1
|
Wang T, Zheng Y, Xu C, Deng Y, Hao X, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Movement of ACC oxidase 3 mRNA from seeds to flesh promotes fruit ripening in apple. MOLECULAR PLANT 2024; 17:1221-1235. [PMID: 38902921 DOI: 10.1016/j.molp.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Xenia, the phenomenon in which the pollen genotype directly affects the phenotypic characteristics of maternal tissues (i.e., fruit ripening), has applications in crop production and breeding. However, the underlying molecular mechanism has yet to be elucidated. Here, we investigated whether mobile mRNAs from the pollen affect the ripening and quality-related characteristics of the fruit using cross-pollination between distinct Malus domestica (apple) cultivars. We demonstrated that hundreds of mobile mRNAs originating from the seeds are delivered to the fruit. We found that the movement of one of these mRNAs, ACC oxidase 3 (MdACO3), is coordinated with fruit ripening. Salicylic acid treatment, which can cause plasmodesmal closure, blocks MdACO3 movement, indicating that MdACO3 transcripts may move through the plasmodesmata. To assess the role of mobile MdACO3 transcripts in apple fruit, we created MdACO3-GFP-expressing apple seeds using MdACO3-GFP-overexpressing pollen for pollination and showed that MdACO3 transcripts in the transgenic seeds move to the flesh, where they promote fruit ripening. Furthermore, we demonstrated that MdACO3 can be transported from the seeds to fruit in the fleshy-fruited species tomato and strawberry. These results underscore the potential of mobile mRNAs from seeds to influence fruit characteristics, providing an explanation for the xenia phenomenon. Notably, our findings highlight the feasibility of leveraging diverse pollen genomic resources, without resorting to genome editing, to improve fruit quality.
Collapse
Affiliation(s)
- Ting Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Zheng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Chen Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yulin Deng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Xinyi Hao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Li X, Wang R, Wang Y, Li X, Shi Q, Yu Y. PpGATA21 Enhances the Expression of PpGA2ox7 to Regulate the Mechanism of Cerasus humilis Rootstock-Mediated Dwarf in Peach Trees. Int J Mol Sci 2024; 25:7402. [PMID: 39000509 PMCID: PMC11242874 DOI: 10.3390/ijms25137402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Dwarfing rootstocks enhance planting density, lower tree height, and reduce both labor in peach production. Cerasus humilis is distinguished by its dwarf stature, rapid growth, and robust fruiting capabilities, presenting substantial potential for further development. In this study, Ruipan 4 was used as the scion and grafted onto Amygdalus persica and Cerasus humilis, respectively. The results indicate that compared to grafting combination R/M (Ruipan 4/Amygdalus persica), grafting combination R/O (Ruipan 4/Cerasus humilis) plants show a significant reduction in height and a significant increase in flower buds. RNA-seq indicates that genes related to gibberellin (GA) and auxin metabolism are involved in the dwarfing process of scions mediated by C. humilis. The expression levels of the GA metabolism-related gene PpGA2ox7 significantly increased in R/O and are strongly correlated with plant height, branch length, and internode length. Furthermore, GA levels were significantly reduced in R/O. The transcription factor PpGATA21 was identified through yeast one-hybrid screening of the PpGA2ox7 promoter. Yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) demonstrate that PpGATA21 can bind to the promoter of PpGA2ox7 and activate its expression. Overall, PpGATA21 activates the expression of the GA-related gene PpGA2ox7, resulting in reduced GA levels and consequent dwarfing of plants mediated by C. humilis. This study provides new insights into the mechanisms of C. humilis and offers a scientific foundation for the dwarfing and high-density cultivation of peach trees.
Collapse
Affiliation(s)
- Xiuzhen Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
| | - Ruxin Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yuman Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
| | - Xueqiang Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
| | - Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (R.W.); (Y.W.); (X.L.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| |
Collapse
|
3
|
Lou H, Wang F, Zhang J, Wei G, Wei J, Hu H, Li Y, Wang K, Wang Z, Huang Y, Wu J, Pei D, Huang J, Zhang Q. JrGA20ox1-transformed rootstocks deliver drought response signals to wild-type scions in grafted walnut. HORTICULTURE RESEARCH 2024; 11:uhae143. [PMID: 38988618 PMCID: PMC11233861 DOI: 10.1093/hr/uhae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Targeted regulation using transgrafting technology has become a trend. However, the mechanisms of transgene-derived signal communication between rootstocks and scions remain unclear in woody plants. Here, we grafted wild-type (WT) walnut (Juglans regia L.) on WT (WT/WT), JrGA20ox1 (encodes a gibberellin 20-oxidase)-overexpressing (WT/OE), and JrGA20ox1-RNAi transformation (WT/RNAi) walnut in vitro. We aimed to elucidate the mechanisms of JrGA20ox1-derived signal communication under PEG-simulated drought stress between rootstocks and scions in walnut. We demonstrated that JrGA20ox1-OE and JrGA20ox1-RNAi rootstocks could transport active gibberellins (GAs) and JrGA20ox1-RNAi vector-produced sRNAs to WT scions under PEG-simulated drought stress, respectively. The movement of sRNAs further led to a successive decline in JrGA20ox1 expression and active GA content. Meanwhile, unknown mobile signals may move between rootstocks and scions. These mobile signals reduced the expression of a series of GA-responsive and GA-non-responsive genes, and induced ROS production in guard cells and an increase in ABA content, which may contribute to the drought tolerance of WT/RNAi, while the opposite occurred in WT/OE. The findings suggest that JrGA20ox1-derived rootstock-to-scion movement of signals is involved in drought tolerance of scions. Our research will provide a feasible approach for studying signal communication in woody plants.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Fengmin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Guangli Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jingjing Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hengkang Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Youjun Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
4
|
Paul S, Jackson D, Kitagawa M. Tracking the messengers: Emerging advances in mRNA-based plant communication. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102541. [PMID: 38663258 DOI: 10.1016/j.pbi.2024.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/27/2024]
Abstract
Messenger RNAs (mRNAs) are the templates for protein translation but can also act as non-cell-autonomous signaling molecules. Plants input endogenous and exogenous cues to mobile mRNAs and output them to local or systemic target cells and organs to support specific plant responses. Mobile mRNAs form ribonucleoprotein (RNP) complexes with proteins during transport. Components of these RNP complexes could interact with plasmodesmata (PDs), a major mediator of mRNA transport, to ensure mRNA mobility and transport selectivity. Based on advances in the last two to three years, this review summarizes mRNA transport mechanisms in local and systemic signaling from the perspective of RNP complex formation and PD transport. We also discuss the physiological roles of endogenous mRNA transport and the recently revealed roles of non-cell-autonomous mRNAs in inter-organism communication.
Collapse
Affiliation(s)
- Saikat Paul
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Li W, Chu C, Li H, Zhang H, Sun H, Wang S, Wang Z, Li Y, Foster TM, López-Girona E, Yu J, Li Y, Ma Y, Zhang K, Han Y, Zhou B, Fan X, Xiong Y, Deng CH, Wang Y, Xu X, Han Z. Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing. Nat Genet 2024; 56:505-516. [PMID: 38347217 DOI: 10.1038/s41588-024-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/08/2024] [Indexed: 03/16/2024]
Abstract
Dwarfing rootstocks have transformed the production of cultivated apples; however, the genetic basis of rootstock-induced dwarfing remains largely unclear. We have assembled chromosome-level, near-gapless and haplotype-resolved genomes for the popular dwarfing rootstock 'M9', the semi-vigorous rootstock 'MM106' and 'Fuji', one of the most commonly grown apple cultivars. The apple orthologue of auxin response factor 3 (MdARF3) is in the Dw1 region of 'M9', the major locus for rootstock-induced dwarfing. Comparing 'M9' and 'MM106' genomes revealed a 9,723-bp allele-specific long terminal repeat retrotransposon/gypsy insertion, DwTE, located upstream of MdARF3. DwTE is cosegregated with the dwarfing trait in two segregating populations, suggesting its prospective utility in future dwarfing rootstock breeding. In addition, our pipeline discovered mobile mRNAs that may contribute to the development of dwarfed scion architecture. Our research provides valuable genomic resources and applicable methodology, which have the potential to accelerate breeding dwarfing rootstocks for apple and other perennial woody fruit trees.
Collapse
Affiliation(s)
- Wei Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Hui Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Haochen Sun
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Shiyao Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Zijun Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Yuqi Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Motueka, New Zealand
| | - Elena López-Girona
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Palmerston North, New Zealand
| | - Jiaxin Yu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation; Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yongming Han
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Bowen Zhou
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Xingqiang Fan
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Yao Xiong
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Auckland, New Zealand.
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China.
| | - Xuefeng Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Hao L, Wang S, Zhang Y, Xu C, Yu Y, Xiang L, Huang W, Tian B, Li T, Wang S. Long-distance transport of the pear HMGR1 mRNA via the phloem is associated with enhanced salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111705. [PMID: 37059127 DOI: 10.1016/j.plantsci.2023.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
Grafting is the main asexual propagation method for horticultural crops and can enhance their resistance to biotic or abiotic stress. Many mRNAs can be transported over long distances through the graft union, however, the function of mobile mRNAs remains poorly understood. Here, we exploited lists of candidate mobile mRNAs harboring potential 5-methylcytosine (m5C) modification in pear (Pyrus betulaefolia). dCAPS RT-PCR and RT-PCR were employed to demonstrate the mobility of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase1 (PbHMGR1) mRNA in grafted plants of both pear and tobacco (Nicotiana tabacum). Overexpressing PbHMGR1 in tobacco plants enhanced salt tolerance during seed germination. In addition, both histochemical staining and GUS expression analysis showed that PbHMGR1 could directly respond to salt stress. Furthermore, it was found that the relative abundance of PbHMGR1 increased in heterografted scion, which avoided serious damage under salt stress. Collectively, these findings established that PbHMGR1 mRNA could act as a salt-responsive signal and move through the graft union to enhance salt tolerance of scion, which might be used as a new plant breeding technique to improve resistance of scion through a stress-tolerant rootstock.
Collapse
Affiliation(s)
- Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Baihui Tian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Wang S, Duan X, Wang S, Hao L, Zhang Y, Xu C, Yu Y, Xiang L, Jiang F, Heinlein M, Li T, Zhang W. A chaperonin containing T-complex polypeptide-1 facilitates the formation of the PbWoxT1-PbPTB3 ribonucleoprotein complex for long-distance RNA trafficking in Pyrus betulaefolia. THE NEW PHYTOLOGIST 2023; 238:1115-1128. [PMID: 36751904 DOI: 10.1111/nph.18789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Xuwei Duan
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Shengyuan Wang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Li Hao
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yi Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Chaoran Xu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Yunfei Yu
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Ling Xiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Feng Jiang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Tianzhong Li
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Wenna Zhang
- College of Horticulture, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
8
|
Yu Y, Wang S, Xu C, Xiang L, Huang W, Zhang X, Tian B, Mao C, Li T, Wang S. The β-1,3-Glucanase Degrades Callose at Plasmodesmata to Facilitate the Transport of the Ribonucleoprotein Complex in Pyrus betulaefolia. Int J Mol Sci 2023; 24:ijms24098051. [PMID: 37175758 PMCID: PMC10179145 DOI: 10.3390/ijms24098051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a β-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.
Collapse
Affiliation(s)
- Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Xiao Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Baihui Tian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chong Mao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Jeynes-Cupper K, Catoni M. Long distance signalling and epigenetic changes in crop grafting. FRONTIERS IN PLANT SCIENCE 2023; 14:1121704. [PMID: 37021313 PMCID: PMC10067726 DOI: 10.3389/fpls.2023.1121704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Humans have used grafting for more than 4000 years to improve plant production, through physically joining two different plants, which can continue to grow as a single organism. Today, grafting is becoming increasingly more popular as a technique to increase the production of herbaceous horticultural crops, where rootstocks can introduce traits such as resistance to several pathogens and/or improving the plant vigour. Research in model plants have documented how long-distance signalling mechanisms across the graft junction, together with epigenetic regulation, can produce molecular and phenotypic changes in grafted plants. Yet, most of the studied examples rely on proof-of-concept experiments or on limited specific cases. This review explores the link between research findings in model plants and crop species. We analyse studies investigating the movement of signalling molecules across the graft junction and their implications on epigenetic regulation. The improvement of genomics analyses and the increased availability of genetic resources has allowed to collect more information on potential benefits of grafting in horticultural crop models. Ultimately, further research into this topic will enhance our ability to use the grafting technique to exploit genetic and epigenetic variation in crops, as an alternative to traditional breeding.
Collapse
Affiliation(s)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
10
|
Scion-to-Rootstock Mobile Transcription Factor CmHY5 Positively Modulates the Nitrate Uptake Capacity of Melon Scion Grafted on Squash Rootstock. Int J Mol Sci 2022; 24:ijms24010162. [PMID: 36613606 PMCID: PMC9820822 DOI: 10.3390/ijms24010162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
It is generally recognized that the root uptake capacity of grafted plants strongly depends on the rootstocks' well-developed root system. However, we found that grafted plants showed different nitrate uptake capacities when different varieties of oriental melon scion were grafted onto the same squash rootstock, suggesting that the scion regulated the nitrate uptake capacity of the rootstock root. In this study, we estimated the nitrate uptake capacity of grafted plants with the different oriental melon varieties' seedlings grafted onto the same squash rootstocks. The results indicated a significant difference in the nitrate uptake rate and activity of two heterologous grafting plants. We also showed a significant difference in CmoNRT2.1 expression in the roots of two grafting combinations and verified the positive regulation of nitrate uptake by CmoNRT2.1 expression. In addition, the two varieties of oriental melon scion had highly significant differences in CmHY5 expression, which was transported to the rootstock and positively induced CmoHY5-1 and CmoHY5-2 expression in the rootstock roots. Meanwhile, CmHY5 could positively regulate CmoNRT2.1 expression in the rootstock roots. Furthermore, CmoHY5-1 and CmoHY5-2 also positively regulated CmoNRT2.1 expression, respectively, and CmoHY5-1 dominated the positive regulation of CmoNRT2.1, while CmHY5 could interact with CmoHY5-1 and CmoHY5-2, respectively, to jointly regulate CmoNRT2.1 expression. The oriental melon scion regulated the nitrate uptake capacity of the melon/squash grafting plant roots, and the higher expression of CmHY5 in the oriental melon scion leaves, the more substantial the nitrate uptake capacity of squash rootstock roots.
Collapse
|
11
|
Chen Q, Tian F, Cheng T, Jiang J, Zhu G, Gao Z, Lin H, Hu J, Qian Q, Fang X, Chen F. Translational repression of FZP mediated by CU-rich element/OsPTB interactions modulates panicle development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1319-1331. [PMID: 35293072 DOI: 10.1111/tpj.15737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.
Collapse
Affiliation(s)
- Qiong Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Fa'an Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun'e Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- Genetic Resource R&D Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chang Zhou, 213001, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
12
|
RNA-binding proteins and their role in translational regulation in plants. Essays Biochem 2022; 66:87-97. [PMID: 35612383 DOI: 10.1042/ebc20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Translation is a fundamental process for life that needs to be finely adapted to the energetical, developmental and environmental conditions; however, the molecular mechanisms behind such adaptation are not yet fully understood. By directly recognizing and binding to cis-elements present in their target mRNAs, RBPs govern all post-transcriptional regulatory processes. They orchestrate the balance between mRNA stability, storage, decay, and translation of their client mRNAs, playing a crucial role in the modulation of gene expression. In the last years exciting discoveries have been made regarding the roles of RBPs in fine-tuning translation. In this review, we focus on how these RBPs recognize their targets and modulate their translation, highlighting the complex and diverse molecular mechanisms implicated. Since the repertoire of RBPs keeps growing, future research promises to uncover new fascinating means of translational modulation, and thus, of gene expression.
Collapse
|
13
|
Hao P, Lv X, Fu M, Xu Z, Tian J, Wang Y, Zhang X, Xu X, Wu T, Han Z. Long-distance mobile mRNA CAX3 modulates iron uptake and zinc compartmentalization. EMBO Rep 2022; 23:e53698. [PMID: 35254714 PMCID: PMC9066076 DOI: 10.15252/embr.202153698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency in plants can lead to excessive absorption of zinc; however, important details of this mechanism have yet to be elucidated. Here, we report that MdCAX3 mRNA is transported from the leaf to the root, and that MdCAX3 is then activated by MdCXIP1. Suppression of MdCAX3 expression leads to an increase in the root apoplastic pH, which is associated with the iron deficiency response. Notably, overexpression of MdCAX3 does not affect the apoplastic pH in a MdCXIP1 loss-of-function Malus baccata (Mb) mutant that has a deletion in the MdCXIP1 promoter. This deletion in Mb weakens MdCXIP1 expression. Co-expression of MdCAX3 and MdCXIP1 in Mb causes a decrease in the root apoplastic pH. Furthermore, suppressing MdCAX3 in Malus significantly reduces zinc vacuole compartmentalization. We also show that MdCAX3 activated by MdCXIP1 is not only involved in iron uptake, but also in regulating zinc detoxification by compartmentalizing zinc in vacuoles to avoid iron starvation-induced zinc toxicity. Thus, mobile MdCAX3 mRNA is involved in the regulation of iron and zinc homeostasis in response to iron starvation.
Collapse
Affiliation(s)
- Pengbo Hao
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinmin Lv
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Mengmeng Fu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhen Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Wang S, Yu Y, Xu C, Xiang L, Huang W, Zhang C, Sun S, Li T, Wang S. PbANK facilitates the long-distance movement of the PbWoxT1-PbPTB3 RNP complex by degrading deposited callose. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111232. [PMID: 35351304 DOI: 10.1016/j.plantsci.2022.111232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Grafting horticultural crops can result in phenotypic changes in the grafted materials due to the movement of macromolecular signals, including RNAs and proteins, across the graft union; however, little is known about the composition of trafficking ribonucleoprotein (RNP) complexes or how these macromolecules are transported. Here, we used the core of PbPTB3-PbWoxT1 RNP complex, PbPTB3, as bait to screen Pyrus betulaefolia cDNA library for its interaction partners. We identified an ankyrin protein, PbANK, that interacts with PbPTB3 to facilitate its transport through the phloem alongside PbWoxT1 mRNA. Heterografting experiments showed that silencing PbANK in rootstock prevented the transport of PbPTB3 and PbWoxT1 mRNA from the rootstock to the scion. Similarly, heterologous grafting experiments demonstrated that PbANK itself cannot be transported over long distances through a graft union. Fluorescence microscopy showed that silencing ANK affected the intercellular diffusion of PbPTB3 and increased callose deposition at plasmodesmata. Collectively, these findings demonstrate that PbANK mediates the long-distance movement of PbPTB3 and PbWoxT1 by degrading callose to increase the efficiency of cell-to-cell movement.
Collapse
Affiliation(s)
- Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Xiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chuan Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shiyue Sun
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Li W, Chen S, Liu Y, Wang L, Jiang J, Zhao S, Fang W, Chen F, Guan Z. Long-distance transport RNAs between rootstocks and scions and graft hybridization. PLANTA 2022; 255:96. [PMID: 35348893 DOI: 10.1007/s00425-022-03863-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The present review addresses the advances of the identification methods, functions, and transportation mechanism of long-distance transport RNAs between rootstock and scion. In addition, we highlight the cognitive processes and potential mechanisms of graft hybridization. Phloem, the main transport channel of higher plants, plays an important role in the growth and development of plants. Numerous studies have identified a large number of RNAs, including mRNAs, miRNAs, siRNAs, and lncRNAs, in the plant phloem. They can not only be transported to long distances across the grafting junction in the phloem, but also act as signal molecules to regulate the growth, development, and stress resistance of remote cells or tissues, resulting in changes in the traits of rootstocks and scions. Many mobile RNAs have been discovered, but their detection methods, functions, and long-distance transport mechanisms remain to be elucidated. In addition, grafting hybridization, a phenomenon that has been questioned before, and which has an important role in selecting for superior traits, is gradually being recognized with the emergence of new evidence and the prevalence of horizontal gene transfer between parasitic plants. In this review, we outline the species, functions, identification methods, and potential mechanisms of long-distance transport RNAs between rootstocks and scions after grafting. In addition, we summarize the process of recognition and the potential mechanisms of graft hybridization. This study aimed to emphasize the role of grafting in the study of long-distance signals and selection for superior traits and to provide ideas and clues for further research on long-distance transport RNAs and graft hybridization.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. HORTICULTURE RESEARCH 2022; 9:uhac032. [PMID: 35184166 PMCID: PMC8976691 DOI: 10.1093/hr/uhac032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
Grafting is a widely used practice for asexual propagation of fruit trees. Many physiological, biochemical, and molecular changes occur upon grafting that can influence important horticultural traits. This technology has many advantages, including avoidance of juvenility, modifying the scion architecture, improving productivity, adapting scion cultivars to unfavourable environmental conditions, and developing traits in resistance to insect pests, bacterial and fungal diseases. A limitation of grafting is scion-rootstock incompatibility. It may be caused by many factors, including insufficient genetic proximity, physiological or biochemical factors, lignification at the graft union, poor graft architecture, insufficient cell recognition between union tissues, and metabolic differences in the scion and the rootstock. Plant hormones, like auxin, ethylene (ET), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) orchestrate several crucial physiological and biochemical processes happening at the site of the graft union. Additionally, epigenetic changes at the union affect chromatin architecture by DNA methylation, histone modification, and the action of small RNA molecules. The mechanism triggering these effects likely is affected by hormonal crosstalk, protein and small molecules movement, nutrients uptake, and transport in the grafted trees. This review provides an overview of the basis of physiological, biochemical, and molecular aspects of fruit tree grafting between scion and rootstock.
Collapse
Affiliation(s)
- Fariborz Habibi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Kevin Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
17
|
He W, Xie R, Wang Y, Chen Q, Wang H, Yang S, Luo Y, Zhang Y, Tang H, Gmitter FG, Wang X. Comparative transcriptomic analysis on compatible/incompatible grafts in citrus. HORTICULTURE RESEARCH 2022; 9:uhab072. [PMID: 35043167 PMCID: PMC8931943 DOI: 10.1093/hr/uhab072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Grafting is a useful cultivation technology to resist abiotic and biotic stresses and is an integral part of citrus production. However, some widely utilized rootstocks may still exhibit graft incompatibility in the orchard. "Hongmian miyou" (Citrus maxima (Burm.) Merrill) is mutated from "Guanxi miyou", but these two scions showed different compatibility with available Poncirus trifoliata rootstock. Foliage etiolation is an observed symptom of graft incompatibility, but its mechanism remains poorly understood. This study is the first to investigate the morphological, physiological, and anatomical differences between the compatible/incompatible grafts, and perform transcriptome profiling at crucial stages of the foliage etiolation process. Based on the comprehensive analyses, hormonal balance was disordered, and two rate-limiting genes, NCED3 (9-cis-epoxycarotenoid dioxygenases 3) and NCED5, being responsible for ABA (abscisic acid) accumulation, were highlighted. Further correlation analysis indicated that IAA (indole-3-acetic acid) and ABA were the most likely inducers of the expression of stresses-related genes. In addition, excessive starch accumulation was observed in lamina and midribs of incompatible grafts leaves. These results provided a new insight into the role of the hormonal balance and abscisic acid biosynthesis genes in regulation and contribution to the graft incompatibility, and will further define and deploy candidate genes to explore the mechanisms underlying citrus rootstock- scion interactions.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred 33850, FL, USA
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
18
|
Lv X, Sun Y, Hao P, Zhang C, Tian J, Fu M, Xu Z, Wang Y, Zhang X, Xu X, Wu T, Han Z. RBP differentiation contributes to selective transmissibility of OPT3 mRNAs. PLANT PHYSIOLOGY 2021; 187:1587-1604. [PMID: 34618059 PMCID: PMC8566248 DOI: 10.1093/plphys/kiab366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A. thaliana, does not move from shoot to root. Reciprocal heterologous expression of the two types of mRNAs showed that the immobile AtOPT3 became mobile and moved from the shoot to the root in two woody species, Malus and Populus, while the mobile MdOPT3 became immobile in two herbaceous species, A. thaliana and tomato (Solanum lycopersicum). Furthermore, we demonstrated that the different transmissibility of OPT3 in A. thaliana and Malus might be caused by divergence in RNA-binding proteins between herbaceous and woody plants. This study provides insights into mechanisms underlying differences in mRNA mobility and validates the important physiological functions associated with this process.
Collapse
Affiliation(s)
- Xinmin Lv
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaqiang Sun
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Pengbo Hao
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengmeng Fu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhen Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Hezema YS, Shukla MR, Goel A, Ayyanath MM, Sherif SM, Saxena PK. Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants. Int J Mol Sci 2021; 22:8398. [PMID: 34445105 PMCID: PMC8395105 DOI: 10.3390/ijms22168398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.
Collapse
Affiliation(s)
- Yasmine S. Hezema
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
- Department of Horticulture, Damanhour University, Damanhour 22713, El-Beheira, Egypt
| | - Mukund R. Shukla
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Alok Goel
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Murali M. Ayyanath
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Praveen K. Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| |
Collapse
|
20
|
Wang T, Li X, Zhang X, Wang Q, Liu W, Lu X, Gao S, Liu Z, Liu M, Gao L, Zhang W. RNA Motifs and Modification Involve in RNA Long-Distance Transport in Plants. Front Cell Dev Biol 2021; 9:651278. [PMID: 33869208 PMCID: PMC8047152 DOI: 10.3389/fcell.2021.651278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
A large number of RNA molecules have been found in the phloem of higher plants, and they can be transported to distant organelles through the phloem. RNA signals are important cues to be evolving in fortification strategies by long-distance transportation when suffering from various physiological challenges. So far, the mechanism of RNA selectively transportation through phloem cells is still in progress. Up to now, evidence have shown that several RNA motifs including Polypyrimidine (poly-CU) sequence, transfer RNA (tRNA)-related sequence, Single Nucleotide Mutation bound with specific RNA binding proteins to form Ribonucleotide protein (RNP) complexes could facilitate RNA mobility in plants. Furthermore, some RNA secondary structure such as tRNA-like structure (TLS), untranslation region (UTR) of mRNA, stem-loop structure of pre-miRNA also contributed to the mobility of RNAs. Latest researchs found that RNA methylation such as methylated 5′ cytosine (m5C) played an important role in RNA transport and function. These studies lay a theoretical foundation to uncover the mechanism of RNA transport. We aim to provide ideas and clues to inspire future research on the function of RNA motifs in RNA long-distance transport, furthermore to explore the underlying mechanism of RNA systematic signaling.
Collapse
Affiliation(s)
- Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shunli Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Kapazoglou A, Tani E, Avramidou EV, Abraham EM, Gerakari M, Megariti S, Doupis G, Doulis AG. Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment. FRONTIERS IN PLANT SCIENCE 2021; 11:613004. [PMID: 33510757 PMCID: PMC7835530 DOI: 10.3389/fpls.2020.613004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/10/2020] [Indexed: 05/07/2023]
Abstract
Plant grafting is an ancient agricultural practice widely employed in crops such as woody fruit trees, grapes, and vegetables, in order to improve plant performance. Successful grafting requires the interaction of compatible scion and rootstock genotypes. This involves an intricate network of molecular mechanisms operating at the graft junction and associated with the development and the physiology of the scion, ultimately leading to improved agricultural characteristics such as fruit quality and increased tolerance/resistance to abiotic and biotic factors. Bidirectional transfer of molecular signals such as hormones, nutrients, proteins, and nucleic acids from the rootstock to the scion and vice versa have been well documented. In recent years, studies on rootstock-scion interactions have proposed the existence of an epigenetic component in grafting reactions. Epigenetic changes such as DNA methylation, histone modification, and the action of small RNA molecules are known to modulate chromatin architecture, leading to gene expression changes and impacting cellular function. Mobile small RNAs (siRNAs) migrating across the graft union from the rootstock to the scion and vice versa mediate modifications in the DNA methylation pattern of the recipient partner, leading to altered chromatin structure and transcriptional reprogramming. Moreover, graft-induced DNA methylation changes and gene expression shifts in the scion have been associated with variations in graft performance. If these changes are heritable they can lead to stably altered phenotypes and affect important agricultural traits, making grafting an alternative to breeding for the production of superior plants with improved traits. However, most reviews on the molecular mechanisms underlying this process comprise studies related to vegetable grafting. In this review we will provide a comprehensive presentation of the current knowledge on the epigenetic changes and transcriptional reprogramming associated with the rootstock-scion interaction focusing on woody plant species, including the recent findings arising from the employment of advanced-omics technologies as well as transgrafting methodologies and their potential exploitation for generating superior quality grafts in woody species. Furthermore, will discuss graft-induced heritable epigenetic changes leading to novel plant phenotypes and their implication to woody crop improvement for yield, quality, and stress resilience, within the context of climate change.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Demeter (HAO-Demeter), Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Athens, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Athens, Greece
| | - Eleni M. Abraham
- Laboratory of Range Science, Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Stamatia Megariti
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Georgios Doupis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Sub-Tropical Crops and Viticulture, Hellenic Agricultural Organization-Demeter (HAO-Demeter) (fr. NAGREF), Heraklion, Greece
| | - Andreas G. Doulis
- Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Sub-Tropical Crops and Viticulture, Hellenic Agricultural Organization-Demeter (HAO-Demeter) (fr. NAGREF), Heraklion, Greece
| |
Collapse
|
22
|
RNA transfer through tunneling nanotubes. Biochem Soc Trans 2020; 49:145-160. [PMID: 33367488 DOI: 10.1042/bst20200113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
It was already suggested in the early '70's that RNA molecules might transfer between mammalian cells in culture. Yet, more direct evidence for RNA transfer in animal and plant cells was only provided decades later, as this field became established. In this mini-review, we will describe evidence for the transfer of different types of RNA between cells through tunneling nanotubes (TNTs). TNTs are long, yet thin, open-ended cellular protrusions that are structurally distinct from filopodia. TNTs connect cells and can transfer many types of cargo, including small molecules, proteins, vesicles, pathogens, and organelles. Recent work has shown that TNTs can also transfer mRNAs, viral RNAs and non-coding RNAs. Here, we will review the evidence for TNT-mediated RNA transfer, discuss the technical challenges in this field, and conjecture about the possible significance of this pathway in health and disease.
Collapse
|
23
|
Hao L, Zhang Y, Wang S, Zhang W, Wang S, Xu C, Yu Y, Li T, Jiang F, Li W. A constitutive and drought-responsive mRNA undergoes long-distance transport in pear (Pyrus betulaefolia) phloem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110419. [PMID: 32081266 DOI: 10.1016/j.plantsci.2020.110419] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 05/03/2023]
Abstract
Pear is one of the most commercially important fruit trees worldwide and is widely cultivated in temperate zones. Drought stress can greatly limit pear fruit yield and quality. Pyrus betulaefolia Bunge, a drought-resistant pear rootstock that is commonly used in northern China, confers favourable characteristics to pear scions, allowing them to respond rapidly to drought stress via the transport of macromolecules such as phloem-mobile mRNAs. How drought-responsive mRNAs function as phloem-mobile signals remains unknown, however. Here, we used RNA sequencing (RNA-seq) combined with SNP analysis to identify mobile mRNAs in P. betulaefolia. We focused on mobile mRNAs that respond to drought stress and found that the abundance of a novel mRNA named PbDRM (P. betulaefoliaDROUGHT-RESPONSIVE MOBILE GENE) significantly increased in several different scion cultivars when they were grafted onto P. betulaefolia rootstock under drought conditions. In addition, downregulating PbDRM by virus-induced gene silencing (VIGS) increased the drought sensitivity of P. betulaefolia. CAPS RT-PCR analysis confirmed that PbDRM mRNA moves from rootstock to scion in micrografting systems. Therefore, PbDRM mRNA acts as a phloem-mobile signal in pear under drought stress.
Collapse
Affiliation(s)
- Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Dong X, Wang Z, Tian L, Zhang Y, Qi D, Huo H, Xu J, Li Z, Liao R, Shi M, Wahocho SA, Liu C, Zhang S, Tian Z, Cao Y. De novo assembly of a wild pear (Pyrus betuleafolia) genome. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:581-595. [PMID: 31368610 PMCID: PMC6953202 DOI: 10.1111/pbi.13226] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/25/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
China is the origin and evolutionary centre of Oriental pears. Pyrus betuleafolia is a wild species native to China and distributed in the northern region, and it is widely used as rootstock. Here, we report the de novo assembly of the genome of P. betuleafolia-Shanxi Duli using an integrated strategy that combines PacBio sequencing, BioNano mapping and chromosome conformation capture (Hi-C) sequencing. The genome assembly size was 532.7 Mb, with a contig N50 of 1.57 Mb. A total of 59 552 protein-coding genes and 247.4 Mb of repetitive sequences were annotated for this genome. The expansion genes in P. betuleafolia were significantly enriched in secondary metabolism, which may account for the organism's considerable environmental adaptability. An alignment analysis of orthologous genes showed that fruit size, sugar metabolism and transport, and photosynthetic efficiency were positively selected in Oriental pear during domestication. A total of 573 nucleotide-binding site (NBS)-type resistance gene analogues (RGAs) were identified in the P. betuleafolia genome, 150 of which are TIR-NBS-LRR (TNL)-type genes, which represented the greatest number of TNL-type genes among the published Rosaceae genomes and explained the strong disease resistance of this wild species. The study of flavour metabolism-related genes showed that the anthocyanidin reductase (ANR) metabolic pathway affected the astringency of pear fruit and that sorbitol transporter (SOT) transmembrane transport may be the main factor affecting the accumulation of soluble organic matter. This high-quality P. betuleafolia genome provides a valuable resource for the utilization of wild pear in fundamental pear studies and breeding.
Collapse
Affiliation(s)
- Xingguang Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Luming Tian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Ying Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Dan Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Hongliang Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Jiayu Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zhe Li
- Berry Genomics CorporationBeijingChina
| | - Rui Liao
- Berry Genomics CorporationBeijingChina
| | - Miao Shi
- Berry Genomics CorporationBeijingChina
| | - Safdar Ali Wahocho
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Chao Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Simeng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yufen Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization)Ministry of AgricultureResearch Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| |
Collapse
|
25
|
Rasool A, Mansoor S, Bhat KM, Hassan GI, Baba TR, Alyemeni MN, Alsahli AA, El-Serehy HA, Paray BA, Ahmad P. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:590847. [PMID: 33362818 PMCID: PMC7758432 DOI: 10.3389/fpls.2020.590847] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 05/18/2023]
Abstract
Grafting is a common practice for vegetative propagation and trait improvement in horticultural plants. A general prerequisite for successful grafting and long term survival of grafted plants is taxonomic proximity between the root stock and scion. For the success of a grafting operation, rootstock and scion should essentially be closely related. Interaction between the rootstock and scion involves complex physiological-biochemical and molecular mechanisms. Successful graft union formation involves a series of steps viz., lining up of vascular cambium, generation of a wound healing response, callus bridge formation, followed by vascular cambium formation and subsequent formation of the secondary xylem and phloem. For grafted trees compatibility between the rootstock/scion is the most essential factor for their better performance and longevity. Graft incompatibility occurs on account of a number of factors including of unfavorable physiological responses across the graft union, transmission of virus or phytoplasma and anatomical deformities of vascular tissue at the graft junction. In order to avoid the incompatibility problems, it is important to predict the same at an early stage. Phytohormones, especially auxins regulate key events in graft union formation between the rootstock and scion, while others function to facilitate the signaling pathways. Transport of macro as well as micro molecules across long distances results in phenotypic variation shown by grafted plants, therefore grafting can be used to determine the pattern and rate of recurrence of this transport. A better understanding of rootstock scion interactions, endogenous growth substances, soil or climatic factors needs to be studied, which would facilitate efficient selection and use of rootstocks in the future. Protein, hormones, mRNA and small RNA transport across the junction is currently emerging as an important mechanism which controls the stock/scion communication and simultaneously may play a crucial role in understanding the physiology of grafting more precisely. This review provides an understanding of the physiological, biochemical and molecular basis underlying grafting with special reference to horticultural plants.
Collapse
Affiliation(s)
- Aatifa Rasool
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sheikh Mansoor
- Division of Biochemistry, Faculty of Basic Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - K. M. Bhat
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - G. I. Hassan
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Tawseef Rehman Baba
- Department of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyad, Saudi Arabia
| | | | - Hamed A. El-Serehy
- Department of Zoology, College of Sciences, King Saud University, Riyad, Saudi Arabia
| | - Bilal Ahmad Paray
- Department of Zoology, College of Sciences, King Saud University, Riyad, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyad, Saudi Arabia
- *Correspondence: Parvaiz Ahmad,
| |
Collapse
|
26
|
Molecular Responses during Plant Grafting and Its Regulation by Auxins, Cytokinins, and Gibberellins. Biomolecules 2019; 9:biom9090397. [PMID: 31443419 PMCID: PMC6770456 DOI: 10.3390/biom9090397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Plant grafting is an important horticulture technique used to produce a new plant after joining rootstock and scion. This is one of the most used techniques by horticulturists to enhance the quality and production of various crops. Grafting helps in improving the health of plants, their yield, and the quality of plant products, along with the enhancement of their postharvest life. The main process responsible for successful production of grafted plants is the connection of vascular tissues. This step determines the success rate of grafts and hence needs to be studied in detail. There are many factors that regulate the connection of scion and stock, and plant hormones are of special interest for researchers in the recent times. These phytohormones act as signaling molecules and have the capability of translocation across the graft union. Plant hormones, mainly auxins, cytokinins, and gibberellins, play a major role in the regulation of various key physiological processes occurring at the grafting site. In the current review, we discuss the molecular mechanisms of graft development and the phytohormone-mediated regulation of the growth and development of graft union.
Collapse
|
27
|
Natarajan B, Kondhare KR, Hannapel DJ, Banerjee AK. Mobile RNAs and proteins: Prospects in storage organ development of tuber and root crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:73-81. [PMID: 31084881 DOI: 10.1016/j.plantsci.2019.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 05/04/2023]
Abstract
Storage tuber and root crops make up a significant portion of the world's subsistence food supply. Because of their importance in food security, yield enhancement has become a priority. A major focus has been to understand the biology of belowground storage organ development. Considerable insights have been gained studying tuber development in potato. We now know that two mobile signals, a full-length mRNA, StBEL5, and a protein, StSP6A, play pivotal roles in regulating tuber development. Under favorable conditions, these signals move from leaves to a belowground modified stem (stolon) and regulate genes that activate tuberization. Overexpression of StBEL5 or StSP6A increases tuber yield even under non-inductive conditions. The mRNAs of two close homologs of StBEL5, StBEL11 and StBEL29, are also known to be mobile but act as repressors of tuberization. Polypyrimidine tract-binding proteins (PTBs) are RNA-binding proteins that facilitate the movement of these mRNAs. Considering their role in tuberization, it is possible that these mobile signals play a major role in storage root development as well. In this review, we explore the presence of these signals and their relevance in the development and yield potential of several important storage root crops.
Collapse
Affiliation(s)
- Bhavani Natarajan
- Indian Institute of Science Education and Research (IISER), Biology Division, Pune, 411008, India
| | - Kirtikumar R Kondhare
- Indian Institute of Science Education and Research (IISER), Biology Division, Pune, 411008, India
| | - David J Hannapel
- Plant Biology Major, 253 Horticulture Hall, Iowa State University (ISU), Ames, IA, United States
| | - Anjan K Banerjee
- Indian Institute of Science Education and Research (IISER), Biology Division, Pune, 411008, India.
| |
Collapse
|
28
|
Shen Y, Zhuang W, Tu X, Gao Z, Xiong A, Yu X, Li X, Li F, Qu S. Transcriptomic analysis of interstock-induced dwarfism in Sweet Persimmon ( Diospyros kaki Thunb.). HORTICULTURE RESEARCH 2019; 6:51. [PMID: 31069082 PMCID: PMC6491603 DOI: 10.1038/s41438-019-0133-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 06/01/2023]
Abstract
Growth monitoring indicated that the height of 'Kanshu' plants with 'Nantong-xiaofangshi' as an interstock was significantly shorter than that of 'Kanshu' plants with no interstock. A transcriptome analysis of the two graft combinations ('Kanshu'/Diospyros lotus and 'Kanshu'/'Nantong-xiaofangshi'/Diospyros lotus) was conducted to explore the dwarfing genes related to the use of the 'Nantong-xiaofangshi' interstock. Hormone levels and water conductance were also measured in these two graft combinations. The results indicated that the levels of both IAA and GA were lower in 'Kanshu' that had been grafted onto the 'Nantong-xiaofangshi' interstock than in 'Kanshu' with no interstock; additionally, the water conductance was lower in grafts with interstocks than in grafts without interstocks. The expression of AUX/IAA and auxin-responsive GH3 genes was enhanced in scions grafted on the interstock and was negatively correlated with the IAA content and growth of scions. The expression of GA2ox, DELLA, and SPINDLY genes were also upregulated and associated with a decrease in the level of GA in scions grafted on the interstock. Since one of the GA2ox unigenes was annotated as DkGA2ox1 in Diospyros kaki, but was not functionally validated, a functional analysis was conducted in transgenic tobacco. Overexpression of DkGA2ox1 in transgenic plants resulted in a dwarf phenotype that could be recovered by the exogenous application of GA3. We conclude that the 'Nantong-xiaofangshi' interstock affects the water conductance and expression of genes related to the metabolism and transduction of IAA and GA in the grafted scion and thus regulates phytohormone levels, producing dwarfing.
Collapse
Affiliation(s)
- Yanying Shen
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014 Nanjing, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, 210014 Nanjing, China
| | - Xutong Tu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Xuehan Li
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Feihong Li
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014 Nanjing, China
| |
Collapse
|
29
|
Wang S, Wang S, Zhang W, Zhang Q, Hao L, Zhang Y, Xu C, Yu Y, Wang B, Li T, Jiang F. PbTTG1 forms a ribonucleoprotein complex with polypyrimidine tract-binding protein PbPTB3 to facilitate the long-distance trafficking of PbWoxT1 mRNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:424-432. [PMID: 30824022 DOI: 10.1016/j.plantsci.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The grafting of horticultural crops enables breeders to induce phenotypic changes in rootstocks and scions. A number of signaling molecules, including RNAs and proteins, were recently shown to underlie these changes; however, little is known about the composition of ribonucleoprotein (RNP) complexes or how these macromolecules are transported. Here, we used a polypyrimidine tract-binding protein, PbPTB3, as a bait to screen a library of phloem cDNA from a pear variety 'Du Li' (Pyrus betulaefolia). We identified a new protein constituent of the RNP complex, TRANSPARENT TESTA GLABRA1 (PbTTG1), a WD40 protein that interacts with PbPTB3 to facilitate its transport with PbWoxT1 mRNA through the phloem. Overexpression experiments indicated that PbTTG1 binds to PbPTB3, facilitating its transmission from the leaf through the petiole, while silencing of PbTTG1 expression prevented their translocation. Heterografting experiments also showed that silencing of PbTTG1 prevented the transport of PbPTB3 from the rootstock to the scion. Collectively, these findings established that PbTTG1 binds to PbPTB3 and PbWoxT1 to form an RNP complex, which facilitates their long-distance movement.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Transcriptome approach to address low seed germination in Cyclobalanopsis gilva to save forest ecology. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Reagan BC, Ganusova EE, Fernandez JC, McCray TN, Burch-Smith TM. RNA on the move: The plasmodesmata perspective. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:1-10. [PMID: 30107876 DOI: 10.1016/j.plantsci.2018.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 05/11/2023]
Abstract
It is now widely accepted that plant RNAs can have effects at sites far away from their sites of synthesis. Cellular mRNA transcripts, endogenous small RNAs and defense-related small RNAs all move from cell to cell via plasmodesmata (PD), and may even move long distances in the phloem. Despite their small size, PD have complicated substructures, and the area of the pore available for RNA trafficking can be remarkably small. The intent of this review is to bring into focus the role of PD in cell-to-cell and long distance communication in plants. We consider how cellular RNAs could move through the cell to the PD and thence through PD. The protein composition of PD and the possible roles of PD proteins in RNA trafficking are also discussed. Recent evidence for RNA metabolism in organelles acting as a factor in controlling PD flux is also presented, highlighting new aspects of plant intra- and intercellular communication. It is clear that while the phenomenon of RNA mobility is common and essential, many questions remain, and these have been highlighted throughout this review.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jessica C Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
32
|
Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops. BMC Genomics 2018; 19:124. [PMID: 29415650 PMCID: PMC5803842 DOI: 10.1186/s12864-018-4502-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 11/21/2022] Open
Abstract
Background Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Results Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root crops exhibited differential accumulation patterns in leaf and storage root tissues. Conclusions Our results suggest that the PTB1/6-like orthologues and their putative targets, BEL5- and POTH1-like mRNAs, from storage root crops could interact physically, similar to that in potato, and potentially, could function as key molecular signals controlling storage organ development in root crops. Electronic supplementary material The online version of this article (10.1186/s12864-018-4502-7) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Zhu X, Xiao K, Cui H, Hu J. Overexpression of the Prunus sogdiana NBS-LRR Subgroup Gene PsoRPM2 Promotes Resistance to the Root-Knot Nematode Meloidogyne incognita in Tobacco. Front Microbiol 2017; 8:2113. [PMID: 29163405 PMCID: PMC5671597 DOI: 10.3389/fmicb.2017.02113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
Root-knot nematodes (RKNs), particularly Meloidogyne incognita, are the most devastating soil-borne pathogens that significantly affect the production of Prunus spp. fruit. RKN infection is difficult to control and consequently causes massive yield losses each year. However, several germplasms of wild Prunus spp. have been shown to display resistance to M. incognita. Consequently, both the isolation of novel plant resistance (R) genes and the characterization of their resistance mechanisms are important strategies for future disease control. R proteins require the co-chaperone protein HSP90-SGT1-RAR1 to achieve correct folding, maturation, and stabilization. Here, we used homologous cloning to isolate the R gene PsoRPM2 from the RKN-resistant species Prunus sogdiana. PsoRPM2 was found to encode a TIR-NB-LRR-type protein and react with significantly elevated PsoRPM2 expression levels in response to RKN infection. Transient expression assays indicated PsoRPM2 to be located in both the cytoplasm and the nucleus. Four transgenic tobacco lines that heterologously expressed PsoRPM2 showed enhanced resistance to M. incognita. Yeast two-hybrid analysis and bimolecular fluorescence complementation analysis demonstrated that both PsoRAR1 and PsoRPM2 interacted with PsoHSP90-1 and PsoSGT1, but not with one another. These results indicate that the observed PsoRPM2-mediated RKN resistance requires both PsoHSP90-1 and PsoSGT1, further suggesting that PsoRAR1 plays a functionally redundant role in the HSP90-SGT1-RAR1 co-chaperone.
Collapse
Affiliation(s)
| | | | | | - Jianfang Hu
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Wang J, Jiang L, Wu R. Plant grafting: how genetic exchange promotes vascular reconnection. THE NEW PHYTOLOGIST 2017; 214:56-65. [PMID: 27991666 DOI: 10.1111/nph.14383] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/13/2016] [Indexed: 05/17/2023]
Abstract
Grafting has been widely used to improve horticultural traits. It has also served increasingly as a tool to investigate the long-distance transport of molecules that is an essential part for key biological processes. Many studies have revealed the molecular mechanisms of graft-induced phenotypic variation in anatomy, morphology and production. Here, we review the phenomena and their underlying mechanisms by which macromolecules, including RNA, protein, and even DNA, are transported between scions and rootstocks via vascular tissues. We further propose a conceptual framework that characterizes and quantifies the driving mechanisms of scion-rootstock interactions toward vascular reconnection and regeneration.
Collapse
Affiliation(s)
- Jing Wang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Center for Statistical Genetics, Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|