1
|
Wang Y, Duchen P, Chávez A, Sree KS, Appenroth KJ, Zhao H, Höfer M, Huber M, Xu S. Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality. Commun Biol 2024; 7:581. [PMID: 38755313 PMCID: PMC11099151 DOI: 10.1038/s42003-024-06266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Alexandra Chávez
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periya, 671320, India
| | - Klaus J Appenroth
- Matthias Schleiden Institute - Plant Physiology, Friedrich Schiller University of Jena, 07743, Jena, Germany
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 6100641, Chengdu, China
| | - Martin Höfer
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Meret Huber
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, 55128, Mainz, Germany.
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany.
- Institute for Quantitative and Computational Biosciences, University of Mainz, 55218, Mainz, Germany.
| |
Collapse
|
2
|
Zhang Y, Jia R, Hui T, Hu Y, Wang W, Wang Y, Wang Y, Zhu Y, Yang L, Xiang B. Transcriptomic and physiological analysis of the response of Spirodela polyrrhiza to sodium nitroprusside. BMC PLANT BIOLOGY 2024; 24:95. [PMID: 38331719 PMCID: PMC10851477 DOI: 10.1186/s12870-024-04766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Spirodela polyrrhiza is a simple floating aquatic plant with great potential in synthetic biology. Sodium nitroprusside (SNP) stimulates plant development and increases the biomass and flavonoid content in some plants. However, the molecular mechanism of SNP action is still unclear. RESULTS To determine the effect of SNP on growth and metabolic flux in S. polyrrhiza, the plants were treated with different concentrations of SNP. Our results showed an inhibition of growth, an increase in starch, soluble protein, and flavonoid contents, and enhanced antioxidant enzyme activity in plants after 0.025 mM SNP treatment. Differentially expressed transcripts were analysed in S. polyrrhiza after 0.025 mM SNP treatment. A total of 2776 differentially expressed genes (1425 upregulated and 1351 downregulated) were identified. The expression of some genes related to flavonoid biosynthesis and NO biosynthesis was upregulated, while the expression of some photosynthesis-related genes was downregulated. Moreover, SNP stress also significantly influenced the expression of transcription factors (TFs), such as ERF, BHLH, NAC, and WRKY TFs. CONCLUSIONS Taken together, these findings provide novel insights into the mechanisms of underlying the SNP stress response in S. polyrrhiza and show that the metabolic flux of fixed CO2 is redirected into the starch synthesis and flavonoid biosynthesis pathways after SNP treatment.
Collapse
Affiliation(s)
- Yamei Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Rong Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Tanyue Hui
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yue Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Wenjing Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yong Wang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China.
| |
Collapse
|
3
|
Hoang PTN, Fuchs J, Schubert V, Tran TBN, Schubert I. Chromosome Numbers and Genome Sizes of All 36 Duckweed Species ( Lemnaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202674. [PMID: 36297698 PMCID: PMC9608876 DOI: 10.3390/plants11202674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/12/2023]
Abstract
Usually, chromosome sets (karyotypes) and genome sizes are rather stable for distinct species and therefore of diagnostic value for taxonomy. In combination with (cyto)genomics, both features provide essential cues for genome evolution and phylogenetic relationship studies within and between taxa above the species level. We present for the first time a survey on chromosome counts and genome size measurement for one or more accessions from all 36 duckweed species and discuss the evolutionary impact and peculiarities of both parameters in duckweeds.
Collapse
|
4
|
Stepanenko A, Chen G, Hoang PTN, Fuchs J, Schubert I, Borisjuk N. The Ribosomal DNA Loci of the Ancient Monocot Pistia stratiotes L. (Araceae) Contain Different Variants of the 35S and 5S Ribosomal RNA Gene Units. FRONTIERS IN PLANT SCIENCE 2022; 13:819750. [PMID: 35310643 PMCID: PMC8928438 DOI: 10.3389/fpls.2022.819750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The freshwater plant water lettuce (Pistia stratiotes L.) grows in warm climatic zones and is used for phytoremediation and biomass production. P. stratiotes belongs to the Araceae, an ecologically and structurally diverse early monocot family, but the phylogenetic relationships among Araceae members are poorly understood. Ribosomal DNAs (rDNAs), including the 35S and 5S rDNA, encode the RNA components of ribosomes and are widely used in phylogenetic and evolutionary studies of various plant taxa. Here, we comprehensively characterized the chromosomal locations and molecular organization of 35S and 5S rDNA genes in water lettuce using karyological and molecular methods. Fluorescence in situ hybridization revealed a single location for the 35S and 5S rDNA loci, each on a different pair of the species' 28 chromosomes. Molecular cloning and nucleotide sequencing of 35S rDNA of P. stratiotes, the first representative Araceae sensu stricto in which such a study was performed, displayed typical structural characteristics. The full-length repeat showed high sequence conservation of the regions producing the 18S, 5.8S, and 25S rRNAs and divergence of the internal transcribed spacers ITS1 and ITS2 as well as the large intergenic spacer (IGS). Alignments of the deduced sequence of 18S rDNA with the sequences available for other Araceae and representatives of other clades were used for phylogenetic analysis. Examination of 11 IGS sequences revealed significant intra-genomic length variability due to variation in subrepeat number, with four types of units detected within the 35S rDNA locus of the P. stratiotes genome (estimated size 407 Mb/1C). Similarly, the 5S rDNA locus harbors gene units comprising a conserved 119-bp sequence encoding 5S rRNA and two types of non-transcribed spacer (NTS) sequences. Type I was classified into four subtypes, which apparently originated via progressive loss of subrepeats within the duplicated NTS region containing the 3' part of the 5S rRNA gene. The minor Type II NTS is shorter than Type I and differs in nucleotide composition. Some DNA clones containing two or three consecutive 5S rDNA repeats harbored 5S rDNA genes with different types of NTSs, confirming the mosaic composition of the 5S rDNA locus.
Collapse
Affiliation(s)
- Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Phuong T. N. Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Faculty of Biology, Dalat University, Đà Lạt, Vietnam
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
5
|
Lemnaceae and Orontiaceae Are Phylogenetically and Morphologically Distinct from Araceae. PLANTS 2021; 10:plants10122639. [PMID: 34961110 PMCID: PMC8704351 DOI: 10.3390/plants10122639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022]
Abstract
Duckweeds comprise a distinctive clade of pleustophytic monocots that traditionally has been classified as the family Lemnaceae. However, molecular evidence has called into question their phylogenetic independence, with some authors asserting instead that duckweeds should be reclassified as subfamily Lemnoideae of an expanded family Araceae. Although a close phylogenetic relationship of duckweeds with traditional Araceae has been supported by multiple studies, the taxonomic disposition of duckweeds must be evaluated more critically to promote nomenclatural stability and utility. Subsuming duckweeds as a morphologically incongruent lineage of Araceae effectively eliminates the family category of Lemnaceae that has been widely used for many years. Instead, we suggest that Araceae subfamily Orontioideae should be restored to family status as Orontiaceae, which thereby would enable the recognition of three morphologically and phylogenetically distinct lineages: Araceae, Lemnaceae, and Orontiaceae.
Collapse
|
6
|
Yang J, Zhao X, Li G, Hu S, Hou H. Frond architecture of the rootless duckweed Wolffia globosa. BMC PLANT BIOLOGY 2021; 21:387. [PMID: 34416853 PMCID: PMC8377843 DOI: 10.1186/s12870-021-03165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The plant body in duckweed species has undergone reduction and simplification from the ancient Spirodela species towards more derived Wolffia species. Among the five duckweed genera, Wolffia members are rootless and represent the smallest and most reduced species. A better understanding of Wolffia frond architecture is necessary to fully explore duckweed evolution. RESULTS We conducted a comprehensive study of the morphology and anatomy of Wolffia globosa, the only Wolffia species in China. We first used X-ray microtomography imaging to reveal the three-dimensional and internal structure of the W. globosa frond. This showed that new fronds rapidly budded from the hollow reproductive pocket of the mother fronds and that several generations at various developmental stages could coexist in a single W. globosa frond. Using light microscopy, we observed that the meristem area of the W. globosa frond was located at the base of the reproductive pocket and composed of undifferentiated cells that continued to produce new buds. A single epidermal layer surrounded the W. globosa frond, and the mesophyll cells varied from small and dense palisade-like parenchyma cells to large, vacuolated cells from the ventral to the dorsal part. Furthermore, W. globosa fronds contained all the same organelles as other angiosperms; the most prominent organelles were chloroplasts with abundant starch grains. CONCLUSIONS Our study revealed that the reproductive strategy of W. globosa plants enables the rapid accumulation of biomass and the wide distribution of this species in various habitats. The reduced body plan and size of Wolffia are consistent with our observation that relatively few cell types are present in these plants. We also propose that W. globosa plants are not only suitable for the study of structural reduction in higher plants, but also an ideal system to explore fundamental developmental processes of higher plants that cannot be addressed using other model plants.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shiqi Hu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
7
|
Hoang PTN, Rouillard JM, Macas J, Kubalová I, Schubert V, Schubert I. Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds. Chromosoma 2021; 130:15-25. [PMID: 33443586 PMCID: PMC7889562 DOI: 10.1007/s00412-020-00749-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
- Biology Department, Dalat University, District 8, Dalat City, Lamdong Province, Vietnam
| | - Jean-Marie Rouillard
- Arbor Biosciences, Ann Arbor, MI, 48 102, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, CZ 37005, České Budějovice, Czech Republic
| | - Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
| |
Collapse
|
8
|
Hoang PTN, Fiebig A, Novák P, Macas J, Cao HX, Stepanenko A, Chen G, Borisjuk N, Scholz U, Schubert I. Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Sci Rep 2020; 10:19230. [PMID: 33154426 PMCID: PMC7645714 DOI: 10.1038/s41598-020-75728-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Biology Faculty, Dalat University, District 8, Dalat City, Lamdong Province, Vietnam
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, 37005, Czech Republic
| | - Hieu X Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.
| |
Collapse
|
9
|
Mayrose I, Lysak MA. The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches. Genome Biol Evol 2020; 13:5923296. [PMID: 33566095 PMCID: PMC7875004 DOI: 10.1093/gbe/evaa220] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosome numbers have been widely used to describe the most fundamental genomic attribute of an organism or a lineage. Although providing strong phylogenetic signal, chromosome numbers vary remarkably among eukaryotes at all levels of taxonomic resolution. Changes in chromosome numbers regularly serve as indication of major genomic events, most notably polyploidy and dysploidy. Here, we review recent advancements in our ability to make inferences regarding historical events that led to alterations in the number of chromosomes of a lineage. We first describe the mechanistic processes underlying changes in chromosome numbers, focusing on structural chromosomal rearrangements. Then, we focus on experimental procedures, encompassing comparative cytogenomics and genomics approaches, and on computational methodologies that are based on explicit models of chromosome-number evolution. Together, these tools offer valuable predictions regarding historical events that have changed chromosome numbers and genome structures, as well as their phylogenetic and temporal placements.
Collapse
Affiliation(s)
- Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Chen D, Zhang H, Wang Q, Shao M, Li X, Chen D, Zeng R, Song Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122672. [PMID: 32305716 DOI: 10.1016/j.jhazmat.2020.122672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/25/2023]
Abstract
Duckweeds are widely recognized for the heavy metal phytoremediation. However, the intraspecific variations in biological responses of duckweeds to heavy metal remain largely unknown. Here, the toxicity and phytoaccumulation of cadmium (Cd) were synchronously evaluated in 30 accessions of giant duckweed (Spirodela polyrhiza) collected from different provenances in Southern China. Exposure to 1 μM Cd decreased relative growth rates of dry weight, fronds number and fronds area, as well as photosynthetic pigment contents, while it increased H2O2 accumulation, lipid peroxidation and activities of anti-oxidant enzymes in the majority of accessions. Cd treatment led to remarkable Cd accumulation but little changes in the starch content in giant duckweed. The biological responses to Cd varied among the accessions. Further correlation analysis indicated that growth traits and Cd concentration were positively correlated with Cd accumulation, while the contents of chlorophyll, H2O2 and MDA were negatively associated with Cd accumulation. Our results proved the great intraspecific variation in Cd tolerance of giant duckweed, suggesting a valuable natural resource for Cd phytoremediation. Moreover, different mechanisms may be exploited by S. polyrhiza for phytoaccumulation, but growth maintenance, Cd uptake and antioxidative enzyme-independent ROS-scavenging under Cd exposure are the common mechanisms contributing to Cd accumulation ability.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Qiongli Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Xinyu Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
11
|
Hepler NK, Bowman A, Carey RE, Cosgrove DJ. Expansin gene loss is a common occurrence during adaptation to an aquatic environment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:666-680. [PMID: 31627246 DOI: 10.1111/tpj.14572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 05/15/2023]
Abstract
Expansins comprise a superfamily of plant cell wall loosening proteins that can be divided into four individual families (EXPA, EXPB, EXLA and EXLB). Aside from inferred roles in a variety of plant growth and developmental traits, little is known regarding the function of specific expansin clades, for which there are at least 16 in flowering plants (angiosperms); however, there is evidence to suggest that some expansins have cell-specific functions, in root hair and pollen tube development, for example. Recently, two duckweed genomes have been sequenced (Spirodela polyrhiza strains 7498 and 9509), revealing significantly reduced superfamily sizes. We hypothesized that there would be a correlation between expansin loss and morphological reductions seen among highly adapted aquatic species. In order to provide an answer to this question, we characterized the expansin superfamilies of the greater duckweed Spirodela, the marine eelgrass Zostera marina and the bladderwort Utricularia gibba. We discovered rampant expansin gene and clade loss among the three, including a complete absence of the EXLB family and EXPA-VII. The most convincing correlation between morphological reduction and expansin loss was seen for Utricularia and Spirodela, which both lack root hairs and the root hair expansin clade EXPA-X. Contrary to the pattern observed in other species, four Utricularia expansins failed to branch within any clade, suggesting that they may be the result of neofunctionalization. Last, an expansin clade previously discovered only in eudicots was identified in Spirodela, allowing us to conclude that the last common ancestor of monocots and eudicots contained a minimum of 17 expansins.
Collapse
Affiliation(s)
- Nathan K Hepler
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexa Bowman
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Daniel J Cosgrove
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proc Natl Acad Sci U S A 2019; 116:18893-18899. [PMID: 31484765 DOI: 10.1073/pnas.1910401116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aquatic plants have to adapt to the environments distinct from where land plants grow. A critical aspect of adaptation is the dynamics of sequence repeats, not resolved in older sequencing platforms due to incomplete and fragmented genome assemblies from short reads. Therefore, we used PacBio long-read sequencing of the Spirodela polyrhiza genome, reaching a 44-fold increase of contiguity with an N50 (a median of contig lengths) of 831 kb and filling 95.4% of gaps left from the previous version. Reconstruction of repeat regions indicates that sequentially nested long terminal repeat (LTR) retrotranspositions occur early in monocot evolution, featured with both prokaryote-like gene-rich regions and eukaryotic repeat islands. Protein-coding genes are reduced to 18,708 gene models supported by 492,435 high-quality full-length PacBio complementary DNA (cDNA) sequences. Different from land plants, the primitive architecture of Spirodela's adventitious roots and lack of lateral roots and root hairs are consistent with dispensable functions of nutrient absorption. Disease-resistant genes encoding antimicrobial peptides and dirigent proteins are expanded by tandem duplications. Remarkably, disease-resistant genes are not only amplified, but also highly expressed, consistent with low levels of 24-nucleotide (nt) small interfering RNA (siRNA) that silence the immune system of land plants, thereby protecting Spirodela against a wide spectrum of pathogens and pests. The long-read sequence information not only sheds light on plant evolution and adaptation to the environment, but also facilitates applications in bioenergy and phytoremediation.
Collapse
|
13
|
Fourounjian P, Tang J, Tanyolac B, Feng Y, Gelfand B, Kakrana A, Tu M, Wakim C, Meyers BC, Ma J, Messing J. Post-transcriptional adaptation of the aquatic plant Spirodela polyrhiza under stress and hormonal stimuli. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1120-1133. [PMID: 30801806 DOI: 10.1111/tpj.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The Lemnaceae family comprises aquatic plants of angiosperms gaining attention due to their utility in wastewater treatment, and rapid production of biomass that can be used as feed, fuel, or food. Moreover, it can serve as a model species for neotenous growth and environmental adaptation. The latter properties are subject to post-transcriptional regulation of gene expression, meriting investigation of how miRNAs in Spirodela polyrhiza, the most basal and most thoroughly sequenced member of the family, are expressed under different growth conditions. To further scientific understanding of its capacity to adapt to environmental cues, we measured miRNA expression and processing of their target sequences under different temperatures, and in the presence of abscisic acid, copper, kinetin, nitrate, and sucrose. Using two small RNA sequencing experiments and one degradome sequencing experiment, we provide evidence for 108 miRNAs. Sequencing cleaved mRNAs validated 42 conserved miRNAs with 83 targets and 24 novel miRNAs regulating 66 targets and created a list of 575 predicted and verified targets. These analyses revealed condition-induced changes in miRNA expression and cleavage activity, and resulted in the addition of stringently reviewed miRNAs to miRBase. This combination of small RNA and degradome sequencing provided not only high confidence predictions of conserved and novel miRNAs and targets, but also a view of the post-transcriptional regulation of adaptations. A unique aspect is the role of miR156 and miR172 expression and activity in its clonal propagation and neoteny. Additionally, low levels of 24 nt sRNAs were observed, despite the lack of recent retrotransposition.
Collapse
Affiliation(s)
- Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Jie Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Bahattin Tanyolac
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Brian Gelfand
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Atul Kakrana
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Min Tu
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Chris Wakim
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Jiong Ma
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| |
Collapse
|
14
|
Hoang PTN, Schubert V, Meister A, Fuchs J, Schubert I. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci Rep 2019; 9:3234. [PMID: 30824726 PMCID: PMC6397220 DOI: 10.1038/s41598-019-39332-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/01/2022] Open
Abstract
Duckweeds are small, free-floating, largely asexual and highly neotenous organisms. They display the most rapid growth among flowering plants and are of growing interest in aquaculture and genome biology. Genomic and chromosomal data are still rare. Applying flow-cytometric genome size measurement, microscopic determination of frond, cell and nucleus morphology, as well as fluorescence in situ hybridization (FISH) for localization of ribosomal DNA (rDNA), we compared eleven species, representative for the five duckweed genera to search for potential correlations between genome size, cell and nuclei volume, simplified body architecture (neoteny), chromosome numbers and rDNA loci. We found a ~14-fold genome size variation (from 160 to 2203 Mbp), considerable differences in frond size and shape, highly variable guard cell and nucleus size, chromosome number (from 2n = 36 to 82) and number of 5S and 45S rDNA loci. In general, genome size is positively correlated with guard cell and nucleus volume (p < 0.001) and with the neoteny level and inversely with the frond size. In individual cases these correlations could be blurred for instance by particular body and cell structures which seem to be linked to specific floating styles. Chromosome number and rDNA loci variation between the tested species was independent of the genome size. We could not confirm previously reported intraspecific variation of chromosome numbers between individual clones of the genera Spirodela and Landoltia.
Collapse
Affiliation(s)
- Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany.,Dalat University, Lamdong Province, Vietnam
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany.
| |
Collapse
|
15
|
Hoang PNT, Michael TP, Gilbert S, Chu P, Motley ST, Appenroth KJ, Schubert I, Lam E. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:670-684. [PMID: 30054939 DOI: 10.1111/tpj.14049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole-genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes (BACs) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mcFISH) to seven S. polyrhiza clones, using 106 BACs that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high-depth Oxford Nanopore (ON) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map with high contiguity was produced with the ON sequence data and genome-wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale, and illustrates the complementarity of independent approaches to produce whole-genome assemblies in the absence of a genetic map.
Collapse
Affiliation(s)
- Phuong N T Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, D-06466, Germany
- Dalat University, Lamdong Province, Vietnam
| | | | - Sarah Gilbert
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Philomena Chu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | | | - Klaus J Appenroth
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller- University of Jena, Jena, D-07743, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, D-06466, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
16
|
An D, Li C, Zhou Y, Wu Y, Wang W. Genomes and Transcriptomes of Duckweeds. Front Chem 2018; 6:230. [PMID: 29974050 PMCID: PMC6019479 DOI: 10.3389/fchem.2018.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022] Open
Abstract
Duckweeds (Lemnaceae family) are the smallest flowering plants that adapt to the aquatic environment. They are regarded as the promising sustainable feedstock with the characteristics of high starch storage, fast propagation, and global distribution. The duckweed genome size varies 13-fold ranging from 150 Mb in Spirodela polyrhiza to 1,881 Mb in Wolffia arrhiza. With the development of sequencing technology and bioinformatics, five duckweed genomes from Spirodela and Lemna genera are sequenced and assembled. The genome annotations discover that they share similar protein orthologs, whereas the repeat contents could mainly explain the genome size difference. The gene families responsible for cell growth and expansion, lignin biosynthesis, and flowering are greatly contracted. However, the gene family of glutamate synthase has experienced expansion, indicating their significance in ammonia assimilation and nitrogen transport. The transcriptome is comprehensively sequenced for the genera of Spirodela, Landoltia, and Lemna, including various treatments such as abscisic acid, radiation, heavy metal, and starvation. The analysis of the underlying molecular mechanism and the regulatory network would accelerate their applications in the fields of bioenergy and phytoremediation. The comparative genomics has shown that duckweed genomes contain relatively low gene numbers and more contracted gene families, which may be in parallel with their highly reduced morphology with a simple leaf and primary roots. Still, we are waiting for the advancement of the long read sequencing technology to resolve the complex genomes and transcriptomes for unsequenced Wolffiella and Wolffia due to the large genome sizes and the similarity in their polyploidy.
Collapse
Affiliation(s)
- Dong An
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Changsheng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wenqin Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma 2017; 126:729-739. [PMID: 28756515 DOI: 10.1007/s00412-017-0636-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia.
Collapse
|
18
|
Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P, Zhang H, Xia J, Zhou J, Peng H, El Baidouri M, Ten Hallers B, Hastie AR, Liang T, Acosta K, Gilbert S, McEntee C, Jackson SA, Mockler TC, Zhang W, Lam E. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:617-635. [PMID: 27754575 DOI: 10.1111/tpj.13400] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 05/15/2023]
Abstract
Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family.
Collapse
Affiliation(s)
- Todd P Michael
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
- IBIS Bioscience, Carlsbad, CA, USA
| | - Douglas Bryant
- IBIS Bioscience, Carlsbad, CA, USA
- Donald Danforth Center for Plant Science, St. Louis, MO, USA
| | - Ryan Gutierrez
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Nikolai Borisjuk
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Philomena Chu
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Hanzhong Zhang
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, China
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, China
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, China
| | - Moaine El Baidouri
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | | | | | - Kenneth Acosta
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Sarah Gilbert
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
| | | | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Todd C Mockler
- Donald Danforth Center for Plant Science, St. Louis, MO, USA
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, China
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA
| | - Eric Lam
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
19
|
Cao HX, Wang W, Le HTT, Vu GTH. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding. Int J Genomics 2016; 2016:5078796. [PMID: 28097123 PMCID: PMC5206445 DOI: 10.1155/2016/5078796] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022] Open
Abstract
Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding.
Collapse
Affiliation(s)
- Hieu X. Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466 Stadt Seeland, Germany
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Hien T. T. Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Giang T. H. Vu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466 Stadt Seeland, Germany
| |
Collapse
|
20
|
Tran TD, Šimková H, Schmidt R, Doležel J, Schubert I, Fuchs J. Chromosome identification for the carnivorous plant Genlisea margaretae. Chromosoma 2016; 126:389-397. [PMID: 27153834 DOI: 10.1007/s00412-016-0599-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Genlisea margaretae, subgenus Genlisea, section Recurvatae (184 Mbp/1C), belongs to a plant genus with a 25-fold genome size difference and an extreme genome plasticity. Its 19 chromosome pairs could be distinguished individually by an approach combining optimized probe pooling and consecutive rounds of multicolor fluorescence in situ hybridization (mcFISH) with bacterial artificial chromosomes (BACs) selected for repeat-free inserts. Fifty-one BACs were assigned to 18 chromosome pairs. They provide a tool for future assignment of genomic sequence contigs to distinct chromosomes as well as for identification of homeologous chromosome regions in other species of the carnivorous Lentibulariaceae family, and potentially of chromosome rearrangements, in cases where more than one BAC per chromosome pair was identified.
Collapse
Affiliation(s)
- Trung D Tran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.,Plant Resource Center, Vietnam Academy of Agricultural Science, Ankhanh, Hoaiduc, Hanoi, Vietnam
| | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic
| | - Renate Schmidt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.,Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Stadt Seeland, Germany.
| |
Collapse
|