1
|
Smertenko A. Regulation of cytokinetic machinery in plants. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102723. [PMID: 40187159 DOI: 10.1016/j.pbi.2025.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Plant cells divide by constructing a two-dimensional membrane compartment filled with oligosaccharides known as the cell plate. The cell plate is produced by the phragmoplast, a plant-specific structure composed of cytoskeletal polymers, membranes, and associated proteins. Initially, the phragmoplast forms as a disk between daughter nuclei at the end of anaphase, then continues to expand outward until the cell plate connects to the parental cell wall. Phragmoplast expansion encompasses dramatic reorganization of microtubules. At the start, microtubules form short antiparallel overlaps that initiate cell plate biogenesis by recruiting membrane material in the form of cytokinetic vesicles. Subsequent membrane expansion and remodeling processes are accompanied by dissolution of the antiparallel overlaps and attachment of microtubules to the cell plate biogenesis machinery. Deposition of oligosaccharides into the lumen confers mechanical rigidity to the cell plate that triggers depolymerization of microtubules. Precise coordination of microtubule organization with vesicle trafficking, membrane remodeling, and the deposition of oligosaccharides plays a critical role for cell plate production. This review summarizes current understanding of key signaling pathways that couple diverse processes in the phragmoplast.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA-99164, USA.
| |
Collapse
|
2
|
Xu J, Zhou T, Wang P, Wang Y, Yang Y, Pu Y, Chen Q, Sun G. The GhEB1C gene mediates resistance of cotton to Verticillium wilt. PLANTA 2024; 260:110. [PMID: 39352582 DOI: 10.1007/s00425-024-04524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/31/2024] [Indexed: 10/27/2024]
Abstract
MAIN CONCLUSION The GhEB1C gene of the EB1 protein family functions as microtubule end-binding protein and may be involved in the regulation of microtubule-related pathways to enhance resistance to Verticillium wilt. The expression of GhEB1C is induced by SA, also contributing to Verticillium wilt resistance. Cotton, as a crucial cash and oil crop, faces a significant threat from Verticillium wilt, a soil-borne disease induced by Verticillium dahliae, severely impacting cotton growth and development. Investigating genes associated with resistance to Verticillium wilt is paramount. We identified and performed a phylogenetic analysis on members of the EB1 family associated with Verticillium wilt in this work. GhEB1C was discovered by transcriptome screening and was studied for its function in cotton defense against V. dahliae. The RT-qPCR analysis revealed significant expression of the GhEB1C gene in cotton leaves. Subsequent localization analysis using transient expression demonstrated cytoplasmic localization of GhEB1C. VIGS experiments indicated that silencing of the GhEB1C gene significantly increased susceptibility of cotton to V. dahliae. Comparative RNA-seq analysis showed that GhEB1C silenced plants exhibited altered microtubule-associated protein pathways and flavonogen-associated pathways, suggesting a role for GhEB1C in defense mechanisms. Overexpression of tobacco resulted in enhanced resistance to V. dahliae as compared to wild-type plants. Furthermore, our investigation into the relationship between the GhEB1C gene and plant disease resistance hormones salicylic axid (SA) and jasmonic acid (JA) revealed the involvement of GhEB1C in the regulation of the SA pathway. In conclusion, our findings demonstrate that GhEB1C plays a crucial role in conferring immunity to cotton against Verticillium wilt, providing valuable insights for further research on plant adaptability to pathogen invasion.
Collapse
Affiliation(s)
- Jianglin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ting Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - YongQiang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yejun Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yuanchun Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Li H, Suo Y, Li H, Sun P, Li S, Yuan D, Han W, Fu J. Cytological and Transcriptome Analyses Provide Insights into Persimmon Fruit Size Formation ( Diospyros kaki Thunb.). Int J Mol Sci 2024; 25:7238. [PMID: 39000347 PMCID: PMC11241297 DOI: 10.3390/ijms25137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of fruit size formation was investigated through morphological, cytological and transcriptomic analyses, as well as exogenous ethrel and aminoethoxyinylglycine (AVG: ethylene inhibitor) experiments using the large fruit and small fruit of 'Yaoxianwuhua'. The results showed that stages 3-4 (June 11-June 25) are the crucial morphological period for differentiation of large fruit and small fruit in persimmon. At this crucial morphological period, the cell number in large fruit was significantly more than that in small fruit, indicating that the difference in cell number is the main reason for the differentiation of persimmon fruit size. The difference in cell number was caused by cell division. CNR1, ANT, LAC17 and EB1C, associated with cell division, may be involved in regulating persimmon fruit size. Exogenous ethrel resulted in a decrease in fruit weight, and AVG treatment had the opposite effect. In addition, LAC17 and ERF114 were upregulated after ethrel treatment. These results indicated that high ethylene levels can reduce persimmon fruit size, possibly by inhibiting cell division. This study provides valuable information for understanding the regulation mechanism of persimmon fruit size and lays a foundation for subsequent breeding and artificial regulation of fruit size.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China; (H.L.); (S.L.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Yujing Suo
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Hui Li
- Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China;
| | - Peng Sun
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Shuzhan Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China; (H.L.); (S.L.)
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China; (H.L.); (S.L.)
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| | - Jianmin Fu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.); (W.H.)
| |
Collapse
|
4
|
Mao H, Wang L, Wang Y, Feng P, Song J, Jia B, Yang S, Zhang W, Wu M, Pei W, Ma J, Zhang B, Yu J. EB1C forms dimer and interacts with protein phosphatase 2A (PP2A) to regulate fiber elongation in upland cotton (Gossypium hirsutum). Int J Biol Macromol 2024; 256:128036. [PMID: 37972829 DOI: 10.1016/j.ijbiomac.2023.128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Cotton is the most economically important natural fiber crop grown in more than sixty-five countries of the world. Fiber length is the main factor affecting fiber quality, but the existing main varieties are short in length and cannot suit the higher demands of the textile industry. It is necessary to discover functional genes that enable fiber length improvement in cotton through molecular breeding. In this study, overexpression of GhEB1C in Arabidopsis thaliana significantly promotes trichomes, tap roots, and root hairs elongation. The molecular regulation of GhEB1C involves its interactions with itself and GhB'ETA, and the function of GhEB1C regulation mainly depends on the two cysteine residues located at the C-terminal. In particular, the function activity of GhEB1C protein triggered with the regulation of protein phosphatase 2A, while silencing of GhEB1C in cotton significantly influenced the fiber protrusions and elongation mechanisms., Further, influenced the expression of MYB-bHLH-WD40 complex, brassinosteroids, and jasmonic acid-related genes, which showed that transcriptional regulation of GhEB1C is indispensable for cotton fiber formation and elongation processes. Our study analyzed the brief molecular mechanism of GhEB1C regulation. Further elucidated that GhEB1C can be a potential target gene to improve cotton fiber length through transgenic breeding.
Collapse
Affiliation(s)
- Haoming Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
6
|
Chumová J, Kourová H, Trögelová L, Daniel G, Binarová P. γ-Tubulin Complexes and Fibrillar Arrays: Two Conserved High Molecular Forms with Many Cellular Functions. Cells 2021; 10:cells10040776. [PMID: 33915825 PMCID: PMC8066788 DOI: 10.3390/cells10040776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Higher plants represent a large group of eukaryotes where centrosomes are absent. The functions of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs) in metazoans and fungi in microtubule nucleation are well established and the majority of components found in the complexes are present in plants. However, plant microtubules are also nucleated in a γ-tubulin-dependent but γ-TuRC-independent manner. There is growing evidence that γ-tubulin is a microtubule nucleator without being complexed in γ-TuRC. Fibrillar arrays of γ-tubulin were demonstrated in plant and animal cells and the ability of γ-tubulin to assemble into linear oligomers/polymers was confirmed in vitro for both native and recombinant γ-tubulin. The functions of γ-tubulin as a template for microtubule nucleation or in promoting spontaneous nucleation is outlined. Higher plants represent an excellent model for studies on the role of γ-tubulin in nucleation due to their acentrosomal nature and high abundancy and conservation of γ-tubulin including its intrinsic ability to assemble filaments. The defining scaffolding or sequestration functions of plant γ-tubulin in microtubule organization or in nuclear processes will help our understanding of its cellular roles in eukaryotes.
Collapse
Affiliation(s)
- Jana Chumová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
| | - Hana Kourová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
| | - Lucie Trögelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden;
| | - Pavla Binarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská1083, 142 20 Prague, Czech Republic; (J.C.); (H.K.); (L.T.)
- Correspondence: ; Tel.: +420-241-062-130
| |
Collapse
|
7
|
Okimune KI, Nagy SK, Hataya S, Endo Y, Takasuka TE. Reconstitution of Drosophila and human chromatins by wheat germ cell-free co-expression system. BMC Biotechnol 2020; 20:62. [PMID: 33261588 PMCID: PMC7708258 DOI: 10.1186/s12896-020-00655-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Elaboration of the epigenetic regulation of chromatin is a long-standing aim in molecular and cellular biology. Hence, there is a great demand for the development of in vitro methods to reconstitute chromatin that can be used directly for biochemical assays. The widely used wheat germ cell-free protein expression method provides broad applications to investigate the function and structure of eukaryotic proteins. Such advantages, including high translation efficiency, flexibility, and possible automatization, are beneficial for achieving native-like chromatin substrates for in vitro studies. RESULTS We describe a novel, single-step in vitro chromatin assembly method by using the wheat germ cell-free protein synthesis. We demonstrated that both Drosophila and human chromatins can be reconstituted in the course of the in vitro translation of core histones by the addition of chromatin assembly factors, circular plasmid, and topoisomerase I in an ATP-dependent manner. Drosophila chromatin assembly was performed in 4 h at 26 °C, in the presence of premixed mRNAs encoding the core histones, dAcf1/dISWI chromatin remodeling complex, and nucleosome assembly protein, dNAP1. Similarly, the human chromatin was assembled by co-expressing the human core histones with Drosophila chromatin remodeling factor, dISWI, and chromatin chaperone, dNLP, for 6 h at 26 °C. The presence of reconstituted chromatin was monitored by DNA supercoiling assay, also the regular spacing of nucleosomes was assessed by Micrococcal nuclease assay. Furthermore, Drosophila linker histone H1-containing chromatin was reconstituted, affirming that the in vitro assembled chromatin is suitable for downstream applications. CONCLUSIONS The method described in this study allows the assembly of Drosophila and human chromatins, possibly in native-like form, by using a wheat germ cell-free protein expression. Although both chromatins were reconstituted successfully, there were unexpected differences with respect to the required ratio of histone-coding mRNAs and the reaction time. Overall, our new in vitro chromatin reconstitution method will aid to characterize the unrevealed structure, function, and regulation of chromatin dynamics.
Collapse
Affiliation(s)
- Kei-Ichi Okimune
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.,Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Szilvia K Nagy
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.,Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Shogo Hataya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yaeta Endo
- Proteo-Science Center of Ehime University, Matsuyama, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan. .,Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan. .,GI-CORE, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
8
|
Samakovli D, Tichá T, Vavrdová T, Ovečka M, Luptovčiak I, Zapletalová V, Kuchařová A, Křenek P, Krasylenko Y, Margaritopoulou T, Roka L, Milioni D, Komis G, Hatzopoulos P, Šamaj J. YODA-HSP90 Module Regulates Phosphorylation-Dependent Inactivation of SPEECHLESS to Control Stomatal Development under Acute Heat Stress in Arabidopsis. MOLECULAR PLANT 2020; 13:612-633. [PMID: 31935463 DOI: 10.1016/j.molp.2020.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
Stomatal ontogenesis, patterning, and function are hallmarks of environmental plant adaptation, especially to conditions limiting plant growth, such as elevated temperatures and reduced water availability. The specification and distribution of a stomatal cell lineage and its terminal differentiation into guard cells require a master regulatory protein phosphorylation cascade involving the YODA mitogen-activated protein kinase kinase kinase. YODA signaling results in the activation of MITOGEN-ACTIVATED PROTEIN KINASEs (MPK3 and MPK6), which regulate transcription factors, including SPEECHLESS (SPCH). Here, we report that acute heat stress affects the phosphorylation and deactivation of SPCH and modulates stomatal density. By using complementary molecular, genetic, biochemical, and cell biology approaches, we provide solid evidence that HEAT SHOCK PROTEINS 90 (HSP90s) play a crucial role in transducing heat-stress response through the YODA cascade. Genetic studies revealed that YODA and HSP90.1 are epistatic, and they likely function linearly in the same developmental pathway regulating stomata formation. HSP90s interact with YODA, affect its cellular polarization, and modulate the phosphorylation of downstream targets, such as MPK6 and SPCH, under both normal and heat-stress conditions. Thus, HSP90-mediated specification and differentiation of the stomatal cell lineage couples stomatal development to environmental cues, providing an adaptive heat stress response mechanism in plants.
Collapse
Affiliation(s)
- Despina Samakovli
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| | - Tereza Tichá
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Tereza Vavrdová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ivan Luptovčiak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Veronika Zapletalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Pavel Křenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Yuliya Krasylenko
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Theoni Margaritopoulou
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Loukia Roka
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Dimitra Milioni
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
9
|
Nagy SK, Kállai BM, András J, Mészáros T. A novel family of expression vectors with multiple affinity tags for wheat germ cell-free protein expression. BMC Biotechnol 2020; 20:17. [PMID: 32169064 PMCID: PMC7071761 DOI: 10.1186/s12896-020-00610-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cell-free protein expression has become a widely used alternative of in vivo, cell-based systems in functional and structural studies of proteins. The wheat germ-based method outstands from the commercially available eukaryotic in vitro translation systems by its flexibility, high translation efficiency and success rate of properly folded eukaryotic protein synthesis. The original T7 promoter containing pEU3-NII vector was improved previously by addition of a ligation-independent cloning site, His6- and GST-tags, and a TEV protease cleavage site to facilitate the creation of recombinant plasmids, permit affinity purification, and enable production of purified, tag-free target proteins, respectively. RESULTS Here, we describe a further development of pEU3-NII vector by inserting the rare-cutting, NotI restriction enzyme cleavage site to simplify vector linearization step prior to in vitro transcription. Additionally, His12, FLAG, and Halo affinity tag coding vectors have been created to increase detection sensitivity, specificity of interaction studies, and provide covalently linkable ligands for pull-down assays, respectively. Finally, the presented GST-His6, and GST-biotin double-tagging vectors could broaden the range of possibilities of protein-protein interaction studies. CONCLUSIONS The new generation of pEU3-NII vector family allows a more rapid production of translationally active mRNA and wheat germ cell-free expression of target proteins with a wide variety of affinity tags thus enables designing flexible and diverse experimental arrangement for in vitro studies of proteins.
Collapse
Affiliation(s)
- Szilvia Krisztina Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 37-47 Tűzoltó Street, Budapest, H-1094, Hungary
| | - Brigitta Margit Kállai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 37-47 Tűzoltó Street, Budapest, H-1094, Hungary
| | - Judit András
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 37-47 Tűzoltó Street, Budapest, H-1094, Hungary
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 37-47 Tűzoltó Street, Budapest, H-1094, Hungary.
| |
Collapse
|
10
|
Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc Natl Acad Sci U S A 2019; 116:21285-21290. [PMID: 31570617 DOI: 10.1073/pnas.1910916116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In both plants and animals, multiple cellular processes must be orchestrated to ensure proper organogenesis. The cell division patterns control the shape of growing organs, yet how they are precisely determined and coordinated is poorly understood. In plants, the distribution of the phytohormone auxin is tightly linked to organogenesis, including lateral root (LR) development. Nevertheless, how auxin regulates cell division pattern during lateral root development remains elusive. Here, we report that auxin activates Mitogen-Activated Protein Kinase (MAPK) signaling via transmembrane kinases (TMKs) to control cell division pattern during lateral root development. Both TMK1/4 and MKK4/5-MPK3/6 pathways are required to properly orient cell divisions, which ultimately determine lateral root development in response to auxin. We show that TMKs directly and specifically interact with and phosphorylate MKK4/5, which is required for auxin to activate MKK4/5-MPK3/6 signaling. Our data suggest that TMK-mediated noncanonical auxin signaling is required to regulate cell division pattern and connect auxin signaling to MAPK signaling, which are both essential for plant development.
Collapse
|
11
|
Chumová J, Kourová H, Trögelová L, Halada P, Binarová P. Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed? Cells 2019; 8:cells8030259. [PMID: 30893853 PMCID: PMC6468392 DOI: 10.3390/cells8030259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
γ-Tubulin is a conserved member of the tubulin superfamily with a function in microtubule nucleation. Proteins of γ-tubulin complexes serve as nucleation templates as well as a majority of other proteins contributing to centrosomal and non-centrosomal nucleation, conserved across eukaryotes. There is a growing amount of evidence of γ-tubulin functions besides microtubule nucleation in transcription, DNA damage response, chromatin remodeling, and on its interactions with tumor suppressors. However, the molecular mechanisms are not well understood. Furthermore, interactions with lamin and SUN proteins of the LINC complex suggest the role of γ-tubulin in the coupling of nuclear organization with cytoskeletons. γ-Tubulin that belongs to the clade of eukaryotic tubulins shows characteristics of both prokaryotic and eukaryotic tubulins. Both human and plant γ-tubulins preserve the ability of prokaryotic tubulins to assemble filaments and higher-order fibrillar networks. γ-Tubulin filaments, with bundling and aggregating capacity, are suggested to perform complex scaffolding and sequestration functions. In this review, we discuss a plethora of γ-tubulin molecular interactions and cellular functions, as well as recent advances in understanding the molecular mechanisms behind them.
Collapse
Affiliation(s)
- Jana Chumová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Hana Kourová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Lucie Trögelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavla Binarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
12
|
Vavrdová T, ˇSamaj J, Komis G. Phosphorylation of Plant Microtubule-Associated Proteins During Cell Division. FRONTIERS IN PLANT SCIENCE 2019; 10:238. [PMID: 30915087 PMCID: PMC6421500 DOI: 10.3389/fpls.2019.00238] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/12/2019] [Indexed: 05/20/2023]
Abstract
Progression of mitosis and cytokinesis depends on the reorganization of cytoskeleton, with microtubules driving the segregation of chromosomes and their partitioning to two daughter cells. In dividing plant cells, microtubules undergo global reorganization throughout mitosis and cytokinesis, and with the aid of various microtubule-associated proteins (MAPs), they form unique systems such as the preprophase band (PPB), the acentrosomal mitotic spindle, and the phragmoplast. Such proteins include nucleators of de novo microtubule formation, plus end binding proteins involved in the regulation of microtubule dynamics, crosslinking proteins underlying microtubule bundle formation and members of the kinesin superfamily with microtubule-dependent motor activities. The coordinated function of such proteins not only drives the continuous remodeling of microtubules during mitosis and cytokinesis but also assists the positioning of the PPB, the mitotic spindle, and the phragmoplast, affecting tissue patterning by controlling cell division plane (CDP) orientation. The affinity and the function of such proteins is variably regulated by reversible phosphorylation of serine and threonine residues within the microtubule binding domain through a number of protein kinases and phosphatases which are differentially involved throughout cell division. The purpose of the present review is to provide an overview of the function of protein kinases and protein phosphatases involved in cell division regulation and to identify cytoskeletal substrates relevant to the progression of mitosis and cytokinesis and the regulation of CDP orientation.
Collapse
|
13
|
Zhang Y, Dong J. Cell polarity: compassing cell division and differentiation in plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:127-135. [PMID: 29957569 PMCID: PMC7183757 DOI: 10.1016/j.pbi.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 05/18/2023]
Abstract
Protein polarization underlies directional cell growth, cell morphogenesis, cell division, fate specification and differentiation in plant development. Analysis of in vivo protein dynamics reveals differential mobility of polarized proteins in plant cells, which may arise from lateral diffusion, local protein-protein interactions, and is restricted by protein-membrane-cell wall connections. The asymmetric protein dynamics may provide a mechanism for the regulation of asymmetric cell division and cell differentiation. In light of recent evidence for preprophase band (PPB)-independent mechanisms for orienting division planes, polarity proteins and their dynamics might provide regulation on the PPB at the cell cortex to directly influence phragmoplast positioning or alternatively, impinge on cytoplasmic microtubule-organizing centers (MTOCs) for spindle alignment. Differentiation of specialized cell types is often associated with the spatial regulation of cell wall architecture. Here we discuss the mechanisms of polarized signaling underlying regional cell wall biosynthesis, degradation, and modification during the differentiation of root endodermal cells and leaf epidermal guard cells.
Collapse
Affiliation(s)
- Ying Zhang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA.
| |
Collapse
|
14
|
Dóczi R, Bögre L. The Quest for MAP Kinase Substrates: Gaining Momentum. TRENDS IN PLANT SCIENCE 2018; 23:918-932. [PMID: 30143312 DOI: 10.1016/j.tplants.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are versatile signaling mechanisms in all eukaryotes. Their signaling outputs are defined by the protein substrates phosphorylated by MAPKs. An expanding list of substrates has been identified by high-throughput screens and targeted approaches in plants. The majority of these are phosphorylated by MPK3/6, and a few by MPK4, which are the best-characterized plant MAPKs, participating in the regulation of numerous biological processes. The identified substrates clearly represent the functional diversity of MAPKs: they are associated with pathogen defense, abiotic stress responses, ethylene signaling, and various developmental functions. Understanding their outputs is integral to unraveling the complex regulatory mechanisms of MAPK cascades. We review here methodological approaches and provide an overview of known MAPK substrates.
Collapse
Affiliation(s)
- Róbert Dóczi
- Institute of Agriculture, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik utca 2, H-2462 Martonvásár, Hungary.
| | - László Bögre
- School of Biological Sciences and Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham TW20 0EX, UK
| |
Collapse
|
15
|
Winnicki K, Żabka A, Polit JT, Maszewski J. Mitogen-activated protein kinases concentrate in the vicinity of chromosomes and may regulate directly cellular patterning in Vicia faba embryos. PLANTA 2018; 248:307-322. [PMID: 29721610 DOI: 10.1007/s00425-018-2905-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinases seem to mark genes which are set up to be activated in daughter cells and thus they may play a direct role in cellular patterning during embryogenesis. Embryonic patterning starts very early and after the first division of zygote different genes are expressed in apical and basal cells. However, there is an ongoing debate about the way these different transcription patterns are established during embryogenesis. The presented data indicate that mitogen-activated protein kinases (MAPKs) concentrate in the vicinity of chromosomes and form visible foci there. Cells in the apical and basal regions differ in number of foci observed during the metaphase which suggests that cellular patterning may be determined by activation of diverse MAPK-dependent genes. Different number of foci in each group of separating chromatids and the specified direction of these mitoses in apical-basal axis indicate that the unilateral auxin accumulation in a single cell may regulate the number of foci in each group of chromatids. Thus, we put forward a hypothesis that MAPKs localized in the vicinity of chromosomes during mitosis mark those genes which are set up to be activated in daughter cells after division. It implies that the chromosomal localization of MAPKs may be one of the mechanisms involved in establishment of cellular patterns in some plant species.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland.
| | - Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
16
|
Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and Developmental Biology of Plant Mitogen-Activated Protein Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:237-265. [PMID: 29489398 DOI: 10.1146/annurev-arplant-042817-040314] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant mitogen-activated protein kinases (MAPKs) constitute a network of signaling cascades responsible for transducing extracellular stimuli and decoding them to dedicated cellular and developmental responses that shape the plant body. Over the last decade, we have accumulated information about how MAPK modules control the development of reproductive tissues and gametes and the embryogenic and postembryonic development of vegetative organs such as roots, root nodules, shoots, and leaves. Of key importance to understanding how MAPKs participate in developmental and environmental signaling is the characterization of their subcellular localization, their interactions with upstream signal perception mechanisms, and the means by which they target their substrates. In this review, we summarize the roles of MAPK signaling in the regulation of key plant developmental processes, and we survey what is known about the mechanisms guiding the subcellular compartmentalization of MAPK modules.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
17
|
Chumová J, Trögelová L, Kourová H, Volc J, Sulimenko V, Halada P, Kučera O, Benada O, Kuchařová A, Klebanovych A, Dráber P, Daniel G, Binarová P. γ-Tubulin has a conserved intrinsic property of self-polymerization into double stranded filaments and fibrillar networks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:734-748. [PMID: 29499229 DOI: 10.1016/j.bbamcr.2018.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
Abstract
γ-Tubulin is essential for microtubule nucleation and also plays less understood roles in nuclear and cell-cycle-related functions. High abundancy of γ-tubulin in acentrosomal Arabidopsis cells facilitated purification and biochemical characterization of large molecular species of γ-tubulin. TEM, fluorescence, and atomic force microscopy of purified high molecular γ-tubulin forms revealed the presence of linear filaments with a double protofilament substructure, filament bundles and aggregates. Filament formation from highly purified γ-tubulin free of γ-tubulin complex proteins (GCPs) was demonstrated for both plant and human γ-tubulin. Moreover, γ-tubulin associated with porcine brain microtubules formed oligomers. Experimental evidence on the intrinsic ability of γ-tubulin to oligomerize/polymerize was supported by conservation of α- and β-tubulin interfaces for longitudinal and lateral interactions for γ-tubulins. STED (stimulated emission depletion) microscopy of Arabidopsis cells revealed fine, short γ-tubulin fibrillar structures enriched on mitotic microtubular arrays that accumulated at polar regions of acentrosomal spindles and the outer nuclear envelope before mitosis, and were also present in nuclei. Fine fibrillar structures of γ-tubulin representing assemblies of higher order were localized in cell-cycle-dependent manner at sites of dispersed γ-tubulin location in acentrosomal plant cells as well as at sites of local γ-tubulin enrichment after drug treatment. Our findings that γ-tubulin preserves the capability of prokaryotic tubulins to self-organize into filaments assembling by lateral interaction into bundles/clusters help understanding of the relationship between structure and multiple cellular functions of this protein species and suggest that besides microtubule nucleation and organization, γ-tubulin may also have scaffolding or sequestration functions.
Collapse
Affiliation(s)
- Jana Chumová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lucie Trögelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Hana Kourová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jindřich Volc
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Vadym Sulimenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Ondřej Kučera
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 00 Prague 8, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anna Kuchařová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anastasiya Klebanovych
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Dráber
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Geoffrey Daniel
- Department of Forest Biomaterials Technology, Swedish University of Agricultural Sciences, Box 7008, Uppsala SE-75007, Sweden
| | - Pavla Binarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
18
|
Smertenko A, Hewitt SL, Jacques CN, Kacprzyk R, Liu Y, Marcec MJ, Moyo L, Ogden A, Oung HM, Schmidt S, Serrano-Romero EA. Phragmoplast microtubule dynamics - a game of zones. J Cell Sci 2018; 131:jcs.203331. [PMID: 29074579 DOI: 10.1242/jcs.203331] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Pullman, WA 99164, USA .,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Seanna L Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Horticulture, Washington State University, Pullman, WA 99164, USA
| | - Caitlin N Jacques
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rafal Kacprzyk
- Institute of Biological Chemistry, Pullman, WA 99164, USA
| | - Yan Liu
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Matthew J Marcec
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lindani Moyo
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Aaron Ogden
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Hui Min Oung
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Sharol Schmidt
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Erika A Serrano-Romero
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
19
|
Dory M, Hatzimasoura E, Kállai BM, Nagy SK, Jäger K, Darula Z, Nádai TV, Mészáros T, López‐Juez E, Barnabás B, Palme K, Bögre L, Ditengou FA, Dóczi R. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Lett 2018; 592:89-102. [PMID: 29197077 PMCID: PMC5814726 DOI: 10.1002/1873-3468.12929] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
Abstract
Plant growth flexibly adapts to environmental conditions, implying cross-talk between environmental signalling and developmental regulation. Here, we show that the PIN auxin efflux carrier family possesses three highly conserved putative mitogen-activated protein kinase (MAPK) sites adjacent to the phosphorylation sites of the well-characterised AGC kinase PINOID, which regulates the polar localisation of PINs and directional auxin transport, thereby underpinning organ growth. The conserved sites of PIN1 are phosphorylated in vitro by two environmentally activated MAPKs, MPK4 and MPK6. In contrast to AGC kinases, MAPK-mediated phosphorylation of PIN1 at adjacent sites leads to a partial loss of the plasma membrane localisation of PIN1. MAPK-mediated modulation of PIN trafficking may participate in environmental adjustment of plant growth.
Collapse
Affiliation(s)
- Magdalena Dory
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Elizabeth Hatzimasoura
- School of Biological Sciences and Centre for Systems and Synthetic BiologyRoyal Holloway, University of LondonEghamUK
| | - Brigitta M. Kállai
- Department of Medical ChemistryMolecular Biology and PathobiochemistrySemmelweis UniversityBudapestHungary
| | - Szilvia K. Nagy
- Department of Medical ChemistryMolecular Biology and PathobiochemistrySemmelweis UniversityBudapestHungary
| | - Katalin Jäger
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics ResearchBiological Research CentreHungarian Academy of SciencesSzegedHungary
| | - Tímea V. Nádai
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Tamás Mészáros
- Department of Medical ChemistryMolecular Biology and PathobiochemistrySemmelweis UniversityBudapestHungary
| | - Enrique López‐Juez
- School of Biological Sciences and Centre for Systems and Synthetic BiologyRoyal Holloway, University of LondonEghamUK
| | - Beáta Barnabás
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| | - Klaus Palme
- Institute of Biology IIUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
- Centre for Biological Systems Analysis (ZBSA)University of FreiburgGermany
| | - László Bögre
- School of Biological Sciences and Centre for Systems and Synthetic BiologyRoyal Holloway, University of LondonEghamUK
| | - Franck A. Ditengou
- Institute of Biology IIUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
- Centre for Biological Systems Analysis (ZBSA)University of FreiburgGermany
| | - Róbert Dóczi
- Institute of AgricultureCentre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
| |
Collapse
|
20
|
Krysan PJ, Colcombet J. Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them. FRONTIERS IN PLANT SCIENCE 2018; 9:1674. [PMID: 30538711 PMCID: PMC6277691 DOI: 10.3389/fpls.2018.01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
Mitogen activated protein kinase (MAPK) cascades play an important role in many aspects of plant growth, development, and environmental response. Because of their central role in many important processes, MAPKs have been extensively studied using biochemical and genetic approaches. This work has allowed for the identification of the MAPK genes and proteins involved in a number of different signaling pathways. Less well developed, however, is our understanding of how MAPK cascades and their corresponding signaling pathways are organized at subcellular levels. In this review, we will provide an overview of plant MAPK signaling, including a discussion of what is known about cellular mechanisms for achieving signaling specificity. Then we will explore what is currently known about the subcellular localization of MAPK proteins in resting conditions and after pathway activation. Finally, we will discuss a number of new experimental methods that have not been widely deployed in plants that have the potential to provide a deeper understanding of the spatial and temporal dynamics of MAPK signaling.
Collapse
Affiliation(s)
- Patrick J. Krysan
- Horticulture Department, University of Wisconsin–Madison, Madison, WI, United States
| | - Jean Colcombet
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
- *Correspondence: Jean Colcombet,
| |
Collapse
|
21
|
Benhamman R, Bai F, Drory SB, Loubert-Hudon A, Ellis B, Matton DP. The Arabidopsis Mitogen-Activated Protein Kinase Kinase Kinase 20 (MKKK20) Acts Upstream of MKK3 and MPK18 in Two Separate Signaling Pathways Involved in Root Microtubule Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1352. [PMID: 28848569 PMCID: PMC5550695 DOI: 10.3389/fpls.2017.01352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/19/2017] [Indexed: 05/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling networks represent important means of signal transduction in plants and other eukaryotes, controlling intracellular signaling by linking perception of environmental or developmental cues to downstream targets. In the Arabidopsis MEKK subfamily, the MKKK19, 20, and 21 form a highly supported clade with the Solanaceous Fertilization-Related Kinases. In Arabidopsis, little is known about this group, except for MKKK20, which is involved in osmotic stress. Using a directed MKKK-MKK yeast two-hybrid (Y2H) screen, MKKK20 was found to interact only with MKK3, while a MKKK20 large-scale Y2H screen retrieved MPK18 as a direct interactant. In vitro phosphorylation assays showed that MKKK20 phosphorylates both MKK3 and MPK18. However, when all three kinases are combined, no synergistic effect is observed on MPK18 phosphorylation, suggesting a direct access to MPK18, consistent with the absence of interaction between MKK3 and MPK18 in protein-protein interaction assays. Since mpk18 mutant plants were previously shown to be defective in microtubule-related functions, phenotypes of mkkk20 single and mkkk20/mpk18 double mutants were investigated to determine if MKKK20 acts upstream of MPK18. This was the case, as mkkk20 root length was shorter than WT in media containing microtubule-disrupting drugs as previously observed for mpk18 plants. Surprisingly, mkk3 plants were also similarly affected, suggesting the presence of two non-complementary pathways involved in Arabidopsis cortical microtubule function, the first including MKKK20, MKK3 and an unknown MPK; the second, a non-canonical MAPK cascade made of MKKK20 and MPK18 that bypasses the need for an MKK intermediate.
Collapse
Affiliation(s)
- Rachid Benhamman
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Fangwen Bai
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Samuel B. Drory
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Audrey Loubert-Hudon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Daniel P. Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
- *Correspondence: Daniel P. Matton,
| |
Collapse
|
22
|
Novák D, Kuchařová A, Ovečka M, Komis G, Šamaj J. Developmental Nuclear Localization and Quantification of GFP-Tagged EB1c in Arabidopsis Root Using Light-Sheet Microscopy. FRONTIERS IN PLANT SCIENCE 2016; 6:1187. [PMID: 26779221 PMCID: PMC4700127 DOI: 10.3389/fpls.2015.01187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
The development of the root apex is determined by progress of cells from the meristematic region to the successive post-mitotic developmental zones for transition, cell elongation and final cell differentiation. We addressed root development, tissue architecture and root developmental zonation by means of light-sheet microscopic imaging of Arabidopsis thaliana seedlings expressing END BINDING protein 1c (EB1c) fused to green fluorescent protein (GFP) under control of native EB1c promoter. Unlike the other two members of the EB1 family, plant-specific EB1c shows prominent nuclear localization in non-dividing cells in all developmental zones of the root apex. The nuclear localization of EB1c was previously mentioned solely in meristematic cells, but not further addressed. With the help of advanced light-sheet microscopy, we report quantitative evaluations of developmentally-regulated nuclear levels of the EB1c protein tagged with GFP relatively to the nuclear size in diverse root tissues (epidermis, cortex, and endodermis) and root developmental zones (meristem, transition, and elongation zones). Our results demonstrate a high potential of light-sheet microscopy for 4D live imaging of fluorescently-labeled nuclei in complex samples such as developing roots, showing capacity to quantify parameters at deeper cell layers (e.g., endodermis) with minimal aberrations. The data presented herein further signify the unique role of developmental cell reprogramming in the transition from cell proliferation to cell differentiation in developing root apex.
Collapse
Affiliation(s)
| | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University OlomoucOlomouc, Czech Republic
| |
Collapse
|