1
|
Adomako MO, Jin L, Li C, Liu J, Adu D, Seshie VI, Yu FH. Mechanisms underpinning microplastic effects on the natural climate solutions of wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176491. [PMID: 39341239 DOI: 10.1016/j.scitotenv.2024.176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Wetland ecosystems are vital carbon dioxide (CO2) sinks, offering significant nature-based solutions for global climate mitigation. However, the recent influx of microplastic (MP) into wetlands substantially impacts key drivers (e.g., plants and microorganisms) underpinning these wetland functions. While MP-induced greenhouse gas (GHG) emissions and effects on soil organic carbon (SOC) mineralization potentially threaten the long-term wetland C-climate feedbacks, the exact mechanisms and linkage are unclear. This review provides a conceptual framework to elaborate on the interplay between MPs, wetland ecosystems, and the atmospheric milieu. We also summarize published studies that validate possible MP impacts on natural climate solutions of wetlands, as well as provide extensive elaboration on underlying mechanisms. We briefly highlight the relationships between MP influx, wetland degradation, and climate change and conclude by identifying key gaps for future research priorities. Globally, plastic production, MP entry into aquatic systems, and wetland degradation-related emissions are predicted to increase. This means that MP-related emissions and wetland-climate feedback should be addressed in the context of the UN Paris Climate Agreement on net-zero emissions by 2050. This overview serves as a wake-up call on the alarming impacts of MPs on wetland ecosystems and urges a global reconsideration of nature-based solutions in the context of climate mitigation.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
2
|
Youngsteadt E, Prado SG, Duran Aquino AK, Peña Valdeiglesias J, Gonzales Ojeda T, Garate Quispe JS. Urbanization drives partner switching and loss of mutualism in an ant-plant symbiosis. Ecology 2024; 105:e4449. [PMID: 39400307 DOI: 10.1002/ecy.4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024]
Abstract
Mutualistic interactions between species underpin biodiversity and ecosystem function, but may be lost when partners respond differently to abiotic conditions. Except for a few prominent examples, effects of global anthropogenic change on mutualisms are poorly understood. Here we assess the effects of urbanization on a symbiosis in which the plant Cordia nodosa house ants in hollow structures (domatia) in exchange for defense against herbivores. We expected to find that mutualist ants would be replaced in the city by heat-tolerant opportunists, leaving urban plants vulnerable to herbivory. In five protected forest sites and five urban forest fragments in southeast Perú, we recorded the identity and heat tolerance (CTmax) of ant residents of C. nodosa. We also assayed their plant-defensive behaviors and their effects on herbivory. We characterized the urban heat-island effect in ambient temperatures and within domatia. Forest plants housed a consistent ant community dominated by three specialized plant ants, whereas urban plants housed a suite of 10 opportunistic taxa that were, collectively, about 13 times less likely than forest ants to respond defensively to plant disturbance. In the forest, ant exclusion had the expected effect of increasing herbivory, but in urban sites, exclusion reduced herbivory. Despite poor ant defense in urban sites, we detected no difference in total standing herbivory, perhaps because herbivores themselves also declined in the city. Urban sites were warmer than forest sites (daily maxima in urban domatia averaged 1.6°C hotter), and the urban ant community as a whole was slightly more heat tolerant. These results illustrate a case of mutualism loss associated with anthropogenic disturbance. If urbanization is representative of increasing anthropogenic stressors more broadly, we might expect to see destabilization of myrmecophytic mutualisms in forest ecosystems in the future.
Collapse
Affiliation(s)
- Elsa Youngsteadt
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| | - Sara Guiti Prado
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexandra Karlyz Duran Aquino
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | - Joel Peña Valdeiglesias
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
- Earth Sciences and Dynamics of Ecology and Landscape Research Group, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | | | - Jorge Santiago Garate Quispe
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
- Earth Sciences and Dynamics of Ecology and Landscape Research Group, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
- Ecology and Restoration of Tropical Ecosystems Research Group, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| |
Collapse
|
3
|
Yamawo A, Tomlinson KW. Defence plasticity in the spiny plant Aralia elata (Miq.) Seem. in response to light and soil fertility. ANNALS OF BOTANY 2023; 131:1073-1080. [PMID: 36567607 PMCID: PMC10457031 DOI: 10.1093/aob/mcac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Plants have evolved various defences against herbivores, including direct chemical and structural defences and co-opted biological defences by predatory insects. However, the effects of abiotic habitat conditions on the quantitative expression of defence traits of spiny species have not been elucidated. METHODS Here, we investigated whether a spiny deciduous tree, Aralia elata (Miq.) Seem., changes its defence expression across light and nutrient gradients. We measured allocation to spines and C-based secondary metabolites (condensed tannins and total phenols) on A. elata plants growing across light and nutrient gradients in situ in natural landscapes in Japan. Second, we examined the effects of light and soil nutrient condition on allocation to shoot organs, spines and chemical defences of juveniles of two genotypes of the species, respectively spiny (mainland population) and non-spiny (island population), grown in a glasshouse. KEY RESULTS In the field investigation, absolute spine mass, spine mass fraction, total phenols and condensed tannins all responded positively to canopy openness. Total phenol content was also negatively related to soil N. In the glasshouse, spiny genotype individuals had less total biomass, had lower stem allocation and were shorter than non-spiny genotype individuals. In spiny genotype trees, both spine mass fraction and total phenols decreased under low light conditions. Nutrient additions had negative effects on spine mass fraction and total phenols, but no effect on absolute spine mass. CONCLUSIONS These results suggest that development of spines is costly for A. elata and receives greater allocation when carbohydrate supply is more plentiful. Thus, light is a more important determinant of spine allocation than soil nutrients for A. elata.
Collapse
Affiliation(s)
- Akira Yamawo
- Department of Biological Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kyle W Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| |
Collapse
|
4
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
5
|
Seed Dispersal by Ants in Three Early-Flowering Plants. INSECTS 2022; 13:insects13040386. [PMID: 35447828 PMCID: PMC9024485 DOI: 10.3390/insects13040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Myrmecochory is seed dispersal of numerous plant species mediated by ants. We investigate ant–plant interactions under field conditions across two study sites in Central Europe. Three obligatory myrmecocohrous plants are chosen for the experiments: snowdrop Galanthus nivalis, hollow root Corydalis cava and European wild ginger Asarum europaeum. We experimentally alter diaspore morphology and record seed removal rates across five treatments: elaiosomes without seeds, diaspore without elaiosome, 1/2 elaiosome + diaspore, 1/2 diaspore + elaiosome and control. Elaiosomes of European wild ginger constitute about 30% of diaspore weight, elaiosomes of snowdrop constitute 13% and elaiosomes of hollow root constitute only 7.5%. Diaspore/elaiosome removal rates are highest in European wild ginger (34%), followed by hollow root (26%) and snowdrop (10%). Only two ants interact with diaspores, the acorn ant Temnothorax crassispinus and the red ant Myrmica ruginodis. Ants respond to elaiosome/seed ratio by removing elaiosomes without diaspores most frequently, followed by 1/2 diaspore + elaiosome, control, diaspores without elaiosomes and 1/2 elaiosome with diaspore. Plants do not effectively manipulate ant behavior and no dispersal benefits from interactions with ants are observed. Abstract Interactions between ants and plants vary from being occasionally beneficial to neutral and negative. Ant-mediated dispersal of obligatory myrmecochorous plants is considered mutualistic interaction, providing benefits to plants in terms of seed dispersal. Ants are rewarded by providing elaiosome, sugar, lipid and protein-rich appendages attached to seeds (diaspores). We experimentally examine rates of diaspore removal rates among three species of plants (snowdrop Galanthus nivalis, hollow root Corydalis cava and European wild ginger Asarum europaeum) under field conditions in two study sites in Central Europe. Diaspore morphology is altered by manipulating both elaiosome and seed size. The small-sized acorn ant Temnothorax crassispinus interacts with the snowdrop and hollow root and the moderately-sized red ant Myrmica ruginodis interacts with European wild ginger. Experimental manipulation with elaiosomes yields largely non-significant results. Diaspore removal rates are generally low (snowdrop 10%, hollow root 26%, European wild ginger 34%) probably due to the small size of ants relative to heavy diaspores. Many ants are observed to consume elaiosomes in situ (cheating). We conclude that ant–plant relationships in this case are not mutualistic but rather neutral/slightly negative, because the plants do not obtain any apparent benefits from their interactions with ants.
Collapse
|
6
|
Crowley LM, Sadler JP, Pritchard J, Hayward SAL. Elevated CO 2 Impacts on Plant-Pollinator Interactions: A Systematic Review and Free Air Carbon Enrichment Field Study. INSECTS 2021; 12:insects12060512. [PMID: 34206033 PMCID: PMC8227562 DOI: 10.3390/insects12060512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Climate change is having a profound impact on pollination systems, yet we still do not know to what extent increasing concentrations of carbon dioxide (CO2) will directly affect the interactions between plants and their pollinators. We review all the existing published literature on the effect of elevated CO2 (eCO2) on flowering time, nectar and pollen production and plant–pollinator interactions. We also conduct a field experiment to test the effect of eCO2 on bluebells and their pollinators. We found that few studies have assessed the impact of eCO2 on pollination, and our field data found that bluebells flowered on average 6 days earlier under eCO2 conditions. Hoverflies and bumble bees were the main visitors to bluebell flowers, but insect activity was low early in the flowing period. Although we did not find a difference in the number of visits made by insects to bluebell flowers under eCO2, or the amount of seeds those flowers produced, the change in the timing of flowering could mean that a mismatch could develop between bluebells and their pollinators in the future, which would affect pollination success. Abstract The impact of elevated CO2 (eCO2) on plant–pollinator interactions is poorly understood. This study provides the first systematic review of this topic and identifies important knowledge gaps. In addition, we present field data assessing the impact of eCO2 (150 ppm above ambient) on bluebell (Hyacinthoides non-scripta)–pollinator interactions within a mature, deciduous woodland system. Since 1956, only 71 primary papers have investigated eCO2 effects on flowering time, floral traits and pollination, with a mere 3 studies measuring the impact on pollination interactions. Our field experiment documented flowering phenology, flower visitation and seed production, as well as the abundance and phenology of dominant insect pollinators. We show that first and mid-point flowering occurred 6 days earlier under eCO2, but with no change in flowering duration. Syrphid flies and bumble bees were the dominant flower visitors, with peak activity recorded during mid- and late-flowering periods. Whilst no significant difference was recorded in total visitation or seed set between eCO2 and ambient treatments, there were clear patterns of earlier flowering under eCO2 accompanied by lower pollinator activity during this period. This has implications for potential loss of synchrony in pollination systems under future climate scenarios, with associated long-term impacts on abundance and diversity.
Collapse
Affiliation(s)
- Liam M. Crowley
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Correspondence: (L.M.C.); (S.A.L.H.); Tel.: +44-(0)121-414-7147 (S.A.L.H.)
| | - Jonathan P. Sadler
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- School of Geography, Earth and Environmental Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jeremy Pritchard
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Scott A. L. Hayward
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- The Birmingham Institute of Forest Research, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Correspondence: (L.M.C.); (S.A.L.H.); Tel.: +44-(0)121-414-7147 (S.A.L.H.)
| |
Collapse
|
7
|
Milligan PD, Martin TA, John GP, Riginos C, Goheen JR, Carpenter SM, Palmer TM. Mutualism disruption by an invasive ant reduces carbon fixation for a foundational East African ant-plant. Ecol Lett 2021; 24:1052-1062. [PMID: 33745197 DOI: 10.1111/ele.13725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022]
Abstract
Invasive ants shape assemblages and interactions of native species, but their effect on fundamental ecological processes is poorly understood. In East Africa, Pheidole megacephala ants have invaded monodominant stands of the ant-tree Acacia drepanolobium, extirpating native ant defenders and rendering trees vulnerable to canopy damage by vertebrate herbivores. We used experiments and observations to quantify direct and interactive effects of invasive ants and large herbivores on A. drepanolobium photosynthesis over a 2-year period. Trees that had been invaded for ≥ 5 years exhibited 69% lower whole-tree photosynthesis during key growing seasons, resulting from interaction between invasive ants and vertebrate herbivores that caused leaf- and canopy-level photosynthesis declines. We also surveyed trees shortly before and after invasion, finding that recent invasion induced only minor changes in leaf physiology. Our results from individual trees likely scale up, highlighting the potential of invasive species to alter ecosystem-level carbon fixation and other biogeochemical cycles.
Collapse
Affiliation(s)
- Patrick D Milligan
- Department of Biology, University of Florida, Gainesville, FL, USA.,Mpala Research Centre, Nanyuki, Kenya
| | - Timothy A Martin
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Grace P John
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | | - Jacob R Goheen
- Mpala Research Centre, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | | | - Todd M Palmer
- Department of Biology, University of Florida, Gainesville, FL, USA.,Mpala Research Centre, Nanyuki, Kenya
| |
Collapse
|
8
|
Cleves PA, Krediet CJ, Lehnert EM, Onishi M, Pringle JR. Insights into coral bleaching under heat stress from analysis of gene expression in a sea anemone model system. Proc Natl Acad Sci U S A 2020; 117:28906-28917. [PMID: 33168733 PMCID: PMC7682557 DOI: 10.1073/pnas.2015737117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Loss of endosymbiotic algae ("bleaching") under heat stress has become a major problem for reef-building corals worldwide. To identify genes that might be involved in triggering or executing bleaching, or in protecting corals from it, we used RNAseq to analyze gene-expression changes during heat stress in a coral relative, the sea anemone Aiptasia. We identified >500 genes that showed rapid and extensive up-regulation upon temperature increase. These genes fell into two clusters. In both clusters, most genes showed similar expression patterns in symbiotic and aposymbiotic anemones, suggesting that this early stress response is largely independent of the symbiosis. Cluster I was highly enriched for genes involved in innate immunity and apoptosis, and most transcript levels returned to baseline many hours before bleaching was first detected, raising doubts about their possible roles in this process. Cluster II was highly enriched for genes involved in protein folding, and most transcript levels returned more slowly to baseline, so that roles in either promoting or preventing bleaching seem plausible. Many of the genes in clusters I and II appear to be targets of the transcription factors NFκB and HSF1, respectively. We also examined the behavior of 337 genes whose much higher levels of expression in symbiotic than aposymbiotic anemones in the absence of stress suggest that they are important for the symbiosis. Unexpectedly, in many cases, these expression levels declined precipitously long before bleaching itself was evident, suggesting that loss of expression of symbiosis-supporting genes may be involved in triggering bleaching.
Collapse
Affiliation(s)
- Phillip A Cleves
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Cory J Krediet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Department of Marine Science, Eckerd College, St. Petersburg, FL 33711
| | - Erik M Lehnert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
9
|
Pearse IS, LoPresti E, Schaeffer RN, Wetzel WC, Mooney KA, Ali JG, Ode PJ, Eubanks MD, Bronstein JL, Weber MG. Generalising indirect defence and resistance of plants. Ecol Lett 2020; 23:1137-1152. [DOI: 10.1111/ele.13512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ian S. Pearse
- U.S. Geological Survey Fort Collins Science Center 2150 Centre Ave #C Ft Collins CO 80526 USA
| | - Eric LoPresti
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | | | - William C. Wetzel
- Department of Entomology and Ecology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | - Kailen A. Mooney
- Ecology & Evolutionary Biology University of California Irvine, CA USA
| | - Jared G. Ali
- Department of Entomology Penn State University State College PA USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology Department of Bioagricultural Science and Pest Management Colorado State University Fort Collins CO 80523 USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721 USA
| | - Marjorie G. Weber
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| |
Collapse
|
10
|
Rosinger C, Sandén H, Godbold DL. Non-structural carbohydrate concentrations of Fagus sylvatica and Pinus sylvestris fine roots are linked to ectomycorrhizal enzymatic activity during spring reactivation. MYCORRHIZA 2020; 30:197-210. [PMID: 32078049 PMCID: PMC7228962 DOI: 10.1007/s00572-020-00939-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 05/29/2023]
Abstract
We evaluated whether changes in fine root non-structural carbohydrate reserves of Fagus sylvatica and Pinus sylvestris trees influence potential enzymatic activities of their ectomycorrhizal symbionts from winter towards spring reactivation, and whether these changes influence potential soil enzymatic activities. We analyzed sugar and starch concentrations in the fine roots of Fagus sylvatica and Pinus sylvestris and potential activities of ß-glucosidase, ß-xylosidase, and cellobiohydrolase (as proxies for carbon-degrading enzymes) as well as leucine aminopeptidase and chitinase (as proxies for nitrogen-degrading enzymes) of their dominant ectomycorrhizal symbionts as well as in the soil. Sugar concentrations in the fine roots were significantly positively correlated with enzymatic activities of the ectomycorrhizal symbionts. In Pinus sylvestris, both carbon- and nitrogen-degrading enzyme activities showed significant positive correlations with fine root sugar concentrations. In Fagus sylvatica, fine root sugar concentrations were explicitly positively correlated with the activity of nitrogen-degrading enzymes. The chitinase activity in the soil was found to be strongly positively correlated with the enzymatic activity of the ectomycorrhizal symbionts as well as with fine root sugar concentrations. Fine root carbohydrate concentrations of Fagus sylvatica and Pinus sylvestris trees and enzymatic activities of their associated ectomycorrhizal fungi are connected. The specific nutrient demand of the tree species during spring reactivation may affect ectomycorrhizal enzymatic activity via carbon mobilization in the fine roots of Fagus sylvatica and Pinus sylvestris. Moreover, our results suggest that trees indirectly contribute to the degradation of fungal necromass by stimulating ectomycorrhizal chitinase activity in the soil.
Collapse
Affiliation(s)
- Christoph Rosinger
- Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50674, Cologne, Germany.
| | - Hans Sandén
- Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Douglas L Godbold
- Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Landscape Carbon Deposition, Academy of Sciences of the Czech Republic, Global Change Research Institute, Ceské Budejovice, Czech Republic
| |
Collapse
|
11
|
Collalti A, Tjoelker MG, Hoch G, Mäkelä A, Guidolotti G, Heskel M, Petit G, Ryan MG, Battipaglia G, Matteucci G, Prentice IC. Plant respiration: Controlled by photosynthesis or biomass? GLOBAL CHANGE BIOLOGY 2020; 26:1739-1753. [PMID: 31578796 DOI: 10.1111/gcb.14857] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Two simplifying hypotheses have been proposed for whole-plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carry-over of fixed carbon between years, while the second implies far too great an increase in respiration during stand development-leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration is not linearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.
Collapse
Affiliation(s)
- Alessio Collalti
- Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Rende (CS), Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Günter Hoch
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Annikki Mäkelä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science and Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gabriele Guidolotti
- Institute of Research on Terrestrial Ecosystem, National Research Council of Italy (CNR-IRET), Rome, Italy
| | - Mary Heskel
- Department of Biology, Macalester College, Saint Paul, MN, USA
| | - Giai Petit
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padua, Italy
| | - Michael G Ryan
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
- USDA Forest Service, Rocky Mountain Experiment Station, Fort Collins, CO, USA
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Giorgio Matteucci
- Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Rende (CS), Italy
| | - Iain Colin Prentice
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Heath KD, Podowski JC, Heniff S, Klinger CR, Burke PV, Weese DJ, Yang WH, Lau JA. Light availability and rhizobium variation interactively mediate the outcomes of legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2020; 107:229-238. [PMID: 32072629 DOI: 10.1002/ajb2.1435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/08/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Nutrients, light, water, and temperature are key factors limiting the growth of individual plants in nature. Mutualistic interactions between plants and microbes often mediate resource limitation for both partners. In the mutualism between legumes and rhizobia, plants provide rhizobia with carbon in exchange for fixed nitrogen. Because partner quality in mutualisms is genotype-dependent, within-species genetic variation is expected to alter the responses of mutualists to changes in the resource environment. Here we ask whether partner quality variation in rhizobia mediates the response of host plants to changing light availability, and conversely, whether light alters the expression of partner quality variation. METHODS We inoculated clover hosts with 11 strains of Rhizobium leguminosarum that differed in partner quality, grew plants under either ambient or low light conditions in the greenhouse, and measured plant growth, nodule traits, and foliar nutrient composition. RESULTS Light availability and rhizobium inoculum interactively determined plant growth, and variation in rhizobium partner quality was more apparent in ambient light. CONCLUSIONS Our results suggest that variation in the costs and benefits of rhizobium symbionts mediate host responses to light availability and that rhizobium strain variation might more important in higher-light environments. Our work adds to a growing appreciation for the role of microbial intraspecific and interspecific diversity in mediating extended phenotypes in their hosts and suggests an important role for light availability in the ecology and evolution of legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Justin C Podowski
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Stephanie Heniff
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Christie R Klinger
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Patricia V Burke
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Dylan J Weese
- Department of Biology, St. Ambrose University, Davenport, IA, 52803, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Jennifer A Lau
- W. K. Kellogg Biological Station and Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Johnson CA, Bronstein JL. Coexistence and competitive exclusion in mutualism. Ecology 2019; 100:e02708. [DOI: 10.1002/ecy.2708] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/29/2019] [Accepted: 03/11/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher A. Johnson
- Department of Ecology and Evolutionary Biology University of Arizona P.O. Box 210088 Tucson Arizona 85721 USA
- Center for Adaptation to a Changing Environment Institute of Integrative Biology ETH Zürich Universitätstrasse 16 Zürich 8092 Switzerland
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology University of Arizona P.O. Box 210088 Tucson Arizona 85721 USA
| |
Collapse
|
14
|
Bogar L, Peay K, Kornfeld A, Huggins J, Hortal S, Anderson I, Kennedy P. Plant-mediated partner discrimination in ectomycorrhizal mutualisms. MYCORRHIZA 2019; 29:97-111. [PMID: 30617861 DOI: 10.1007/s00572-018-00879-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/26/2018] [Indexed: 05/22/2023]
Abstract
Although ectomycorrhizal fungi have well-recognized effects on ecological processes ranging from plant community dynamics to carbon cycling rates, it is unclear if plants are able to actively influence the structure of these fungal communities. To address this knowledge gap, we performed two complementary experiments to determine (1) whether ectomycorrhizal plants can discriminate among potential fungal partners, and (2) to what extent the plants might reward better mutualists. In experiment 1, split-root Larix occidentalis seedlings were inoculated with spores from three Suillus species (S. clintonianus, S. grisellus, and S. spectabilis). In experiment 2, we manipulated the symbiotic quality of Suillus brevipes isolates on split-root Pinus muricata seedlings by changing the nitrogen resources available, and used carbon-13 labeling to track host investment in fungi. In experiment 1, we found that hosts can discriminate in multi-species settings. The split-root seedlings inhibited colonization by S. spectabilis whenever another fungus was available, despite similar benefits from all three fungi. In experiment 2, we found that roots and fungi with greater nitrogen supplies received more plant carbon. Our results suggest that plants may be able to regulate this symbiosis at a relatively fine scale, and that this regulation can be integrated across spatially separated portions of a root system.
Collapse
Affiliation(s)
- Laura Bogar
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA.
| | - Kabir Peay
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
| | - Ari Kornfeld
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Julia Huggins
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Sara Hortal
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ian Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peter Kennedy
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
15
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
Affiliation(s)
- Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, Gustaf Hällströmin katu 2b, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Lars Dietrich
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, PO Box 1663 MA 495, Los Alamos, NM, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|
16
|
Craig ME, Turner BL, Liang C, Clay K, Johnson DJ, Phillips RP. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. GLOBAL CHANGE BIOLOGY 2018; 24:3317-3330. [PMID: 29573504 DOI: 10.1111/gcb.14132] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/08/2018] [Indexed: 05/14/2023]
Abstract
Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long-term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM-dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition-e.g. most AM-dominated forests-enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM-dominance in three temperate forests. By focusing on sites where AM- and ECM-plants co-occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM-dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM.
Collapse
Affiliation(s)
- Matthew E Craig
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Chao Liang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Keith Clay
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | |
Collapse
|
17
|
Prior KM, Palmer TM. Economy of scale: third partner strengthens a keystone ant-plant mutualism. Ecology 2018; 99:335-346. [PMID: 29328512 DOI: 10.1002/ecy.2104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 11/06/2022]
Abstract
While foundation species can stabilize ecosystems at landscape scales, their ability to persist is often underlain by keystone interactions occurring at smaller scales. Acacia drepanolobium is a foundation tree, comprising >95% of woody cover in East African black-cotton savanna ecosystems. Its dominance is underlain by a keystone mutualistic interaction with several symbiotic ant species in which it provides housing (swollen thorns) and carbohydrate-rich nectar from extra-floral nectaries (EFN). In return, it gains protection from catastrophic damage from mega-herbivores. Crematogaster mimosae is the ecologically dominant symbiotic ant in this system, also providing the highest protection services. In addition to tending EFN, C. mimosae tend scale insects for carbohydrate-rich honeydew. We investigated the role of scale insects in this specialized ant-plant interaction. Specifically, does this putatively redundant third partner strengthen the ant-plant mutualism by making the ant a better protector of the tree? Or does it weaken the mutualism by being costly to the tree while providing no additional benefit to the ant-plant mutualism? We coupled observational surveys with two scale-manipulation experiments and found evidence that this third partner strengthens the ant-plant mutualism. Trees with scale insects experimentally removed experienced a 2.5X increase in elephant damage compared to trees with scale insects present over 10 months. Reduced protection was driven by scale removal causing a decrease in ant colony size and per capita baseline activity and defensive behavior. We also found that ants increased scale-tending and the density of scale insects on trees when EFN were experimentally reduced. Thus, in this system, scale insects and EFN are likely complementary, rather than redundant, resources with scale insects benefitting ants when EFN production is low (such as during annual dry periods in this semi-arid ecosystem). This study reveals that a third-partner strengthens an ant-plant mutualism that serves to stabilize a whole ecosystem.
Collapse
Affiliation(s)
- Kirsten M Prior
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.,Mpala Research Centre, P.O. Box 555, Nanyuki, Kenya
| | - Todd M Palmer
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.,Mpala Research Centre, P.O. Box 555, Nanyuki, Kenya
| |
Collapse
|
18
|
Godschalx AL, Tran V, Ballhorn DJ. Host plant cyanotype determines degree of rhizobial symbiosis. Ecosphere 2017. [DOI: 10.1002/ecs2.1929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Vy Tran
- Department of Biology Portland State University Portland Oregon 97201 USA
| | - Daniel J. Ballhorn
- Department of Biology Portland State University Portland Oregon 97201 USA
| |
Collapse
|
19
|
Baskaran P, Hyvönen R, Berglund SL, Clemmensen KE, Ågren GI, Lindahl BD, Manzoni S. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. THE NEW PHYTOLOGIST 2017; 213:1452-1465. [PMID: 27748949 DOI: 10.1111/nph.14213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/15/2016] [Indexed: 05/26/2023]
Abstract
Tree growth in boreal forests is limited by nitrogen (N) availability. Most boreal forest trees form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve the uptake of inorganic N and also have the capacity to decompose soil organic matter (SOM) and to mobilize organic N ('ECM decomposition'). To study the effects of 'ECM decomposition' on ecosystem carbon (C) and N balances, we performed a sensitivity analysis on a model of C and N flows between plants, SOM, saprotrophs, ECM fungi, and inorganic N stores. The analysis indicates that C and N balances were sensitive to model parameters regulating ECM biomass and decomposition. Under low N availability, the optimal C allocation to ECM fungi, above which the symbiosis switches from mutualism to parasitism, increases with increasing relative involvement of ECM fungi in SOM decomposition. Under low N conditions, increased ECM organic N mining promotes tree growth but decreases soil C storage, leading to a negative correlation between C stores above- and below-ground. The interplay between plant production and soil C storage is sensitive to the partitioning of decomposition between ECM fungi and saprotrophs. Better understanding of interactions between functional guilds of soil fungi may significantly improve predictions of ecosystem responses to environmental change.
Collapse
Affiliation(s)
- Preetisri Baskaran
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, Uppsala, SE-750 07, Sweden
| | - Riitta Hyvönen
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, Uppsala, SE-750 07, Sweden
| | - S Linnea Berglund
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, Uppsala, SE-750 07, Sweden
| | - Karina E Clemmensen
- Department of Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, SE-750 07, Sweden
| | - Göran I Ågren
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, Uppsala, SE-750 07, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, SE-750 07, Sweden
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, SE-106 91, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
20
|
Leal LC, Peixoto PEC. Decreasing water availability across the globe improves the effectiveness of protective ant-plant mutualisms: a meta-analysis. Biol Rev Camb Philos Soc 2016; 92:1785-1794. [DOI: 10.1111/brv.12307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Laura C. Leal
- Programa de pós-graduação em Zoologia; Universidade Estadual de Feira de Santana; Feira de Santana 44036-900 Brazil
- Departamento de Ciências Biológicas; Universidade Federal de São Paulo; 09972-270 Diadema Brazil
| | - Paulo E. C. Peixoto
- Programa de pós-graduação em Zoologia; Universidade Estadual de Feira de Santana; Feira de Santana 44036-900 Brazil
- Laboratório de Entomologia; Universidade Estadual de Feira de Santana; Feira de Santana 44036-900 Brazil
| |
Collapse
|
21
|
Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. THE NEW PHYTOLOGIST 2016; 211:386-403. [PMID: 27061438 DOI: 10.1111/nph.13955] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 05/17/2023]
Abstract
Contents 386 I. 386 II. 388 III. 392 IV. 392 V. 396 VI. 399 399 References 399 SUMMARY: Carbohydrates provide the building blocks for plant structures as well as versatile resources for metabolic processes. The nonstructural carbohydrates (NSC), mainly sugars and starch, fulfil distinct functional roles, including transport, energy metabolism and osmoregulation, and provide substrates for the synthesis of defence compounds or exchange with symbionts involved in nutrient acquisition or defence. At the whole-plant level, NSC storage buffers the asynchrony of supply and demand on diel, seasonal or decadal temporal scales and across plant organs. Despite its central role in plant function and in stand-level carbon cycling, our understanding of storage dynamics, its controls and response to environmental stresses is very limited, even after a century of research. This reflects the fact that often storage is defined by what we can measure, that is, NSC concentrations, and the interpretation of these as a proxy for a single function, storage, rather than the outcome of a range of NSC source and sink functions. New isotopic tools allow direct quantification of timescales involved in NSC dynamics, and show that NSC-C fixed years to decades previously is used to support tree functions. Here we review recent advances, with emphasis on the context of the interactions between NSC, drought and tree mortality.
Collapse
Affiliation(s)
- Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
| | - Susan Trumbore
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
| |
Collapse
|
22
|
Lennon S, Dolan L. The New Phytologist Tansley Medal 2015. THE NEW PHYTOLOGIST 2016; 210:5. [PMID: 26919692 DOI: 10.1111/nph.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|