jieran Dong
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
3
|
Evtushenko EV, Gatzkaya SS, Stepochkin PI, Vershinin AV. The Parental Centromere Sizes Remain Unaltered in Allopolyploid Wheat-Rye Hybrids. Cytogenet Genome Res 2024; 164:170-180. [PMID: 39353403 DOI: 10.1159/000541705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION In chromatin nucleosomes, the presence - instead of canonical histone H3 - of its variant, CENH3 (in plants), is considered the most reliable marker of the location of centromeres. In this study, we investigated the effects of distant hybridization and maternal cytoplasm on centromere size in allopolyploid hybrids between wheat and rye as compared to their parental forms. METHODS Centromere sizes were measured using 2D images of CENH3 fluorescent signals on interphase nuclei obtained from parental forms and a triticale hybrid (genomic formula AABBBRR), in which the maternal form is wheat and secalotriticum hybrids (genomic formula RRAABBB) in which the maternal form is rye. For measurements, we selected the largest spherical nuclei with large nucleoli in the late G2 phase, in which most of the loading of CENH3 into centromeric chromatin takes place. RESULTS When processing the results of the measurement of centromere sizes in the hybrids, the obtained values were compared with those expected for the case of no change in centromere sizes in any of the parental sets of chromosomes. We found no significant differences between expected and measured values. CONCLUSION We believe that, in the case of allopolyploid hybrids between wheat and rye, centromeres of chromosomes from the parental species retain the sizes formed during evolution. This conservatism may be promoted by the high similarity in the structure of the CENH3 molecules between these species.
Collapse
Affiliation(s)
- Elena V Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Sima S Gatzkaya
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Petr I Stepochkin
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
| | - Alexander V Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
4
|
Liu C, Fu S, Yi C, Liu Y, Huang Y, Guo X, Zhang K, Liu Q, Birchler JA, Han F. Unveiling the distinctive traits of functional rye centromeres: minisatellites, retrotransposons, and R-loop formation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1989-2002. [PMID: 38805064 DOI: 10.1007/s11427-023-2524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024]
Abstract
Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye centromeric DNA sequences, particularly in centromere identity, remains unclear. In this study, we comprehensively characterized the sequence composition and organization of rye centromeres. Our findings revealed that these centromeres are primarily composed of long terminal repeat retrotransposons (LTR-RTs) and interspersed minisatellites. We systematically classified LTR-RTs into five categories, highlighting the prevalence of younger CRS1, CRS2, and CRS3 of CRSs (centromeric retrotransposons of Secale cereale) were primarily located in the core centromeres and exhibited a higher association with CENH3 nucleosomes. The minisatellites, mainly derived from retrotransposons, along with CRSs, played a pivotal role in establishing functional centromeres in rye. Additionally, we observed the formation of R-loops at specific regions of CRS1, CRS2, and CRS3, with both rye pericentromeres and centromeres exhibiting enrichment in R-loops. Notably, these R-loops selectively formed at binding regions of the CENH3 nucleosome in rye centromeres, suggesting a potential role in mediating the precise loading of CENH3 to centromeres and contributing to centromere specification. Our work provides insights into the DNA sequence composition, distribution, and potential function of R-loops in rye centromeres. This knowledge contributes valuable information to understanding the genetics and epigenetics of rye centromeres, offering implications for the development of synthetic centromeres in future plant modifications and beyond.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Fu
- Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Science, University of Missouri, Columbia, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Takeuchi H, Nagahara S, Higashiyama T, Berger F. The Chaperone NASP Contributes to de Novo Deposition of the Centromeric Histone Variant CENH3 in Arabidopsis Early Embryogenesis. PLANT & CELL PHYSIOLOGY 2024; 65:1135-1148. [PMID: 38597891 PMCID: PMC11287212 DOI: 10.1093/pcp/pcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The centromere is an essential chromosome region where the kinetochore is formed to control equal chromosome distribution during cell division. The centromere-specific histone H3 variant CENH3 (also called CENP-A) is a prerequisite for the kinetochore formation. Since CENH3 evolves rapidly, associated factors, including histone chaperones mediating the deposition of CENH3 on the centromere, are thought to act through species-specific amino acid sequences. The functions and interaction networks of CENH3 and histone chaperons have been well-characterized in animals and yeasts. However, molecular mechanisms involved in recognition and deposition of CENH3 are still unclear in plants. Here, we used a swapping strategy between domains of CENH3 of Arabidopsis thaliana and the liverwort Marchantia polymorpha to identify specific regions of CENH3 involved in targeting the centromeres and interacting with the general histone H3 chaperone, nuclear autoantigenic sperm protein (NASP). CENH3's LoopN-α1 region was necessary and sufficient for the centromere targeting in cooperation with the α2 region and was involved in interaction with NASP in cooperation with αN, suggesting a species-specific CENH3 recognition. In addition, by generating an Arabidopsis nasp knock-out mutant in the background of a fully fertile GFP-CENH3/cenh3-1 line, we found that NASP was implicated for de novo CENH3 deposition after fertilization and thus for early embryo development. Our results imply that the NASP mediates the supply of CENH3 in the context of the rapidly evolving centromere identity in land plants.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna 1030, Austria
| |
Collapse
|
6
|
Yıldız Akkamış H, Tek AL. Immunodetection of tubulin and centromeric histone H3 (CENH3) proteins in Glycine species. Mol Biol Rep 2024; 51:792. [PMID: 39001981 DOI: 10.1007/s11033-024-09730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/16/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The centromeres appear as primary constrictions on monocentric metaphase chromosomes; where sister chromatids are held together and assemble the proteinaceous kitechore complex at which microtubule proteins attach during nuclear divisions for pulling sister chromatids to opposite cell poles. The movement of chromosomes is usually governed by structural proteins that are either species-specific or highly conserved, such as the centromere-specific histone H3 (CENH3) and tubulin proteins, respectively. METHODS AND RESULTS We aimed to detect these proteins across eight different Glycine species by an immunofluorescence assay using specific antibodies. Furthermore, with the α-tubulin antibody we traced the dynamics of microtubules during the mitotic cell cycle in Glycine max. With two-color immunofluorescence staining, we showed that both proteins interact during nuclear division. CONCLUSIONS Finally, we proved that in different diploid and tetraploid Glycine species CENH3 can be detected in functional centromeres with spatial proximity of microtubule proteins.
Collapse
Affiliation(s)
- Hümeyra Yıldız Akkamış
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, 51240, Turkey
| | - Ahmet L Tek
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, 51240, Turkey.
| |
Collapse
|
7
|
Karimi-Ashtiyani R, Banaei-Moghaddam AM, Ishii T, Weiss O, Fuchs J, Schubert V, Houben A. Centromere sequence-independent but biased loading of subgenome-specific CENH3 variants in allopolyploid Arabidopsis suecica. PLANT MOLECULAR BIOLOGY 2024; 114:74. [PMID: 38874679 PMCID: PMC11178584 DOI: 10.1007/s11103-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Centromeric nucleosomes are determined by the replacement of the canonical histone H3 with the centromere-specific histone H3 (CENH3) variant. Little is known about the centromere organization in allopolyploid species where different subgenome-specific CENH3s and subgenome-specific centromeric sequences coexist. Here, we analyzed the transcription and centromeric localization of subgenome-specific CENH3 variants in the allopolyploid species Arabidopsis suecica. Synthetic A. thaliana x A. arenosa hybrids were generated and analyzed to mimic the early evolution of A. suecica. Our expression analyses indicated that CENH3 has generally higher expression levels in A. arenosa compared to A. thaliana, and this pattern persists in the hybrids. We also demonstrated that despite a different centromere DNA composition, the centromeres of both subgenomes incorporate CENH3 encoded by both subgenomes, but with a positive bias towards the A. arenosa-type CENH3. The intermingled arrangement of both CENH3 variants demonstrates centromere plasticity and may be an evolutionary adaption to handle more than one CENH3 variant in the process of allopolyploidization.
Collapse
Affiliation(s)
- Raheleh Karimi-Ashtiyani
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 1497713111, Iran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Ali Mohammad Banaei-Moghaddam
- Laboratory of Genomics and Epigenomics (LGE), Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 1417614335, Iran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Takayoshi Ishii
- Arid Land Research Center (ALRC), Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Oda Weiss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
8
|
Chang Y, Tang H, Wang S, Li X, Huang P, Zhang J, Wang K, Yan Y, Ye X. Efficient induction and rapid identification of haploid grains in tetraploid wheat by editing genes TtMTL and pyramiding anthocyanin markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1346364. [PMID: 38567139 PMCID: PMC10985189 DOI: 10.3389/fpls.2024.1346364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Doubled haploid (DH) technology provides an effective way to generate homozygous genetic and breeding materials over a short period of time. We produced three types of homozygous TtMTL gene-edited mutants (mtl-a, mtl-b, and mtl-ab) by CRISPR/Cas9 in durum wheat. PCR restriction enzymes and sequencing confirmed that the editing efficiency was up to 53.5%. The seed-setting rates of the three types of mutants ranged from 20% to 60%. Abnormal grain phenotypes of kernel, embryo, and both embryo and endosperm abortions were observed in the progenies of the mutants. The average frequency of embryo-less grains was 25.3%. Chromosome counting, guard cell length, and flow cytometry confirmed that the haploid induction rate was in the range of 3%-21% in the cross- and self-pollinated progenies of the mtl mutants (mtl-a and mtl-ab). Furthermore, we co-transformed two vectors, pCRISPR/Cas9-MTL and pBD68-(ZmR + ZmC1), into durum wheat, to pyramide Ttmtl-edited mutations and embryo-specifically expressed anthocyanin markers, and developed a homozygous durum haploid inducer with purple embryo (DHIPE). Using DHIPE as the male parent to be crossed with the wild-type Kronos, the grains with white embryos were identified as haploid, while the grains with purple embryos were diploid. These findings will promote the breeding of new tetraploid wheat varieties.
Collapse
Affiliation(s)
- Yanan Chang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environment Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Huali Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peipei Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environment Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Mihók E, Polgári D, Lenykó-Thegze A, Makai D, Fábián A, Ali M, Kis A, Sepsi A, Sági L. Plasticity of parental CENH3 incorporation into the centromeres in wheat × barley F1 hybrids. FRONTIERS IN PLANT SCIENCE 2024; 15:1324817. [PMID: 38313805 PMCID: PMC10834757 DOI: 10.3389/fpls.2024.1324817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Incorporating the centromere-specific histone H3 protein CENH3 into the centromeric nucleosomes is indispensable for accurate centromere function and balanced chromosome segregation in most eukaryotes, including higher plants. In the cell nuclei of interspecific hybrids, divergent centromeric DNAs cohabit and lead the corresponding parental chromosomes through the mitotic and meiotic cell divisions. Depending on the transmission of the parental chromosomes carrying the CENH3-encoding genes, CENH3 proteins from one or both parents may be present in these hybrids. The incorporation of parental CENH3 proteins into the divergent centromeres and their role in the chromosome elimination process in interspecific hybrids is still poorly understood. Here, we produced wheat × barley F1 hybrids that carried different combinations of barley chromosomes with genes encoding for either one (αCENH3) or both barley CENH3 protein variants (α- and βCENH3). We generated specific antibodies distinguishing between the wheat CENH3 proteins and barley αCENH3 and applied them together with FISH probes to detect the precise pattern of parental CENH3 deposition into the wheat and barley centromeric nucleosomes. Analysis of somatic and meiotic nuclei of the wheat × barley hybrids revealed the plasticity of the maternal (wheat) CENH3 proteins to become incorporated into the paternal (barley) centromeric nucleosomes. However, no evidence for paternal CENH3 plasticity was detected in this study. The significance of the unilateral centromere plasticity and possible patterns of CENH3 incorporation into centromeres in interspecific hybrids are discussed.
Collapse
Affiliation(s)
- Edit Mihók
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Dávid Polgári
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, Hungary
| | - Andrea Lenykó-Thegze
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - Diána Makai
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Attila Fábián
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - Mohammad Ali
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - András Kis
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Adél Sepsi
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
10
|
Goyal L, Kaur M, Mandal M, Panda D, Karmakar S, Molla KA, Bhatia D. Potential gene editing targets for developing haploid inducer stocks in rice and wheat with high haploid induction frequency. 3 Biotech 2024; 14:14. [PMID: 38111612 PMCID: PMC10725411 DOI: 10.1007/s13205-023-03857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Doubled haploid (DH) breeding is a powerful technique to ensure global food security via accelerated crop improvement. DH can be produced in planta by employing haploid inducer stock (HIS). Widely used HIS in maize is known to be governed by ZmPLA, ZmDMP, ZmPLD3, and ZmPOD65 genes. To develop such HIS in rice and wheat, we have identified putative orthologs of these genes using in silico approaches. The OsPLD1; TaPLD1, and OsPOD6; TaPOD8 were identified as putative orthologs of ZmPLD3 and ZmPOD65 in rice and wheat, respectively. Despite being closely related to ZmPLD3, OsPLD1 and TaPLD1 have shown higher anther-specific expression. Similarly, OsPOD6 and TaPOD8 were found closely related to the ZmPOD65 based on both phylogenetic and expression analysis. However, unlike ZmPLD3 and ZmPOD65, two ZmDMP orthologs have been found for each crop. OsDMP1 and OsDMP2 in rice and TaDMP3 and TaDMP13 in wheat have shown similarity to ZmDMP in terms of both sequence and expression pattern. Furthermore, analogs to maize DMP proteins, these genes possess four transmembrane helices making them best suited to be regarded as ZmDMP orthologs. Modifying these predicted orthologous genes by CRISPR/Cas9-based genome editing can produce a highly efficient HIS in both rice and wheat. Besides revealing the genetic mechanism of haploid induction, the development of HIS would advance the genetic improvement of these crops. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03857-9.
Collapse
Affiliation(s)
- Lakshay Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Mehardeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Meghna Mandal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | - Subhasis Karmakar
- ICAR-National Rice Research Institute, Cuttack, Odisha 753 006 India
| | | | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| |
Collapse
|
11
|
Liu C, Huang Y, Guo X, Yi C, Liu Q, Zhang K, Zhu C, Liu Y, Han F. Young retrotransposons and non-B DNA structures promote the establishment of dominant rye centromere in the 1RS.1BL fused centromere. THE NEW PHYTOLOGIST 2024; 241:607-622. [PMID: 37897058 DOI: 10.1111/nph.19359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congle Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Qiu Y, Han Z, Liu N, Yu M, Zhang S, Chen H, Tang H, Zhao Z, Wang K, Lin Z, Han F, Ye X. Effects of Aegilops longissima chromosome 1S l on wheat bread-making quality in two types of translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:2. [PMID: 38072878 DOI: 10.1007/s00122-023-04504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Two wheat-Ae. longissima translocation chromosomes (1BS·1SlL and 1SlS·1BL) were transferred into three commercial wheat varieties, and the new advanced lines showed improved bread-making quality compared to their recurrent parents. Aegilops longissima chromosome 1Sl encodes specific types of gluten subunits that may positively affect wheat bread-making quality. The most effective method of introducing 1Sl chromosomal fragments containing the target genes into wheat is chromosome translocation. Here, a wheat-Ae. longissima 1BS·1SlL translocation line was developed using molecular marker-assisted chromosome engineering. Two types of translocation chromosomes developed in a previous study, 1BS·1SlL and 1SlS·1BL, were introduced into three commercial wheat varieties (Ningchun4, Ningchun50, and Westonia) via backcrossing with marker-assisted selection. Advanced translocation lines were confirmed through chromosome in situ hybridization and genotyping by target sequencing using the wheat 40 K system. Bread-making quality was found to be improved in the two types of advanced translocation lines compared to the corresponding recurrent parents. Furthermore, 1SlS·1BL translocation lines displayed better bread-making quality than 1BS·1SlL translocation lines in each genetic background. Further analysis revealed that high molecular weight glutenin subunit (HMW-GS) contents and expression levels of genes encoding low molecular weight glutenin subunits (LMW-GSs) were increased in 1SlS·1BL translocation lines. Gliadin and gluten-related transcription factors were also upregulated in the grains of the two types of advanced translocation lines compared to the recurrent parents. This study clarifies the impacts of specific glutenin subunits on bread-making quality and provides novel germplasm resources for further improvement of wheat quality through molecular breeding.
Collapse
Affiliation(s)
- Yuliang Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Cotton Sciences, Shanxi Agricultural University, Yuncheng, 044000, China
| | - Zhiyang Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ningtao Liu
- Keshan Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161600, China
| | - Mei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuangxi Zhang
- Crop Research Institute, Ningxia Academy of Agri-Forestry Sciences, Yinchuan, 750105, China
| | - Haiqiang Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huali Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Zhao
- Institute of Cotton Sciences, Shanxi Agricultural University, Yuncheng, 044000, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhishan Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Jiang C, Liu X, Yang Z, Li G. Chromosome Rearrangement in Elymus dahuricus Revealed by ND-FISH and Oligo-FISH Painting. PLANTS (BASEL, SWITZERLAND) 2023; 12:3268. [PMID: 37765432 PMCID: PMC10535892 DOI: 10.3390/plants12183268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
As a perennial herb in Triticeae, Elymus dahuricus is widely distributed in Qinghai-Tibetan Plateau and Central Asia. It has been used as high-quality fodders for improving degraded grassland. The genomic constitution of E. dahuricus (2n = 6x = 42) has been revealed as StStHHYY by cytological approaches. However, the universal karyotyping nomenclature system of E. dahuricus is not fully established by traditional fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH). In this study, the non-denaturing fluorescent in situ hybridization (ND-FISH) using 14 tandem-repeat oligos could effectively distinguish the entire E. dahuricus chromosomes pairs, while Oligo-FISH painting by bulked oligo pools based on wheat-barley collinear regions combined with GISH analysis, is able to precisely determine the linkage group and sub-genomes of the individual E. dahuricus chromosomes. We subsequently established the 42-chromosome karyotype of E. dahuricus with distinctive chromosomal FISH signals, and characterized a new type of intergenomic rearrangement between 2H and 5Y. Furthermore, the comparative chromosomal localization of the centromeric tandem repeats and immunostaining by anti-CENH3 between cultivated barley (Hordeum vulgare L.) and E. dahuricus suggests that centromere-associated sequences in H subgenomes were continuously changing during the process of polyploidization. The precise karyotyping system based on ND-FISH and Oligo-FISH painting methods will be efficient for describing chromosomal rearrangements and evolutionary networks for polyploid Elymus and their related species.
Collapse
Affiliation(s)
| | | | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (X.L.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (X.L.)
| |
Collapse
|
14
|
Li T, Kong C, Deng P, Li C, Zhao G, Li H, Gao L, Cui D, Jia J. Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat. Int J Mol Sci 2023; 24:10217. [PMID: 37373363 DOI: 10.3390/ijms241210217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Crop genetic diversity is essential for adaptation and productivity in agriculture. A previous study revealed that poor allele diversity in wheat commercial cultivars is a major barrier to its further improvement. Homologs within a variety, including paralogs and orthologs in polyploid, account for a large part of the total genes of a species. Homolog diversity, intra-varietal diversity (IVD), and their functions have not been elucidated. Common wheat, an important food crop, is a hexaploid species with three subgenomes. This study analyzed the sequence, expression, and functional diversity of homologous genes in common wheat based on high-quality reference genomes of two representative varieties, a modern commercial variety Aikang 58 (AK58) and a landrace Chinese Spring (CS). A total of 85,908 homologous genes, accounting for 71.9% of all wheat genes, including inparalogs (IPs), outparalogs (OPs), and single-copy orthologs (SORs), were identified, suggesting that homologs are an important part of the wheat genome. The levels of sequence, expression, and functional variation in OPs and SORs were higher than that of IPs, which indicates that polyploids have more homologous diversity than diploids. Expansion genes, a specific type of OPs, made a great contribution to crop evolution and adaptation and endowed crop with special characteristics. Almost all agronomically important genes were from OPs and SORs, demonstrating their essential functions for polyploid evolution, domestication, and improvement. Our results suggest that IVD analysis is a novel approach for evaluating intra-genomic variations, and exploitation of IVD might be a new road for plant breeding, especially for polyploid crops, such as wheat.
Collapse
Affiliation(s)
- Tianbao Li
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuizheng Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjie Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Jizeng Jia
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Uncovering natural allelic and structural variants of OsCENH3 gene by targeted resequencing and in silico mining in genus Oryza. Sci Rep 2023; 13:830. [PMID: 36646847 PMCID: PMC9842635 DOI: 10.1038/s41598-023-28053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Plant breeding efforts to boost rice productivity have focused on developing a haploid development pipeline. CENH3 gene has emerged as a leading player that can be manipulated to engineer haploid induction system. Currently, allele mining for the OsCENH3 gene was done by PCR-based resequencing of 33 wild species accessions of genus Oryza and in silico mining of alleles from pre-existing data. We have identified and characterized CENH3 variants in genus Oryza. Our results indicated that the majority CENH3 alleles present in the Oryza gene pool carry synonymous substitutions. A few non-synonymous substitutions occur in the N-terminal Tail domain (NTT). SNP A/G at position 69 was found in accessions of AA genome and non-AA genome species. Phylogenetic analysis revealed that non-synonymous substitutions carrying alleles follow pre-determined evolutionary patterns. O. longistaminata accessions carry SNPs in four codons along with indels in introns 3 and 6. Fifteen haplotypes were mined from our panel; representative mutant alleles exhibited structural variations upon modeling. Structural analysis indicated that more than one structural variant may be exhibited by different accessions of single species (Oryza barthii). NTT allelic mutants, though not directly implicated in HI, may show variable interactions. HI and interactive behavior could be ascertained in future investigations.
Collapse
|
16
|
Lv J, Kelliher T. Recent Advances in Engineering of In Vivo Haploid Induction Systems. Methods Mol Biol 2023; 2653:365-383. [PMID: 36995637 DOI: 10.1007/978-1-0716-3131-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Doubled haploid (DH) technology is an important approach to accelerate genetic gain via a shortened breeding cycle, which relies on the ability to generate haploid cells that develop into haploids or doubled haploid embryos and plants. Both in vitro and in vivo (in seed) methods can be used for haploid production. In vitro culture of gametophytes (microspores and megaspores) or their surrounding floral tissues or organs (anthers, ovaries, or ovules) has generated haploid plants in wheat, rice, cucumber, tomato, and many other crops. In vivo methods utilize pollen irradiation or wide crossing or in certain species leverage genetic mutant haploid inducer lines. Haploid inducers were widespread in corn and barley, and recent cloning of the inducer genes and identification of the causal mutations in corn have led to the establishment of in vivo haploid inducer systems via genome editing of orthologous genes in more diverse species. Further combination of DH and genome editing technology led to the development of novel breeding technologies such as HI-EDIT™. In this chapter, we will review in vivo haploid induction and new breeding technologies that combine haploid induction and genome editing.
Collapse
Affiliation(s)
- Jian Lv
- Syngenta Biotechnology China Co., Ltd, Changping, Beijing, China.
| | | |
Collapse
|
17
|
Li G, Chen Q, Jiang W, Zhang A, Yang E, Yang Z. Molecular and Cytogenetic Identification of Wheat- Thinopyrum intermedium Double Substitution Line-Derived Progenies for Stripe Rust Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 12:28. [PMID: 36616156 PMCID: PMC9823681 DOI: 10.3390/plants12010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) has been hybridized extensively with common wheat and proven to be a valuable germplasm source for improving disease resistance and yield potential of wheat. A novel disease-resistant wheat-Th. intermedium double substitution line X479, carrying 1St(1B) and 4St-4JS (4B), was identified using multi-color non-denaturing fluorescence in situ hybridization (ND-FISH). With the aim of transferring Thinopyrum-specific chromatin to wheat, a total of 573 plants from F2 and F3 progenies of X479 crossed with wheat cultivar MY11 were developed and characterized using sequential ND-FISH with multiple probes. Fifteen types of wheat-Thinopyrum translocation chromosomes were preferentially transmitted in the progenies, and the homozygous wheat-1St, and wheat-4JSL translocation lines were identified using ND-FISH, Oligo-FISH painting and CENH3 immunostaining. The wheat-4JSL translocation lines exhibited high levels of resistance to stripe rust prevalent races in field screening. The gene for stripe rust resistance was found to be physically located on FL0-0.60 of the 4JSL, using deletion lines and specific DNA markers. The new wheat-Th. intermedium translocation lines can be exploited as useful germplasms for wheat improvement.
Collapse
Affiliation(s)
- Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiheng Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenxi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ahui Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
18
|
Elisafenko EA, Evtushenko EV, Vershinin AV. The origin and evolution of a two-component system of paralogous genes encoding the centromeric histone CENH3 in cereals. BMC PLANT BIOLOGY 2021; 21:541. [PMID: 34794377 PMCID: PMC8603533 DOI: 10.1186/s12870-021-03264-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/12/2021] [Indexed: 06/07/2023]
Abstract
BACKGROUND The cereal family Poaceae is one of the largest and most diverse angiosperm families. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. We applied a homology-based approach to sequenced cereal genomes, in order to finally trace the mutual evolution of the structure of the CENH3 genes and the nearby regions in various tribes. RESULTS We have established that the syntenic group or the CENH3 locus with the CENH3 gene and the boundaries defined by the CDPK2 and bZIP genes first appeared around 50 Mya in a common ancestor of the subfamilies Bambusoideae, Oryzoideae and Pooideae. This locus came to Pooideae with one copy of CENH3 in the most ancient tribes Nardeae and Meliceae. The βCENH3 gene as a part of the locus appeared in the tribes Stipeae and Brachypodieae around 35-40 Mya. The duplication was accompanied by changes in the exon-intron structure. Purifying selection acts mostly on αCENH3s, while βCENH3s form more heterogeneous structures, in which clade-specific amino acid motifs are present. In barley species, the βCENH3 gene assumed an inverted orientation relative to αCENH3 and the CDPK2 gene was substituted with LHCB-l. As the evolution and domestication of plant species went on, the locus was growing in size due to an increasing distance between αCENH3 and βCENH3 because of a massive insertion of the main LTR-containing retrotransposon superfamilies, gypsy and copia, without any evolutionary preference on either of them. A comparison of the molecular structure of the locus in the A, B and D subgenomes of the hexaploid wheat T. aestivum showed that invasion by mobile elements and concomitant rearrangements took place in an independent way even in evolutionarily close species. CONCLUSIONS The CENH3 duplication in cereals was accompanied by changes in the exon-intron structure of the βCENH3 paralog. The observed general tendency towards the expansion of the CENH3 locus reveals an amazing diversity of ways in which different species implement the scenario described in this paper.
Collapse
Affiliation(s)
- Evgeny A Elisafenko
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Elena V Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Alexander V Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
19
|
Evtushenko EV, Elisafenko EA, Gatzkaya SS, Schubert V, Houben A, Vershinin AV. Expression of Two Rye CENH3 Variants and Their Loading into Centromeres. PLANTS (BASEL, SWITZERLAND) 2021; 10:2043. [PMID: 34685852 PMCID: PMC8538535 DOI: 10.3390/plants10102043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Gene duplication and the preservation of both copies during evolution is an intriguing evolutionary phenomenon. Their preservation is related to the function they perform. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. Therefore, they represent a good model for a comparative study of the functional activity of the duplicated CENH3 genes and their protein products. We determined the organization of the CENH3 locus in rye (Secale cereale L.) and identified the functional motifs in the vicinity of the CENH3 genes. We compared the expression of these genes at different stages of plant development and the loading of their products, the CENH3 proteins, into nucleosomes during mitosis and meiosis. Using extended chromatin fibers, we revealed patterns of loading CENH3 proteinsinto polynucleosomal domains in centromeric chromatin. Our results indicate no sign of neofunctionalization, subfunctionalization or specialization in the gene copies. The influence of negative selection on the coding part of the genes led them to preserve their conserved function. The advantage of having two functional genes appears as the gene-dosage effect.
Collapse
Affiliation(s)
- Elena V. Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| | - Evgeny A. Elisafenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
- Institute of Cytology and Genetics, SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia
| | - Sima S. Gatzkaya
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; (V.S.); (A.H.)
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; (V.S.); (A.H.)
| | - Alexander V. Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| |
Collapse
|
20
|
Kursel LE, McConnell H, de la Cruz AFA, Malik HS. Gametic specialization of centromeric histone paralogs in Drosophila virilis. Life Sci Alliance 2021; 4:e202000992. [PMID: 33986021 PMCID: PMC8200288 DOI: 10.26508/lsa.202000992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
In most eukaryotes, centromeric histone (CenH3) proteins mediate mitosis and meiosis and ensure epigenetic inheritance of centromere identity. We hypothesized that disparate chromatin environments in soma versus germline might impose divergent functional requirements on single CenH3 genes, which could be ameliorated by gene duplications and subsequent specialization. Here, we analyzed the cytological localization of two recently identified CenH3 paralogs, Cid1 and Cid5, in Drosophila virilis using specific antibodies and epitope-tagged transgenic strains. We find that only ancestral Cid1 is present in somatic cells, whereas both Cid1 and Cid5 are expressed in testes and ovaries. However, Cid1 is lost in male meiosis but retained throughout oogenesis, whereas Cid5 is lost during female meiosis but retained in mature sperm. Following fertilization, only Cid1 is detectable in the early embryo, suggesting that maternally deposited Cid1 is rapidly loaded onto paternal centromeres during the protamine-to-histone transition. Our studies reveal mutually exclusive gametic specialization of divergent CenH3 paralogs. Duplication and divergence might allow essential centromeric genes to resolve an intralocus conflict between maternal and paternal centromeric requirements in many animal species.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aida Flor A de la Cruz
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
21
|
Despot-Slade E, Mravinac B, Širca S, Castagnone-Sereno P, Plohl M, Meštrović N. The Centromere Histone Is Conserved and Associated with Tandem Repeats Sharing a Conserved 19-bp Box in the Holocentromere of Meloidogyne Nematodes. Mol Biol Evol 2021; 38:1943-1965. [PMID: 33399875 PMCID: PMC8097292 DOI: 10.1093/molbev/msaa336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although centromeres have conserved function, centromere-specific histone H3 (CenH3) and centromeric DNA evolve rapidly. The centromere drive model explains this phenomenon as a consequence of the conflict between fast-evolving DNA and CenH3, suggesting asymmetry in female meiosis as a crucial factor. We characterized evolution of the CenH3 protein in three closely related, polyploid mitotic parthenogenetic species of the Meloidogyne incognita group, and in the distantly related meiotic parthenogen Meloidogyne hapla. We identified duplication of the CenH3 gene in a putative sexual ancestral Meloidogyne. We found that one CenH3 (αCenH3) remained conserved in all extant species, including in distant Meloidogyne hapla, whereas the other evolved rapidly and under positive selection into four different CenH3 variants. This pattern of CenH3 evolution in Meloidogyne species suggests the subspecialization of CenH3s in ancestral sexual species. Immunofluorescence performed on mitotic Meloidogyne incognita revealed a dominant role of αCenH3 on its centromere, whereas the other CenH3s have lost their function in mitosis. The observed αCenH3 chromosome distribution disclosed cluster-like centromeric organization. The ChIP-Seq analysis revealed that in M. incognita αCenH3-associated DNA dominantly comprises tandem repeats, composed of divergent monomers which share a completely conserved 19-bp long box. Conserved αCenH3-associated DNA is also confirmed in the related mitotic Meloidogyne incognita group species suggesting preservation of both centromere protein and DNA constituents. We hypothesize that the absence of centromere drive in mitosis might allow for CenH3 and its associated DNA to achieve an equilibrium in which they can persist for long periods of time.
Collapse
Affiliation(s)
| | | | - Saša Širca
- Agricultural Institute Slovenia, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
22
|
Karimi-Ashtiyani R, Schubert V, Houben A. Only the Rye Derived Part of the 1BL/1RS Hybrid Centromere Incorporates CENH3 of Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:802222. [PMID: 34966406 PMCID: PMC8710534 DOI: 10.3389/fpls.2021.802222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 05/04/2023]
Abstract
The precise assembly of the kinetochore complex at the centromere is epigenetically determined by substituting histone H3 with the centromere-specific histone H3 variant CENH3 in centromeric nucleosomes. The wheat-rye 1BL/1RS translocation chromosome in the background of wheat resulted from a centric misdivision followed by the fusion of the broken arms of chromosomes 1B and 1R from wheat and rye, respectively. The resulting hybrid (dicentric)centromere is composed of both wheat and rye centromeric repeats. As CENH3 is a marker for centromere activity, we applied Immuno-FISH followed by ultrastructural super-resolution microscopy to address whether both or only parts of the hybrid centromere are active. Our study demonstrates that only the rye-derived centromere part incorporates CENH3 of wheat in the 1BL/1RS hybrid centromere. This finding supports the notion that one centromere part of a translocated chromosome undergoes inactivation, creating functional monocentric chromosomes to maintain chromosome stability.
Collapse
Affiliation(s)
- Raheleh Karimi-Ashtiyani
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- *Correspondence: Raheleh Karimi-Ashtiyani,
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Andreas Houben,
| |
Collapse
|
23
|
Unequal contribution of two paralogous CENH3 variants in cowpea centromere function. Commun Biol 2020; 3:775. [PMID: 33319863 PMCID: PMC7738545 DOI: 10.1038/s42003-020-01507-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
In most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the diploid dryland crop cowpea. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation of Vigna unguiculata. Both functional CENH3 variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. CRISPR/Cas9-based inactivation of CENH3.1 resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast, CENH3.2 knockout individuals did not show obvious defects during vegetative and reproductive development. Hence, CENH3.2 of cowpea is likely at an early stage of pseudogenization and less likely undergoing subfunctionalization.
Collapse
|
24
|
Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 2020; 38:1397-1401. [PMID: 33169035 DOI: 10.1038/s41587-020-0728-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
New breeding technologies accelerate germplasm improvement and reduce the cost of goods in seed production1-3. Many such technologies could use in vivo paternal haploid induction (HI), which occurs when double fertilization precedes maternal (egg cell) genome loss. Engineering of the essential CENTROMERIC HISTONE (CENH3) gene induces paternal HI in Arabidopsis4-6. Despite conservation of CENH3 function across crops, CENH3-based HI has not been successful outside of the Arabidopsis model system7. Here we report a commercially operable paternal HI line in wheat with a ~7% HI rate, identified by screening genome-edited TaCENH3α-heteroallelic combinations. Unlike in Arabidopsis, edited alleles exhibited reduced transmission in female gametophytes, and heterozygous genotypes triggered higher HI rates than homozygous combinations. These developments might pave the way for the deployment of CENH3 HI technology in diverse crops.
Collapse
|
25
|
Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés MP, Muñoz A, Pradillo M. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5205-5222. [PMID: 31626285 DOI: 10.1093/jxb/erz457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.
Collapse
Affiliation(s)
- Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Agricultural and Biotechnological Research, Olomouc, Czech Republic
| | | | - Isabelle Colas
- James Hutton Institute, Cell and Molecular Science, Pr Waugh's Lab, Invergowrie, Dundee, UK
| | - Kriton Kalantidis
- Department of Biology, University of Crete, and Institute of Molecular Biology Biotechnology, FoRTH, Heraklion, Greece
| | - Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE) University of Padova, Agripolis viale dell'Università, Legnaro (PD), Italy
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Christos Michailidis
- Institute of Experimental Botany, Czech Acad Sci, Praha 6 - Lysolaje, Czech Republic
| | - María-Pilar Vallés
- Department of Genetics and Plant Breeding, Estación Experimental Aula Dei (EEAD), Spanish National Research Council (CSIC), Zaragoza, Spain
| | - Aitor Muñoz
- Department of Plant Molecular Genetics, National Center of Biotechnology/Superior Council of Scientific Research, Autónoma University of Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
26
|
Feng C, Yuan J, Bai H, Liu Y, Su H, Liu Y, Shi L, Gao Z, Birchler JA, Han F. The deposition of CENH3 in maize is stringently regulated. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:6-17. [PMID: 31713923 DOI: 10.1111/tpj.14606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 05/25/2023]
Abstract
The centromere, as an essential element to mediate chromosome segregation, is epigenetically determined by CENH3-containing nucleosomes as a functional marker; therefore the accurate deposition of CENH3 is crucial for chromosome transmission. We characterized the deposition of CENH3 in maize by over-expression and mutational analysis. Our results revealed that over-expressing CENH3 in callus is lethal while over-expressing GFP-CENH3 and CENH3-YFP in callus and plants is not and can be partly deposited normally. Different mutations of GFP-CENH3 demonstrated that CENH3-Thr4 in the N-terminus was needed for the deposition as a positive phosphorylation site and the last five amino acids in the C-terminus are necessary for deposition. The C-terminal tail of CENH3 is confirmed to be responsible for the interaction of CENH3 and histone H4, which indicates that CENH3 maintains deposition in centromeres via interacting with H4 to form stable nucleosomes. For GFP-CENH3 and CENH3-YFP, the fused tags at the termini probably affect the structure of CENH3 and reduce its interaction with other proteins, which in turn could decrease proper deposition. Taken together, multiple amino acids or motifs were shown to play essential roles in CENH3 deposition, which is suggested to be affected by numerous factors in maize.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lindan Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi Gao
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Riaz B, Chen H, Wang J, Du L, Wang K, Ye X. Overexpression of Maize ZmC1 and ZmR Transcription Factors in Wheat Regulates Anthocyanin Biosynthesis in a Tissue-Specific Manner. Int J Mol Sci 2019; 20:E5806. [PMID: 31752300 PMCID: PMC6887777 DOI: 10.3390/ijms20225806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Maize ZmC1 and ZmR transcription factors belong to the MYB-type and bHLH families, respectively, and control anthocyanin biosynthesis. In this study, Agrobacterium-mediated transformation was used to generate transgenic wheat plants that overexpress ZmC1 and ZmR or both, with the objective of developing anthocyanin-enriched wheat germplasm. Three kinds of stable transgenic wheat lines were obtained. The integration of target genes in the transgenic wheat plants was confirmed by fluorescence in situ hybridization (FISH) analysis. We found that single overexpression of ZmC1 regulates pigmentation in the vegetative tissues such as coleoptiles, auricles, and stems. The single overexpression of ZmR controls the coloration in reproductive tissue like spikelets and seeds. The simultaneous overexpression of ZmC1 and ZmR showed the strongest pigmentation in almost all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis revealed that expression of the two transgenes, and of two conserved homologous and six associated structural genes involved in anthocyanin biosynthesis in wheat were greatly up-regulated in the transgenic plants. Similarly, quantitative analysis for anthocyanin amounts based on HPLC-MS also confirmed that the transgenic wheat plants with combined overexpression of ZmC1 and ZmR accumulated the highest quantity of pigment products. Moreover, developing seeds overexpressing ZmR exposed to light conditions showed up-regulated transcript levels of anthocyanin biosynthesis-related genes compared to dark exposure, which suggests an important role of light in regulating anthocyanin biosynthesis. This study provides a foundation for breeding wheat materials with high anthocyanin accumulation and understanding the mechanism of anthocyanin biosynthesis in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| |
Collapse
|
28
|
Weighill D, Macaya-Sanz D, DiFazio SP, Joubert W, Shah M, Schmutz J, Sreedasyam A, Tuskan G, Jacobson D. Wavelet-Based Genomic Signal Processing for Centromere Identification and Hypothesis Generation. Front Genet 2019; 10:487. [PMID: 31214244 PMCID: PMC6554479 DOI: 10.3389/fgene.2019.00487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Various ‘omics data types have been generated for Populus trichocarpa, each providing a layer of information which can be represented as a density signal across a chromosome. We make use of genome sequence data, variants data across a population as well as methylation data across 10 different tissues, combined with wavelet-based signal processing to perform a comprehensive analysis of the signature of the centromere in these different data signals, and successfully identify putative centromeric regions in P. trichocarpa from these signals. Furthermore, using SNP (single nucleotide polymorphism) correlations across a natural population of P. trichocarpa, we find evidence for the co-evolution of the centromeric histone CENH3 with the sequence of the newly identified centromeric regions, and identify a new CENH3 candidate in P. trichocarpa.
Collapse
Affiliation(s)
- Deborah Weighill
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | | | - Wayne Joubert
- Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Manesh Shah
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Gerald Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
29
|
Li S, Wang J, Wang K, Chen J, Wang K, Du L, Ni Z, Lin Z, Ye X. Development of PCR markers specific to Dasypyrum villosum genome based on transcriptome data and their application in breeding Triticum aestivum-D. villosum#4 alien chromosome lines. BMC Genomics 2019; 20:289. [PMID: 30987602 PMCID: PMC6466811 DOI: 10.1186/s12864-019-5630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Dasypyrum villosum is an important wild species of wheat (Triticum aestivum L.) and harbors many desirable genes that can be used to improve various traits of wheat. Compared with other D. villosum accessions, D. villosum#4 still remains less studied. In particular, chromosomes of D. villosum#4 except 6V#4 have not been introduced into wheat by addition or substitution and translocation, which is an essential step to identify and apply the alien desired genes. RNA-seq technology can generate large amounts of transcriptome sequences and accelerate the development of chromosome-specific molecular markers and assisted selection of alien chromosome line. Results We obtained the transcriptome of D. villosum#4 via a high-throughput sequencing technique, and then developed 76 markers specific to each chromosome arm of D. villosum#4 based on the bioinformatic analysis of the transcriptome data. The D. villosum#4 sequences containing the specific DNA markers were expected to be involved in different genes, among which most had functions in metabolic processes. Consequently, we mapped these newly developed molecular markers to the homologous chromosome of barley and obtained the chromosome localization of these markers on barley genome. Then we analyzed the collinearity of these markers among D. villosum, wheat, and barley. In succession, we identified six types of T. aestivum-D. villosum#4 alien chromosome lines which had one or more than one D. villosum#4 chromosome in the cross and backcross BC3F5 populations between T. durum–D. villosum#4 amphidiploid TH3 and wheat cv. Wan7107 by employing the selected specific markers, some of which were further confirmed to be translocation or addition lines by genomic in situ hybridization (GISH). Conclusion Seventy-six PCR markers specific to chromosomes of D. villosum#4 based on transcriptome data were developed in the current study and their collinearity among D. villosum, wheat, and barley were carried out. Six types of Triticum aestivum-D. villosum#4 alien chromosome lines were identified by using 12 developed markers and some of which were further confirmed by GISH. These novel T. aestivum-D. villosum#4 chromosome lines have great potential to be used for the introduction of desirable genes from D. villosum#4 into wheat by chromosomal translocation to breed new wheat varieties. Electronic supplementary material The online version of this article (10.1186/s12864-019-5630-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shijin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,College of Agronomy and Biotechnology/State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, 100193, China
| | - Jing Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kunyang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingnan Chen
- School of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongfu Ni
- College of Agronomy and Biotechnology/State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, 100193, China.
| | - Zhishan Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A. State-of-the-art and novel developments of in vivo haploid technologies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:593-605. [PMID: 30569366 PMCID: PMC6439148 DOI: 10.1007/s00122-018-3261-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/05/2018] [Indexed: 05/02/2023]
Abstract
The ability to generate (doubled) haploid plants significantly accelerates the crop breeding process. Haploids have been induced mainly through the generation of plants from cultivated gametophic (haploid) cells and tissues, i.e., in vitro haploid technologies, or through the selective loss of a parental chromosome set upon inter- or intraspecific hybridization. Here, we focus our review on the mechanisms responsible for the in vivo formation of haploids in the context of inter- and intraspecific hybridization. The application of a modified CENH3 for uniparental genome elimination, the IG1 system used for paternal as well as the BBM-like and the patatin-like phospholipase essential for maternal haploidy induction are discussed in detail.
Collapse
Affiliation(s)
- Kamila Kalinowska
- Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Sindy Chamas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Katharina Unkel
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Thomas Dresselhaus
- Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Frank Dunemann
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany.
| |
Collapse
|
31
|
Wang K, Lin Z, Wang L, Wang K, Shi Q, Du L, Ye X. Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:13-25. [PMID: 28887628 DOI: 10.1007/s00122-017-2982-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/04/2017] [Indexed: 05/27/2023]
Abstract
Transcriptome data were used to develop 134 Aegilops longissima specific PCR markers and their comparative maps were constructed by contrasting with the homologous genes in the wheat B genome. Three wheat- Ae. longissima 1BL·1S l S translocation lines were identified using the correspondence markers. Aegilops longissima is an important wild species of common wheat that harbors many genes that can be used to improve various traits of common wheat (Triticum aestivum L.). To efficiently transfer the traits conferred by these Ae. longissima genes into wheat, we sequenced the whole expression transcript of Ae. longissima. Using the transcriptome data, we developed 134 specific polymerase chain reaction markers located on the 14 chromosome arms of Ae. longissima. These novel molecular markers were assigned to specific chromosome locations based on a comparison with the homologous genes in the B genome of wheat. Annotation of these genes showed that most had functions related to metabolic processes, hydrolase activity, or catalytic activity. Additionally, we used these markers to identify three wheat-Ae. longissima 1BL·1SlS translocation lines in somatic variation populations resulting from a cross between wheat cultivar Westonia and a wheat-Ae. longissima substitution line 1Sl(1B). The translocation lines had several low molecular weight glutenin subunits encoding genes beneficial to flour processing quality that came from Ae. longissima 1SlS. The three translocation lines were also confirmed by genomic in situ hybridization. These translocation lines will be further evaluated for potential quality improvement of bread-making properties of wheat.
Collapse
Affiliation(s)
- Kunyang Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhishan Lin
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Long Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ke Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Lipu Du
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xingguo Ye
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
32
|
Evtushenko EV, Elisafenko EA, Gatzkaya SS, Lipikhina YA, Houben A, Vershinin AV. Conserved molecular structure of the centromeric histone CENH3 in Secale and its phylogenetic relationships. Sci Rep 2017; 7:17628. [PMID: 29247163 PMCID: PMC5732303 DOI: 10.1038/s41598-017-17932-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
It has been repeatedly demonstrated that the centromere-specific histone H3 (CENH3), a key component of the centromere, shows considerable variability between species within taxa. We determined the molecular structure and phylogenetic relationships of CENH3 in 11 Secale species and subspecies that possess distinct pollination systems and are adapted to a wide range of abiotic and biotic stresses. The rye (Secale cereale) genome encodes two paralogous CENH3 genes, which differ in intron-exon structure and are transcribed into two main forms of the protein, αCENH3 and βCENH3. These two forms differ in size and amino acid substitutions. In contrast to the reported differences in CENH3 structure between species within other taxa, the main forms of this protein in Secale species and subspecies have a nearly identical structure except some nonsynonymous substitutions. The CENH3 proteins are strictly controlled by genetic factors responsible for purifying selection. A comparison between Hordeum, Secale and Triticum species demonstrates that the structure of CENH3 in the subtribes Hordeinae and Triticinae evolved at different rates. The assumption that reticulate evolution served as a factor stabilizing the structure and evolutionary rate of CENH3 and that this factor was more powerful within Secale and Triticum than in Hordeum, is discussed.
Collapse
Affiliation(s)
- E V Evtushenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - E A Elisafenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - S S Gatzkaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Y A Lipikhina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - A Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - A V Vershinin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
33
|
Lipikhina YA, Evtushenko EV, Elisafenko EA, Vershinin AV. Chromosomal assignment of centromere-specific histone CENH3 genes in rye ( Secale cereale L.) and their phylogeny. COMPARATIVE CYTOGENETICS 2017; 11:821-832. [PMID: 29302301 PMCID: PMC5740403 DOI: 10.3897/compcytogen.v11i4.19953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Centromeres are essential for correct chromosome segregation during cell division and are determined by the presence of centromere-specific histone 3 (CENH3). Most of the diploid plant species, in which the structure and copy number of CENH3 genes have been determined, have this gene as a singleton; however, some cereal species in the tribe Triticeae have been found to have CENH3 in two variants. In this work, using the set of the wheat-rye addition lines we wanted to establish the chromosomal assignment of the CENH3 genes in the cultivated rye, Secale cereale (Linnaeus, 1753), in order to expand our knowledge about synteny conservation in the most important cereal species and about their chromosome evolution. To this end, we have also analyzed data in available genome sequencing databases. As a result, the αCENH3 and βCENH3 forms have been assigned to rye chromosomes 1R and 6R: specifically, the commonest variants αCENH3v1 and βCENH3v1 to chromosome 1R, and the rare variants, αCENH3v2 and probably βCENH3v2, to chromosome 6R. No other CENH3 variants have been found by analysis of the rye genome sequencing databases. Our chromosomal assignment of CENH3 in rye has been found to be the same as that in barley, suggesting that both main forms of CENH3 appeared in a Triticeae species before the barley and wheatrye lineages split.
Collapse
Affiliation(s)
- Yulia A. Lipikhina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Elena V. Evtushenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
34
|
Erives AJ. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance. Epigenetics Chromatin 2017; 10:55. [PMID: 29179736 PMCID: PMC5704553 DOI: 10.1186/s13072-017-0162-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/15/2017] [Indexed: 11/15/2022] Open
Abstract
Background While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like “doublets” in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Results Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. Conclusions The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of the four core histone clades. We thus suggest MV histone doublet genes and their DNA topo II gene possibly were acquired from an organism with a chromatinized replisome that diverged prior to the origin of eukaryotic core histone variants for H2/H2A.Z and H3/cenH3. These results also imply that core histones were utilized ancestrally in viral DNA compaction and/or protection from host endonucleases. Electronic supplementary material The online version of this article (10.1186/s13072-017-0162-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert J Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324, USA.
| |
Collapse
|
35
|
Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J Genet Genomics 2017; 44:531-539. [DOI: 10.1016/j.jgg.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022]
|
36
|
Wang J, Liu Y, Su H, Guo X, Han F. Centromere structure and function analysis in wheat-rye translocation lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:199-207. [PMID: 28370580 DOI: 10.1111/tpj.13554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 05/12/2023]
Abstract
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
37
|
Muiruri KS, Britt A, Amugune NO, Nguu EK, Chan S, Tripathi L. Expressed Centromere Specific Histone 3 ( CENH3) Variants in Cultivated Triploid and Wild Diploid Bananas ( Musa spp.). FRONTIERS IN PLANT SCIENCE 2017; 8:1034. [PMID: 28706522 PMCID: PMC5489561 DOI: 10.3389/fpls.2017.01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/30/2017] [Indexed: 05/03/2023]
Abstract
Centromeres are specified by a centromere specific histone 3 (CENH3) protein, which exists in a complex environment, interacting with conserved proteins and rapidly evolving satellite DNA sequences. The interactions may become more challenging if multiple CENH3 versions are introduced into the zygote as this can affect post-zygotic mitosis and ultimately sexual reproduction. Here, we characterize CENH3 variant transcripts expressed in cultivated triploid and wild diploid progenitor bananas. We describe both splice- and allelic-[Single Nucleotide Polymorphisms (SNP)] variants and their effects on the predicted secondary structures of protein. Expressed CENH3 transcripts from six banana genotypes were characterized and clustered into three groups (MusaCENH-1A, MusaCENH-1B, and MusaCENH-2) based on similarity. The CENH3 groups differed with SNPs as well as presence of indels resulting from retained and/or skipped exons. The CENH3 transcripts from different banana genotypes were spliced in either 7/6, 5/4 or 6/5 exons/introns. The 7/6 and the 5/4 exon/intron structures were found in both diploids and triploids, however, 7/6 was most predominant. The 6/5 exon/introns structure was a result of failure of the 7/6 to splice correctly. The various transcripts obtained were predicted to encode highly variable N-terminal tails and a relatively conserved C-terminal histone fold domain (HFD). The SNPs were predicted in some cases to affect the secondary structure of protein by lengthening or shorting the affected domains. Sequencing of banana CENH3 transcripts predicts SNP variations that affect amino acid sequences and alternatively spliced transcripts. Most of these changes affect the N-terminal tail of CENH3.
Collapse
Affiliation(s)
- Kariuki S. Muiruri
- International Institute of Tropical AgricultureNairobi, Kenya
- School of Biological Sciences, University of NairobiNairobi, Kenya
| | - Anne Britt
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | | | - Edward K. Nguu
- Department of Biochemistry, University of NairobiNairobi, Kenya
| | - Simon Chan
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobi, Kenya
- *Correspondence: Leena Tripathi,
| |
Collapse
|
38
|
Zhu Z, Gui S, Jin J, Yi R, Wu Z, Qian Q, Ding Y. The NnCenH3 protein and centromeric DNA sequence profiles of Nelumbo nucifera Gaertn. (sacred lotus) reveal the DNA structures and dynamics of centromeres in basal eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:568-582. [PMID: 27227686 DOI: 10.1111/tpj.13219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Centromeres on eukaryotic chromosomes consist of large arrays of DNA repeats that undergo very rapid evolution. Nelumbo nucifera Gaertn. (sacred lotus) is a phylogenetic relict and an aquatic perennial basal eudicot. Studies concerning the centromeres of this basal eudicot species could provide ancient evolutionary perspectives. In this study, we characterized the centromeric marker protein NnCenH3 (sacred lotus centromere-specific histone H3 variant), and used a chromatin immunoprecipitation (ChIP)-based technique to recover the NnCenH3 nucleosome-associated sequences of sacred lotus. The properties of the centromere-binding protein and DNA sequences revealed notable divergence between sacred lotus and other flowering plants, including the following factors: (i) an NnCenH3 alternative splicing variant comprising only a partial centromere-targeting domain, (ii) active genes with low transcription levels in the NnCenH3 nucleosomal regions, and (iii) the prevalence of the Ty1/copia class of long terminal repeat (LTR) retrotransposons in the centromeres of sacred lotus chromosomes. In addition, the dynamic natures of the centromeric region showed that some of the centromeric repeat DNA sequences originated from telomeric repeats, and a pair of centromeres on the dicentric chromosome 1 was inactive in the metaphase cells of sacred lotus. Our characterization of the properties of centromeric DNA structure within the sacred lotus genome describes a centromeric profile in ancient basal eudicots and might provide evidence of the origins and evolution of centromeres. Furthermore, the identification of centromeric DNA sequences is of great significance for the assembly of the sacred lotus genome.
Collapse
Affiliation(s)
- Zhixuan Zhu
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Songtao Gui
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Jin
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rong Yi
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihua Wu
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qian Qian
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Ding
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
39
|
Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function. Chromosoma 2016; 126:145-163. [DOI: 10.1007/s00412-016-0579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
40
|
Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids. J Genet Genomics 2015; 42:639-649. [DOI: 10.1016/j.jgg.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/15/2015] [Accepted: 05/06/2015] [Indexed: 01/26/2023]
|
41
|
Finseth FR, Dong Y, Saunders A, Fishman L. Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive. Mol Biol Evol 2015; 32:2694-706. [PMID: 26104011 DOI: 10.1093/molbev/msv145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins. Here, we characterize the molecular evolutionary patterns of CENH3, the centromere-defining histone variant, in Mimulus monkeyflowers, a genus with one of the few known cases of active centromere-associated female meiotic drive. First, we identify a novel duplication of CENH3 in diploid Mimulus, including in lineages with actively driving centromeres. Second, we demonstrate long-term adaptive evolution at several sites in the N-terminus of CENH3, a region with some meiosis-specific functions that putatively interacts with centromeric DNA. Finally, we infer that the paralogs evolve under different selective regimes; some sites in the N-terminus evolve under positive selection in the pro-orthologs or only one paralog (CENH3_B) and the paralogs exhibit significantly different patterns of polymorphism within populations. Our finding of long-term, adaptive evolution at CENH3 in the context of centromere-associated meiotic drive supports an antagonistic, coevolutionary battle for evolutionary dominance between centromeric DNA and binding proteins.
Collapse
Affiliation(s)
| | - Yuzhu Dong
- Division of Biological Sciences, University of Montana, Missoula Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Arpiar Saunders
- Division of Biological Sciences, University of Montana, Missoula Department of Genetics, Harvard Medical School, Boston, MA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula
| |
Collapse
|
42
|
Liu Y, Su H, Zhang J, Liu Y, Han F, Birchler JA. Dynamic epigenetic states of maize centromeres. FRONTIERS IN PLANT SCIENCE 2015; 6:904. [PMID: 26579154 PMCID: PMC4620398 DOI: 10.3389/fpls.2015.00904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/10/2015] [Indexed: 05/03/2023]
Abstract
The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Non-disjunction of the supernumerary B chromosome centromere is independent of centromere function, but centromere pairing during early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri at Columbia, ColumbiaMO, USA
- *Correspondence: James A. Birchler,
| |
Collapse
|