1
|
Zhou B, Sterck F, Kruijt B, Fan ZX, Zuidema PA. Diel and seasonal stem growth responses to climatic variation are consistent across species in a subtropical tree community. THE NEW PHYTOLOGIST 2023; 240:2253-2264. [PMID: 37737019 DOI: 10.1111/nph.19275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
Understanding how intra-annual stem growth responds to atmospheric and soil conditions is essential for assessing the effects of climate extremes on forest productivity. In species-poor forests, such understanding can be obtained by studying stem growth of the dominant species. Yet, in species-rich (sub-)tropical forests, it is unclear whether these responses are consistent among species. We monitored intra-annual stem growth with high-resolution dendrometers for 27 trees belonging to 14 species over 5 yr in a montane subtropical forest. We quantified diel and seasonal stem growth patterns, verified to what extent observed growth patterns coincide across species and analysed their main climatic drivers. We found very consistent intra-annual growth patterns across species. Species varied in the rate but little in the timing of growth. Diel growth patterns revealed that - across species - trees mainly grew before dawn when vapour pressure deficit (VPD) was low. Within the year, trees mainly grew between May and August driven by temperature and VPD, but not by soil moisture. Our study reveals highly consistent stem growth patterns and climatic drivers at community level. Further studies are needed to verify whether these results hold across climates and forests, and whether they can be scaled up to estimate forest productivity.
Collapse
Affiliation(s)
- Bo Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Bart Kruijt
- Water Systems and Global Change Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan, 676209, China
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
2
|
Kopecký M, Macek M, Wild J. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143785. [PMID: 33220998 DOI: 10.1016/j.scitotenv.2020.143785] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Soil moisture controls environmental processes and species distributions, but it is difficult to measure and interpolate across space. Topographic Wetness Index (TWI) derived from digital elevation model is therefore often used as a proxy for soil moisture. However, different algorithms can be used to calculate TWI and this potentially affects TWI relationship with soil moisture and species assemblages. To disentangle insufficiently-known effects of different algorithms on TWI relation with soil moisture and plant species composition, we measured the root-zone soil moisture throughout a growing season and recorded vascular plants and bryophytes in 45 temperate forest plots. For each plot, we calculated 26 TWI variants from a LiDAR-based digital terrain model and related these TWI variants to the measured soil moisture and moisture-controlled species assemblages of vascular plants and bryophytes. A flow accumulation algorithm determined the ability of the TWI to predict soil moisture, while the flow width and slope algorithms had only a small effects. The TWI calculated with the most often used single-flow D8 algorithm explained less than half of the variation in soil moisture and species composition explained by the TWI calculated with the multiple-flow FD8 algorithm. Flow dispersion used in the FD8 algorithm strongly affected the TWI performance, and a flow dispersion close to 1.0 resulted in the TWI best related to the soil moisture and species assemblages. Using downslope gradient instead of the local slope gradient can strongly decrease TWI performance. Our results clearly showed that the method used to calculate TWI affects study conclusion. However, TWI calculation is often not specified and thus impossible to reproduce and compare among studies. We therefore provide guidelines for TWI calculation and recommend the FD8 flow algorithm with a flow dispersion close to 1.0, flow width equal to the raster cell size and local slope gradient for TWI calculation.
Collapse
Affiliation(s)
- Martin Kopecký
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Prague 6, Suchdol, Czech Republic.
| | - Martin Macek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Jan Wild
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Prague 6, Suchdol, Czech Republic
| |
Collapse
|
3
|
Hydraulic traits of co-existing conifers do not correlate with local hydroclimate condition: a case study in the northern Rocky Mountains, U.S.A. Oecologia 2020; 197:1049-1062. [PMID: 33025266 DOI: 10.1007/s00442-020-04772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
In this study, we examined the inter- and intra-specific variation of hydraulic traits of three conifers of the Northern Rockies: Pinus ponderosa, Picea engelmannii, and Pseudotsuga menziesii to understand the mechanisms that allow different plant species to co-exist across a watershed. We quantified differences in plant xylem water potential (ψx), xylem tissue vulnerability to cavitation (P50, or ψ causing 50% loss of hydraulic conductivity), and safety margins for co-occurring trees from low and high elevations. We then investigated xylem vulnerability to cavitation with rooting depth. We found that xylem vulnerability to cavitation did not correspond to where tree species were found in the landscape. For example, P. ponderosa grew in more xeric locations, while P. engelmannii were largely confined to more mesic locations, yet P. engelmannii had more negative P50 values. P. menziesii had the lowest P50 value, but displayed little variation in vulnerability to cavitation across the hydroclimatic gradient. These patterns were also reflected in the safety margins; P. menziesii had the widest safety margin, P. engelmannii was intermediate, and P. ponderosa displayed the narrowest safety margin. All three species were also using water sources deeper than 30 cm in depth, allowing them to persist throughout the mid-summer drought. Overall, species-specific hydraulic traits did not necessarily follow a predictable response to the environment; instead, a combination of physiological and morphological traits likely allow trees to persist across a broader hydroclimatic gradient than would be otherwise expected from hydraulic trait measurements alone.
Collapse
|
4
|
Lubenow DR, Reinhardt K. The environmental drivers of annual variation in forest greenness are variable in the northern Intermountain West, USA. Ecosphere 2020. [DOI: 10.1002/ecs2.3212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dayne R. Lubenow
- Department of Biological Sciences Idaho State University 921 S 8th Avenue Pocatello Idaho83209USA
| | - Keith Reinhardt
- Department of Biological Sciences Idaho State University 921 S 8th Avenue Pocatello Idaho83209USA
| |
Collapse
|
5
|
Szejner P, Clute T, Anderson E, Evans MN, Hu J. Reduction in lumen area is associated with the δ 18 O exchange between sugars and source water during cellulose synthesis. THE NEW PHYTOLOGIST 2020; 226:1583-1593. [PMID: 32058599 DOI: 10.1111/nph.16484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
High temporal resolution measurements of wood anatomy and the isotopic composition in tree-rings have the potential to enhance our interpretation of climate variability, but the sources of variation within the growing season are still not well understood. Here we test the response of wood anatomical features in Pinus ponderosa and Pseudotsuga menziesii, including cell-wall thickness (CWT) and lumen area (LA), along with the oxygen isotopic composition of α-cellulose (δ18 Ocell ) to shifts in relative humidity (RH) in two treatments, one from high-low RH and the second one form low-high RH. We observed a significant decrease in LA and a small increase in CWT within the experimental growing season in both treatments. The measured δ18 Ocell along the ring was responsive to RH variations in both treatments. However, estimated δ18 Ocell did not agree with measured δ18 Ocell when the proportion of exchangeable oxygen during cellulose synthesis (Pex ) was kept constant. We found that Pex increased throughout the ring as LA decreased. Based on this varying Pex within an annual ring, we propose a targeted sampling strategy for different hydroclimate signals: earlier season cellulose is a better recorder of RH while late-season cellulose is a better recorder of the source water.
Collapse
Affiliation(s)
- Paul Szejner
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
- Instituto de Geología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Timothy Clute
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Erik Anderson
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael N Evans
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
| | - Jia Hu
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Yano Y, Qubain C, Holyman Z, Jencso K, Hu J. Snowpack influences spatial and temporal soil nitrogen dynamics in a western U.S. montane forested watershed. Ecosphere 2019. [DOI: 10.1002/ecs2.2794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yuriko Yano
- Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana 59717 USA
| | - Claire Qubain
- Department of Ecology Montana State University 310 Lewis Hall Bozeman Montana 59717 USA
| | - Zach Holyman
- Department of Forest Management University of Montana 32 Campus Drive Missoula Montana 59812 USA
| | - Kelsey Jencso
- Department of Forest Management University of Montana 32 Campus Drive Missoula Montana 59812 USA
| | - Jia Hu
- School of Natural Resources and the Environment University of Arizona 1064 East Lowell Street Tucson Arizona 85712 USA
| |
Collapse
|
7
|
Martin J, Looker N, Hoylman Z, Jencso K, Hu J. Differential use of winter precipitation by upper and lower elevation Douglas fir in the Northern Rockies. GLOBAL CHANGE BIOLOGY 2018; 24:5607-5621. [PMID: 30192433 DOI: 10.1111/gcb.14435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
In temperate regions such as the American west, forest trees often exhibit growth sensitivity to climatic conditions of a particular season. For example, annual tree ring growth increments may correlate well with winter precipitation, but not with summer rainfall, suggesting that trees rely more on winter snow than summer rain. Because both the timing and character of seasonal western climate patterns are expected to change considerably over coming decades, variation in the importance of different seasonal moisture sources for trees can be expected to influence how different forest trees respond to climate change as a whole, with shifts in seasonality potentially benefitting some trees while challenging others. In this study, we inferred patterns of tree water use in Douglas fir trees from the Northern Rockies for 2 years using stable water isotopes, while simultaneously quantifying and tracking precipitation inputs to soil moisture across a vertical soil profile. We then coupled water source use with daily measurements of radial growth to demonstrate that soil moisture from winter precipitation accounted for 87.5% and 84% of tree growth at low and high elevations, respectively. We found that prevailing soil moisture conditions drive variation in the depth at which trees access soil water, which in turn determines which seasonal precipitation inputs are available to support tree growth and function. In general, trees at lower elevations relied more on winter precipitation sourced from deep soils while trees at higher elevations made better use of summer rains sourced from near-surface soil layers. As both the timing of seasons and phase of precipitation (rain vs. snow) are likely to change considerably across much of the west, such patterns in tree water use are likely to play a role in determining the evolution of forest composition and structure in a warming climate.
Collapse
Affiliation(s)
- Justin Martin
- Department of Ecology, Montana State University, Bozeman, Montana
| | - Nathaniel Looker
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota
| | - Zachary Hoylman
- Montana Climate Office, University of Montana, Missoula, Montana
| | - Kelsey Jencso
- Montana Climate Office, University of Montana, Missoula, Montana
| | - Jia Hu
- School of Natural Resources and Environment, University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Stem Circadian Phenology of Four Pine Species in Naturally Contrasting Climates from Sky-Island Forests of the Western USA. FORESTS 2018. [DOI: 10.3390/f9070396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Riveros-Iregui DA, Lorenzo TM, Liang LL, Hu J. Summer dry-down modulates the isotopic composition of soil CO2 production in snow-dominated landscapes. PLoS One 2018; 13:e0197471. [PMID: 29746589 PMCID: PMC5945025 DOI: 10.1371/journal.pone.0197471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022] Open
Abstract
In mountainous landscapes, soil moisture is highly dynamic due to the effects of topography and the temporal variability imposed by seasonal precipitation, including rainfall and snow. Soil moisture is known to affect ecosystem carbon exchange both aboveground and belowground, as well as the stable isotopic composition of exchanged CO2. In this study we used an extensive suite of measurements to examine the effects of seasonal changes in soil moisture on the isotopic composition of soil CO2 production at the landscape level. We show that the seasonal decline in soil moisture (i.e., summer dry-down) appeared to impose a trend in the δ13C of soil CO2 production (δP) with more negative δP early in the growing season when soils were wet, and more positive δP as the growing season progressed and soils dried out. This seemingly generalizable pattern for a snow-dominated watershed is likely to represent the variability of recently assimilated C, tracked through the plant-soil system and imprinted in the respired CO2. Thus, our observations suggest that, at least for mountainous environments, seasonal changes in δP are largely mediated by soil moisture and their spatial variability is partially organized by topography.
Collapse
Affiliation(s)
- Diego A. Riveros-Iregui
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Theresa M. Lorenzo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Liyin L. Liang
- School of Science and Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
10
|
Ziaco E, Truettner C, Biondi F, Bullock S. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. PLANT, CELL & ENVIRONMENT 2018; 41:823-836. [PMID: 29361193 DOI: 10.1111/pce.13152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 05/29/2023]
Abstract
Future seasonal dynamics of wood formation in hyperarid environments are still unclear. Although temperature-driven extension of the growing season and increased forest productivity are expected for boreal and temperate biomes under global warming, a similar trend remains questionable in water-limited regions. We monitored cambial activity in a montane stand of ponderosa pine (Pinus ponderosa) from the Mojave Desert for 2 consecutive years (2015-2016) showing opposite-sign anomalies between warm- and cold-season precipitation. After the wet winter/spring of 2016, xylogenesis started 2 months earlier compared to 2015, characterized by abundant monsoonal (July-August) rainfall and hyperarid spring. Tree size did not influence the onset and ending of wood formation, highlighting a predominant climatic control over xylem phenological processes. Moisture conditions in the previous month, in particular soil water content and dew point, were the main drivers of cambial phenology. Latewood formation started roughly at the same time in both years; however, monsoonal precipitation triggered the formation of more false rings and density fluctuations in 2015. Because of uncertainties in future precipitation patterns simulated by global change models for the Southwestern United States, the dependency of P. ponderosa on seasonal moisture implies a greater conservation challenge than for species that respond mostly to temperature conditions.
Collapse
Affiliation(s)
- Emanuele Ziaco
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, 89557, USA
| | - Charles Truettner
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, 89557, USA
| | - Franco Biondi
- DendroLab, Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, 89557, USA
| | - Sarah Bullock
- Desert National Wildlife Refuge, Las Vegas, NV, 89124, USA
| |
Collapse
|