1
|
Xing H, Chen W, Liu Y, Cahill JF. Local Community Assembly Mechanisms and the Size of Species Pool Jointly Explain the Beta Diversity of Soil Fungi. MICROBIAL ECOLOGY 2024; 87:58. [PMID: 38602532 PMCID: PMC11008070 DOI: 10.1007/s00248-024-02374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.
Collapse
Affiliation(s)
- Hua Xing
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Wuwei Chen
- Qingyuan Bureau Natural Resources and Planning, Qingyuan, 323800, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200082, China.
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
2
|
Karst J, Jones MD, Hoeksema JD. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat Ecol Evol 2023; 7:501-511. [PMID: 36782032 DOI: 10.1038/s41559-023-01986-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
A common mycorrhizal network (CMN) is formed when mycorrhizal fungal hyphae connect the roots of multiple plants of the same or different species belowground. Recently, CMNs have captured the interest of broad audiences, especially with respect to forest function and management. We are concerned, however, that recent claims in the popular media about CMNs in forests are disconnected from evidence, and that bias towards citing positive effects of CMNs has developed in the scientific literature. We first evaluated the evidence supporting three common claims. The claims that CMNs are widespread in forests and that resources are transferred through CMNs to increase seedling performance are insufficiently supported because results from field studies vary too widely, have alternative explanations or are too limited to support generalizations. The claim that mature trees preferentially send resources and defence signals to offspring through CMNs has no peer-reviewed, published evidence. We next examined how the results from CMN research are cited and found that unsupported claims have doubled in the past 25 years; a bias towards citing positive effects may obscure our understanding of the structure and function of CMNs in forests. We conclude that knowledge on CMNs is presently too sparse and unsettled to inform forest management.
Collapse
Affiliation(s)
- Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
3
|
Qu ZL, Braima A, Liu B, Ma Y, Sun H. Soil Fungal Community Structure and Function Shift during a Disease-Driven Forest Succession. Microbiol Spectr 2022; 10:e0079522. [PMID: 36073819 PMCID: PMC9602832 DOI: 10.1128/spectrum.00795-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022] Open
Abstract
Forest succession is important for sustainable forest management in terrestrial ecosystems. However, knowledge about the response of soil microbes to forest disease-driven succession is limited. In this study, we investigated the soil fungal biomass, soil enzyme activity, and fungal community structure and function in forests suffering succession processes produced by pine wilt disease from conifer to broadleaved forests using Illumina Miseq sequencing coupled with FUNGuild analysis. The results showed that the broadleaved forest had the highest fungal biomass and soil enzyme activities in C, N, and S cycles, whereas the conifer forest had the highest enzyme activity in the P cycle. Along the succession, the fungal diversity and richness significantly increased (P < 0.05). The fungal communities were dominated by Ascomycota (42.0%), Basidiomycota (38.0%), and Mortierellomycota (9.5%), among which the abundance of Ascomycota significantly increased (P < 0.05), whereas that of Basidiomycota and Mortierellomycota decreased (P < 0.05). The abundance of species Mortierella humilis, Lactarius salmonicolor, and Russula sanguinea decreased, whereas that of Mortierella minutissima increased (P < 0.05). The forests in different succession stages formed distinct fungal communities and functional structures (P < 0.05). Functionally, the saprotrophs, symbiotrophs, and pathotrophs were the dominant groups in the conifer, mixed, and broadleaved forests, respectively. Soil pH and soil organic carbon were the key factors influencing the fungal community and functional structures during the succession. These findings provide useful information for better understanding the plant-microbe interaction during forest succession caused by forest disease. IMPORTANCE The studies on soil fungal communities in disease-driven forest succession are rare. This study showed that during the disease-driven forest succession, the soil enzyme activity, soil fungal diversity, and biomass increased along succession. The disease-driven forest succession changed the soil fungal community structure and function, in which the symbiotrophs were the most dominant group along the succession. These findings provide useful information for better understanding the plant-microbe interaction during forest succession caused by forest disease.
Collapse
Affiliation(s)
- Zhao-lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ahmed Braima
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Yangzhou Polytechnic College, Yangzhou, China
| | - Yang Ma
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Branco S, Schauster A, Liao HL, Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. THE NEW PHYTOLOGIST 2022; 235:2158-2175. [PMID: 35713988 DOI: 10.1111/nph.18308] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population- and community-level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.
Collapse
Affiliation(s)
- Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Annie Schauster
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
5
|
Wasyliw J, Fellrath EG, Pec GJ, Cale JA, Franklin J, Thomasson C, Erbilgin N, Karst J. Soil inoculation of lodgepole pine seedlings alters root‐associated fungal communities but does not improve seedling performance in beetle‐killed pine stands. Restor Ecol 2022. [DOI: 10.1111/rec.13663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua Wasyliw
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada T6G 2E3
| | - Evan G. Fellrath
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada T6G 2E3
| | - Gregory J. Pec
- Biology Department University of Nebraska at Kearney Kearney Nebraska United States 68849
| | - Jonathan A. Cale
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada T6G 2E3
| | - James Franklin
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada T6G 2E3
| | - Charlotte Thomasson
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada T6G 2E3
| | - Nadir Erbilgin
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada T6G 2E3
| | - Justine Karst
- Department of Renewable Resources University of Alberta Edmonton Alberta Canada T6G 2E3
| |
Collapse
|
6
|
Cale JA, Scott N, Pec GJ, Landhäusser SM, Karst J. Choices on sampling, sequencing, and analyzing DNA influence the estimation of community composition of plant fungal symbionts. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11449. [PMID: 34760409 PMCID: PMC8564097 DOI: 10.1002/aps3.11449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Plant root symbionts, namely mycorrhizal fungi, can be characterized using a variety of methods, but most of these rely on DNA. While Sanger sequencing still fulfills particular research objectives, next-generation sequencing currently dominates the field, thus understanding how the two methods differ is important for identifying both opportunities and limitations to characterizing fungal communities. In addition to testing sequencing methods, we also examined how roots and soils may yield different fungal communities and how disturbance may affect those differences. We sequenced DNA from ectomycorrhizal fungi colonizing roots of Pinus banksiana and found that operational taxonomic unit richness was higher, and compositional variance lower, for Illumina MiSeq-sequenced communities compared to Sanger-sequenced communities. We also found that fungal communities associated with roots were distinct in composition compared to those associated with soils and, moreover, that soil-associated fungi were more clustered in composition than those of roots. Finally, we found community dissimilarity between roots and soils was insensitive to disturbance; however, rarefying read counts had a sizeable influence on trends in fungal richness. Although interest in mycorrhizal communities is typically focused on the abiotic and biotic filters sorting fungal species, our study shows that the choice of methods to sample, sequence, and analyze DNA can also influence the estimation of community composition.
Collapse
Affiliation(s)
- Jonathan A. Cale
- Department of Renewable ResourcesUniversity of Alberta442 Earth Sciences BuildingEdmontonAlbertaT6G 2E3Canada
| | - Natalie Scott
- Department of Renewable ResourcesUniversity of Alberta442 Earth Sciences BuildingEdmontonAlbertaT6G 2E3Canada
| | - Gregory J. Pec
- Department of Renewable ResourcesUniversity of Alberta442 Earth Sciences BuildingEdmontonAlbertaT6G 2E3Canada
- Department of BiologyUniversity of Nebraska at KearneyKearneyNebraska68849USA
| | - Simon M. Landhäusser
- Department of Renewable ResourcesUniversity of Alberta442 Earth Sciences BuildingEdmontonAlbertaT6G 2E3Canada
| | - Justine Karst
- Department of Renewable ResourcesUniversity of Alberta442 Earth Sciences BuildingEdmontonAlbertaT6G 2E3Canada
| |
Collapse
|
7
|
Kohout P, Sudová R, Brabcová V, Vosolsobě S, Baldrian P, Albrechtová J. Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots. Front Microbiol 2021; 12:541583. [PMID: 33584602 PMCID: PMC7876299 DOI: 10.3389/fmicb.2021.541583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Belowground litter derived from tree roots has been shown as a principal source of soil organic matter in coniferous forests. Fate of tree root necromass depends on fungal communities developing on the decaying roots. Local environmental conditions which affect composition of tree root mycobiome may also influence fungal communities developing on decaying tree roots. Here, we assessed fungal communities associated with decaying roots of Picea abies decomposing in three microhabitats: soil with no vegetation, soil with ericoid shrubs cover, and P. abies deadwood, for a 2-year period. Forest microhabitat showed stronger effect on structuring fungal communities associated with decaying roots compared to living roots. Some ericoid mycorrhizal fungi showed higher relative abundance on decaying roots in soils under ericoid shrub cover, while saprotrophic fungi had higher relative abundance in roots decomposing inside deadwood. Regardless of the studied microhabitat, we observed decline of ectomycorrhizal fungi and increase of endophytic fungi during root decomposition. Interestingly, we found substantially more fungal taxa with unknown ecology in late stages of root decomposition, indicating that highly decomposed roots may represent so far overlooked niche for soil fungi. Our study shows the importance of microhabitats on the fate of the decomposing spruce roots.
Collapse
Affiliation(s)
- Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czechia
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stanislav Vosolsobě
- Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Albrechtová
- Institute of Botany of the Czech Academy of Sciences, Pruhonice, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Rodriguez-Ramos JC, Cale JA, Cahill JF, Simard SW, Karst J, Erbilgin N. Changes in soil fungal community composition depend on functional group and forest disturbance type. THE NEW PHYTOLOGIST 2021; 229:1105-1117. [PMID: 32557647 DOI: 10.1111/nph.16749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Disturbances have altered community dynamics in boreal forests with unknown consequences for belowground ecological processes. Soil fungi are particularly sensitive to such disturbances; however, the individual response of fungal guilds to different disturbance types is poorly understood. Here, we profiled soil fungal communities in lodgepole pine forests following a bark beetle outbreak, wildfire, clear-cut logging, and salvage-logging. Using Illumina MiSeq to sequence ITS1 and SSU rDNA, we characterized communities of ectomycorrhizal, arbuscular mycorrhizal, saprotrophic, and pathogenic fungi in sites representing each disturbance type paired with intact forests. We also quantified soil fungal biomass by measuring ergosterol. Abiotic disturbances changed the community composition of ectomycorrhizal fungi and shifted the dominance from ectomycorrhizal to saprotrophic fungi compared to intact forests. The disruption of the soil organic layer with disturbances correlated with the decline of ectomycorrhizal and the increase of arbuscular mycorrhizal fungi. Wildfire changed the community composition of pathogenic fungi but did not affect their proportion and diversity. Fungal biomass declined with disturbances that disrupted the forest floor. Our results suggest that the disruption of the forest floor with disturbances, and the changes in C and nutrient dynamics it may promote, structure the fungal community with implications for fungal biomass-C.
Collapse
Affiliation(s)
| | - Jonathan A Cale
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
9
|
Marín C, Kohout P. Response of soil fungal ecological guilds to global changes. THE NEW PHYTOLOGIST 2021; 229:656-658. [PMID: 33270913 DOI: 10.1111/nph.17054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- César Marín
- Institute of Agri-food, Animal and Environmental Sciences (ICA3), Universidad de O'Higgins, San Fernando, 3070000, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Petr Kohout
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague, CZ-142 20, Czechia
- Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czechia
| |
Collapse
|
10
|
Castaño C, Camarero JJ, Zas R, Sampedro L, Bonet JA, Alday JG, Oliva J. Insect defoliation is linked to a decrease in soil ectomycorrhizal biomass and shifts in needle endophytic communities. TREE PHYSIOLOGY 2020; 40:1712-1725. [PMID: 32785638 DOI: 10.1093/treephys/tpaa104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Insect outbreaks of increasing frequency and severity in forests are predicted due to climate change. Insect herbivory is known to promote physiological changes in forest trees. However, little is known about whether these plant phenotypic adjustments have cascading effects on tree microbial symbionts such as fungi in roots and foliage. We studied the impact of defoliation by the pine processionary moth in two infested Pinus nigra forests through a multilevel sampling of defoliated and non-defoliated trees. We measured tree growth, nutritional status and carbon allocation to chemical defenses. Simultaneously, we analysed the putative impact of defoliation on the needle endophytes and on the soil fungal communities. Higher concentrations of chemical defenses were found in defoliated trees, likely as a response to defoliation; however, no differences in non-structural carbohydrate reserves were found. In parallel to the reductions in tree growth and changes in chemical defenses, we observed shifts in the composition of needle endophytic and soil fungal communities in defoliated trees. Defoliated trees consistently corresponded with a lower biomass of ectomycorrhizal fungi in both sites, and a higher alpha diversity and greater relative abundance of belowground saprotrophs and pathogens. However, ectomycorrhizal alpha diversity was similar between non-defoliated and defoliated trees. Specific needle endophytes in old needles were strongly associated with non-defoliated trees. The potential role of these endophytic fungi in pine resistance should be further investigated. Our study suggests that lower biomass of ectomycorrhizal fungi in defoliated trees might slow down tree recovery since fungal shifts might affect tree-mycorrhizal feedbacks and can potentially influence carbon and nitrogen cycling in forest soils.
Collapse
Affiliation(s)
- Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50192 Zaragoza, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - Luis Sampedro
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, 36080 Pontevedra, Spain
| | - José Antonio Bonet
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Josu G Alday
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| | - Jonàs Oliva
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Rovira Roure, 191, E-25198 Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
| |
Collapse
|
11
|
Six DL. Niche construction theory can link bark beetle-fungus symbiosis type and colonization behavior to large scale causal chain-effects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:27-34. [PMID: 32114295 DOI: 10.1016/j.cois.2019.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Bark beetles form a variety of symbioses with fungi. Recent studies reveal how the fungi influence beetle nutrition and detoxify tree defenses and provide insight into why these symbioses vary so greatly in their outcomes, not only for host and symbiont, but also for the forest ecosystems within which they exist. Here, I review recent advances in our knowledge of these systems. I then introduce how niche construction theory can provide a framework to use this knowledge to better understand how different symbiosis types result in a gradient of ecosystem effects ranging from massive and durable to those of little ecological consequence.
Collapse
Affiliation(s)
- Diana L Six
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59804, USA.
| |
Collapse
|
12
|
Pec GJ, Simard SW, Cahill JF, Karst J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. MYCORRHIZA 2020; 30:173-183. [PMID: 32088844 DOI: 10.1007/s00572-020-00940-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
For tree seedlings in boreal forests, ectomycorrhizal (EM) fungal networks may promote, while root competition may impede establishment. Thus, disruption to EM fungal networks may decrease seedling establishment owing to the loss of positive interactions among neighbors. Widespread tree mortality can disrupt EM networks, but it is not clear whether seedling establishment will be limited by the loss of positive interactions or increased by the loss of negative interactions with surrounding roots. Depending upon the relative influence of these mechanisms, widespread tree mortality may have complicated consequences on seedling establishment, and in turn, the composition of future forests. To discern between these possible outcomes and the drivers of seedling establishment, we determined the relative importance of EM fungal networks, root presence, and the bulk soil on the establishment of lodgepole pine and white spruce seedlings along a gradient of beetle-induced tree mortality. We manipulated seedling contact with EM fungal networks and roots through the use of mesh-fabric cylinders installed in soils of lodgepole pine forests experiencing a range of overstorey tree mortality caused by mountain pine beetle. Lodgepole pine seedling survival was higher with access to EM fungal networks in undisturbed pine forests in comparison with that in beetle-killed stands. That is, overstorey tree mortality shifted fungal networks from being a benefit to a cost on seedling survival. In contrast, overstorey tree mortality did not change the relative strength of EM fungal networks, root presence and the bulk soil on survival and biomass of white spruce seedlings. Furthermore, the relative influence of EM fungal networks, root presence, and bulk soils on foliar N and P concentrations was highly contingent on seedling species and overstorey tree mortality. Our results highlight that following large-scale insect outbreak, soil-mediated processes can enable differential population growth of two common conifer species, which may result in species replacement in the future.
Collapse
Affiliation(s)
- Gregory J Pec
- Department of Biological Sciences, University of Alberta, B717a, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, 68849, USA.
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre #3601-2424 Main Hall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, B717a, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Justine Karst
- Department of Biological Sciences, University of Alberta, B717a, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
13
|
Beck JL, Cale JA, Rodriguez‐Ramos JC, Kanekar SS, Karst J, Cahill JF, Simard SW, Erbilgin N. Changes in soil fungal communities following anthropogenic disturbance are linked to decreased lodgepole pine seedling performance. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jackson L. Beck
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | - Jonathan A. Cale
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | | | - Sanat S. Kanekar
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | - Justine Karst
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | - James F. Cahill
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Suzanne W. Simard
- Department of Forest & Conservation Sciences University of British Columbia Vancouver BC Canada
| | - Nadir Erbilgin
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| |
Collapse
|
14
|
Ectomycorrhizal fungi of exotic Carya ovata in the context of surrounding native forests on Central European sites. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Structural and Functional Dynamics of Soil Microbes following Spruce Beetle Infestation. Appl Environ Microbiol 2020; 86:AEM.01984-19. [PMID: 31732575 DOI: 10.1128/aem.01984-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/10/2019] [Indexed: 11/20/2022] Open
Abstract
As the range of bark beetles expands into new forests and woodlands, the need to understand their effects on multiple trophic levels becomes increasingly important. To date, much attention has been paid to the aboveground processes affected by bark beetle infestation, with a focus on photoautotrophs and ecosystem level processes. However, indirect effects of bark beetle on belowground processes, especially the structure and function of soil microbiota remains largely a black box. Our study examined the impacts of bark beetle-induced tree mortality on soil microbial community structure and function using high-throughput sequencing of the soil bacterial and fungal communities and measurements of extracellular enzyme activities. The results suggest bark beetle infestation affected edaphic conditions through increased soil water content, pH, electrical conductivity, and carbon/nitrogen ratio and altered bulk and rhizosphere soil microbial community structure and function. Finally, increased enzymatic activity suggests heightened microbial decomposition following bark beetle infestation. With this increase in enzymatic activity, nutrients trapped in organic substrates may become accessible to seedlings and potentially alter the trajectory of forest regeneration. Our results indicate the need for incorporation of microbial processes into ecosystem level models.IMPORTANCE Belowground impacts of bark beetle infestation have not been explored as thoroughly as their aboveground counterparts. In order to accurately model impacts of bark beetle-induced tree mortality on carbon and nutrient cycling and forest regeneration, the intricacies of soil microbial communities must be examined. In this study, we investigated the structure and function of soil bacterial and fungal communities following bark beetle infestation. Our results show bark beetle infestation to impact soil conditions, as well as soil microbial community structure and function.
Collapse
|
16
|
Beng KC, Corlett RT. Identifying the mechanisms that shape fungal community and metacommunity patterns in Yunnan, China. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Zhao S, Erbilgin N. Larger Resin Ducts Are Linked to the Survival of Lodgepole Pine Trees During Mountain Pine Beetle Outbreak. FRONTIERS IN PLANT SCIENCE 2019; 10:1459. [PMID: 31850006 PMCID: PMC6888816 DOI: 10.3389/fpls.2019.01459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/21/2019] [Indexed: 05/29/2023]
Abstract
Periodic mountain pine beetle outbreaks have killed millions of hectares of lodgepole pine forests in western North America. Within these forests some pine trees often remain alive. It has been rarely documented whether anatomical defenses differ between beetle-killed and remaining live pine trees, especially at the northern latitudinal range of beetles in North America. In this study, we compared the resin duct-based anatomical defenses and radial growth between beetle-killed and live residual lodgepole pine trees, and we characterized the resin ducts and the growth of the residual trees before and after outbreak. We found that tree radial growth was not associated with tree survival. The best two predictors of tree survival were resin duct size and production (number per year). Trees having larger but fewer resin ducts showed higher survival probability compared to those with smaller but more abundant resin ducts annually. Residual trees had larger resin ducts prior to the outbreak and continued having so after the outbreak. We further categorized residual trees as healthy (having no signs or symptoms of insect or pathogen attacks), declining (with signs or symptoms of biotic attacks), and survived (from mountain pine beetle attacks during the outbreak) to investigate resin duct-based anatomical defenses among them. Healthy trees had consistently larger resin ducts than declining trees in the past 20 years in post-outbreak stands. Survival trees ranked between healthy and declining trees. Overall, these results demonstrate that resin duct size of lodgepole pine trees can be an important component of tree defenses against mountain pine beetle attacks and suggest that lodgepole pine trees with large resin ducts are likely to show resistance to future bark beetle attacks.
Collapse
|
18
|
Retter A, Nilsson RH, Bourlat SJ. Exploring the taxonomic composition of two fungal communities on the Swedish west coast through metabarcoding. Biodivers Data J 2019; 7:e35332. [PMID: 31871405 PMCID: PMC6739426 DOI: 10.3897/bdj.7.e35332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fungi are heterotrophic, unicellular or filamentous organisms that exhibit a wide range of different lifestyles as, e.g., symbionts, parasites, and saprotrophs. Mycologists have traditionally considered fungi to be a nearly exclusively terrestrial group of organisms, but it is now known that fungi have a significant presence in aquatic environments as well. We know little about most fungi in limnic and marine systems, including aspects of their taxonomy, ecology, and geographic distribution. The present study seeks to improve our knowledge of fungi in the marine environment. The fungal communities of two coastal marine environments of the Kattegat sea, Sweden, were explored with metabarcoding techniques using the nuclear ribosomal internal transcribed spacer 2 (ITS2) metabarcode. Our data add new information to the current picture of fungal community composition in benthic and coastal habitats in Northern Europe. NEW INFORMATION The dataset describes the number of operational taxonomic units (OTUs) and their taxonomic affiliations in two littoral gradients sampled on the Swedish west coast, Gothenburg municipality. Our data include basic diversity indices as well as chemical and edaphic sediment/soil parameters of the sampling sites. From the sites, 3470 and 4315 fungal OTUs, respectively, were recovered. The number of reads were 673,711 and 779,899, respectively, after quality filtering. Within the benthic sites, more than 80% of the sequences could not be classified taxonomically. The phylum composition of the classifiable sequences was dominated in both localities by Dikarya, which made up around 33% of the OTUs. Within Dikarya, Ascomycota was the dominant phylum. Guild assignment failed for more than half of the classifiable OTUs, with undefined saprotrophs being the most common resolved guild. This guild classification was slightly more common in the ocean sediment samples than in the terrestrial ones. Our metadata indicated that ocean sites contain organisms at a lower trophic level and that there are predominantly endophytic, parasitic, and pathogenic fungi in the marine environments. This hints at the presence of interesting and currently poorly understood fungus-driven ecological processes. It is also clear from our results that a very large number of marine fungi are in urgent need of taxonomic study and formal description.
Collapse
Affiliation(s)
- Alice Retter
- University of Vienna, Vienna, AustriaUniversity of ViennaViennaAustria
| | - R. Henrik Nilsson
- University of Gothenburg, Göteborg, SwedenUniversity of GothenburgGöteborgSweden
- Gothenburg Global Biodiversity Centre, Gothenburg, SwedenGothenburg Global Biodiversity CentreGothenburgSweden
| | - Sarah J. Bourlat
- Zoological Research Museum Alexander Koenig, Bonn, GermanyZoological Research Museum Alexander KoenigBonnGermany
| |
Collapse
|
19
|
Ectomycorrhizal Community on Norway Spruce Seedlings Following Bark Beetle Infestation. FORESTS 2019. [DOI: 10.3390/f10090740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ectomycorrhizal (ECM) fungi importantly influence seedling growth, nutrition, and survival and create an extensive mycelial network interconnecting tree species and enabling resource redistribution. Due to their symbiotic relationship with trees, they are impacted by forest disturbances, which are of increasing relevance due to climate change. The effect of disturbance on seedling colonization and their morphology is still largely unknown. Seedling growth parameters and the ECM fungal assemblage on the roots of Norway spruce (Picea abies (L.) H. Karst.) seedlings were assessed in mature spruce forests attacked and destroyed by bark beetle and in a mature non-attacked forest as a reference. We did not detect significant differences in number of ECM species on seedling roots among forest types, but ECM species composition changed; Tylospora fibrillosa (Burt) Donk, Meliniomyces variabilis Hambl. & Sigler, and Phialocephala fortinii C.J.K. Wang & H.E. Wilcox were characteristic species in the forest destroyed by bark beetle, whereas Lactarius, Cortinarius, and Russula were in the mature forest. Forest type further significantly influenced the height, root length, and root collar thickness of seedlings and the proportion of exploration types of mycorrhizae.
Collapse
|
20
|
Pec GJ, Cahill, Jr. JF. Large-scale insect outbreak homogenizes the spatial structure of ectomycorrhizal fungal communities. PeerJ 2019; 7:e6895. [PMID: 31123638 PMCID: PMC6512761 DOI: 10.7717/peerj.6895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Ectomycorrhizal fungi (plant symbionts) are diverse and exist within spatially variable communities that play fundamental roles in the functioning of terrestrial ecosystems. However, the underlying ecological mechanisms that maintain and regulate the spatial structuring of ectomycorrhizal fungal communities are both complex and remain poorly understood. Here, we use a gradient of mountain pine beetle (Dendroctonus ponderosae) induced tree mortality across eleven stands in lodgepole pine (Pinus contorta) forests of western Canada to investigate: (i) the degree to which spatial structure varies within this fungal group, and (ii) how these patterns may be driven by the relative importance of tree mortality from changes in understory plant diversity, productivity and fine root biomass following tree death. We found that the homogeneity of the ectomycorrhizal fungal community increased with increasing tree death, aboveground understory productivity and diversity. Whereas, the independent effect of fine root biomass, which declined along the same gradient of tree mortality, increased the heterogeneity of the ectomycorrhizal fungal community. Together, our results demonstrate that large-scale biotic disturbance homogenizes the spatial patterns of ectomycorrhizal fungal communities.
Collapse
Affiliation(s)
- Gregory J. Pec
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States of America
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
21
|
Response of Soil Surface Respiration to Storm and Ips typographus (L.) Disturbance in Boreal Norway Spruce Stands. FORESTS 2019. [DOI: 10.3390/f10040307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disturbances such as storm events and bark beetle outbreaks can have a major influence on forest soil carbon (C) cycling. Both autotrophic and heterotrophic soil respiration may be affected by the increase in tree mortality. We studied the effect of a storm in 2010 followed by an outbreak of the European spruce bark beetle (Ips typographus L.) on the soil surface respiration (respiration by soil and ground vegetation) at two Norway spruce (Picea abies L.) dominated sites in southeastern Finland. Soil surface respiration, soil temperature, and soil moisture were measured in three types of plots—living trees (undisturbed), storm-felled trees, and standing dead trees killed by I. typographus—during the summer–autumn period for three years (2015–2017). Measurements at storm-felled tree plots were separated into dead tree detritus-covered (under storm-felled trees) and open-vegetated (on open areas) microsites. The soil surface total respiration for 2017 was separated into its autotrophic and heterotrophic components using trenching. The soil surface total respiration rates at the disturbed plots were 64%–82% of those at the living tree plots at one site and were due to a decrease in autotrophic respiration, but there was no clear difference in soil surface total respiration between the plots at the other site, due to shifts in either autotrophic or heterotrophic respiration. The soil surface respiration rates were related to plot basal area (living and all trees), as well as to soil temperature and soil moisture. As storm and bark beetle disturbances are predicted to become more common in the future, their effects on forest ecosystem C cycling and CO2 fluxes will therefore become increasingly important.
Collapse
|
22
|
Abstract
Bark beetle infestation is a widespread phenomenon in temperate forests, which are facing significant weather fluctuations accompanying climate change. Fungi play key roles in forest ecosystems as symbionts of ectomycorrhizal trees, decomposers, or parasites, but the effect of severe disturbances on their communities is largely unknown. The responses of soil fungal communities following bark beetle attack were determined using Illumina sequencing of soil samples from 10 microsites in a mature forest not attacked by bark beetle, a forest attacked by bark beetle, a forest destroyed by bark beetle, and a stand where all trees were removed after a windstorm. The proportion of ITS2 sequences assigned to mycorrhizal fungal species decreased with increased intensity of bark beetle attack (from 70 to 15%), whereas the proportion of saprotrophs increased (from 29 to 77%). Differences in the ectomycorrhizal (ECM) fungal community was further characterized by a decrease in the sequence proportion of Elaphomyces sp. and Russula sp. and an increase in Piloderma sp., Wilcoxina sp., and Thelephora terrestris. Interestingly, the species composition of the ECM fungal community in the forest one year after removing the windstorm-damaged trees was similar to that of the mature forest, despite the sequence proportion attributed to ECM fungi decreased.
Collapse
|
23
|
Chu H, Tang M, Wang H, Wang C. Pinewood nematode infection alters root mycoflora of Pinus tabulaeformis Carr. J Appl Microbiol 2018; 125:554-563. [PMID: 29675985 DOI: 10.1111/jam.13883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
AIMS This study investigates pinewood nematode's impacts on root mycoflora of Pinus tabulaeformis. METHODS AND RESULTS The biomass, colonization rate, community structure and diversity of root-associated fungi were investigated in pinewood nematode-infected and nematode-noninfected P. tabulaeformis. The results indicated that the roots of P. tabulaeformis were colonized highly by root-associated fungi, mainly ectomycorrhizal fungi (ECMF) and dark septate endophytes. Infection of pinewood nematode was associated with a significant (P < 0·05) decrease in root colonization rates by ECMF, dark septate endophytes and total hyphae, as well as in fungal biomass in the roots. Illumina MiSeq sequences of tagged amplicons of 18S rDNA region revealed Basidiomycota (65·70%) and Ascomycota (34·14%) as the dominant root-associated fungi in roots of P. tabulaeformis. Among the detected operational taxonomic units (OTUs), ECMF and dark septate endophytes exhibited a higher relative abundance in trees infected by pinewood nematode compared with noninfected ones. CONCLUSIONS The infection of pinewood nematode altered the composition and OTU abundance of root-associated fungi community in P. tabulaeformis roots with a decrease in the biomass, species richness and diversity of root-associated fungi, as well as in the colonization rates and abundance of ECMF and dark septate endophytes. SIGNIFICANCE AND IMPACT OF THE STUDY This study is an important contribution for better understanding the interaction between pine wilt disease and root-associated fungi.
Collapse
Affiliation(s)
- H Chu
- College of Forestry, Northwest A&F University, Yangling, China.,College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| | - M Tang
- College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - H Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - C Wang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Kohout P, Charvátová M, Štursová M, Mašínová T, Tomšovský M, Baldrian P. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. THE ISME JOURNAL 2018; 12:692-703. [PMID: 29335638 PMCID: PMC5864242 DOI: 10.1038/s41396-017-0027-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Forest management practices often severely affect forest ecosystem functioning. Tree removal by clearcutting is one such practice, producing severe impacts due to the total reduction of primary productivity. Here, we assessed changes to fungal community structure and decomposition activity in the soil, roots and rhizosphere of a Picea abies stand for a 2-year period following clearcutting compared to data from before tree harvest. We found that the termination of photosynthate flow through tree roots into soil is associated with profound changes in soil, both in decomposition processes and fungal community composition. The rhizosphere, representing an active compartment of high enzyme activity and high fungal biomass in the living stand, ceases to exist and starts to resemble bulk soil. Decomposing roots appear to separate from bulk soil and develop into hotspots of decomposition and important fungal biomass pools. We found no support for the involvement of ectomycorrhizal fungi in the decomposition of roots, but we found some evidence that root endophytic fungi may have an important role in the early stages of this process. In soil, activity of extracellular enzymes also decreased in the long term following the end of rhizodeposition by tree roots.
Collapse
Affiliation(s)
- Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 142 20, Praha 4, Czech Republic
- Department of Mycorrhizal Symbiosis, Institute of Botany of the CAS, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Praha 2, Czech Republic
| | - Markéta Charvátová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Michal Tomšovský
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| |
Collapse
|
25
|
Changes of Scots Pine Phyllosphere and Soil Fungal Communities during Outbreaks of Defoliating Insects. FORESTS 2017. [DOI: 10.3390/f8090316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|