1
|
Mukherjee A, Jodder J, Chowdhury S, Das H, Kundu P. A novel stress-inducible dCas9 system for solanaceous plants. Int J Biol Macromol 2025; 308:142462. [PMID: 40157661 DOI: 10.1016/j.ijbiomac.2025.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Conditional manipulation of gene expression is essential in plant biology, yet a simple stimuli-based inducible system for regulating any plant gene is lacking. Here, we present an innovative stress-inducible CRISPR/dCas9-based gene-regulatory toolkit tailored for intentional gene regulation in solanaceous plants. We have translationally fused the transmembrane domain of a tomato membrane-bound NAC transcription factor with dCas9 to utilize the reversible-tethering-based activation mechanism. This system sequesters dCas9 to the plasma membrane under normal conditions and allows membrane detachment in response to heat induction and NLS-mediated nuclear transfer, enabling stress-inducible gene regulation. Transient assays with tomato codon-optimized dCas9-assisted inducible CRISPR activation and interference systems confirmed their superior ability on transcriptional control, rapid induction, and reversibility after stimulus withdrawal in solanaceous plants. The transformative potential of the toolkit was exemplified by enhancing tomato immunity against bacterial speck disease under elevated temperatures by precisely regulating crucial salicylic acid signalling components, SlCBP60g and SlSARD1. Additionally, it was instrumental in engineering heat-stress tolerance in tomato plants through multiplex activation of heat-responsive transcription factors, SlNAC2 and SlHSFA6b. These findings demonstrate the unprecedented temporal control offered by this novel stress-inducible toolkit over gene-expression dynamics, paving the way for favourable manipulation of complex traits in environmentally-challenged crops.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Jayanti Jodder
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| | - Shreya Chowdhury
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Himadri Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Guo JJ, Gong XW, Hao GY. Leaf Transpirational Cooling and Thermal Tolerance Vary Along the Spectrum of Iso-Anisohydric Stomatal Regulation in Sand-Fixing Shrubs. PLANT, CELL & ENVIRONMENT 2025; 48:2053-2066. [PMID: 39552528 DOI: 10.1111/pce.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Transpirational cooling is crucial for plant thermal regulation to avoid overheating; however, during prolonged and/or acute heat stress it often necessitates stomatal closure to reduce the risk of hydraulic failure due to dehydration. The intricate interplay between thermal regulation, water transport and use may govern plant performance in water-limited and simultaneously heat-stressed environments, yet this remains inadequately understood. Here, in a common garden, we evaluated the functional associations among physiological characteristics related to leaf thermoregulation, heat tolerance, xylem water transport, and stomatal regulation in eight shrub species commonly used for fixing active sand dunes in northern China. Our study showed that traits associated with heat adaptation and xylem hydraulics were closely related to stomatal regulation. More isohydric shrub species with higher water transport efficiency possessed stronger transpirational cooling capacity; whereas the more anisohydric species demonstrated greater tolerance to overheating. Moreover, leaf heat tolerance was strongly coordinated with drought tolerance reflected by leaf turgor loss point. These results underscore the importance of stomatal regulation in shaping plant thermal adaptive strategies and provide valuable insights into the coupling of water and heat-related physiological processes in plants adapted to sandy land environments prone to combined drought and heat stresses.
Collapse
Grants
- The study was supported by National Key R&D Program of China (2023YFF1304201), the National Natural Science Foundation of China (32471827, 32220103010, 32192431, and 31722013), the Major Program of Institute of Applied Ecology, Chinese Academy of Sciences (IAEMP202201), the Liaoning Provincial Science and Technology Major Project (2023JH1/10400001), the China Postdoctoral Science Foundation (2023M733674), the Project of Doctoral Research Startup Fund of Liaoning Province (2023-BS-021), the Youth Startup Fund of Institute of Applied Ecology, Chinese Academy of Sciences, and the Fund of CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences (KLFES-2025).
Collapse
Affiliation(s)
- Jing-Jing Guo
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Territorial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, China
| | - Xue-Wei Gong
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Territorial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Territorial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Winter K, Garcia M, Virgo A. Heat-induced F 0-fluorescence rise is not an indicator of severe tissue necrosis in thermotolerance assays of young and mature leaves of a tropical tree species, Calophyllum inophyllum. PHOTOSYNTHETICA 2025; 63:46-50. [PMID: 40270906 PMCID: PMC12012419 DOI: 10.32615/ps.2025.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/03/2025] [Indexed: 04/25/2025]
Abstract
In heating experiments with leaves, the temperature at which dark-level F0 chlorophyll a fluorescence begins to rise, Tcrit, is widely used as an indicator of photosystem II thermotolerance. However, little is known about how Tcrit correlates with irreversible leaf tissue damage. Young and mature leaves of the tropical tree species Calophyllum inophyllum were heated stepwise from 30 to 55°C, at 1°C min-1. Tcrit was 47°C in young leaves and 49°C in mature leaves. Contrary to the higher Tcrit in mature leaves, heating to 55°C elicited greater tissue damage in mature than in young leaves. Young and mature leaves heated to their respective Tcrit or Tcrit + 2°C exhibited no or little tissue necrosis after 14 d of post-culture. It is concluded that measurements of the temperature-dependent F0 fluorescence rise underestimate the thermal thresholds above which significant irreversible leaf damage occurs.
Collapse
Affiliation(s)
- K. Winter
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - M. Garcia
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - A. Virgo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
4
|
Li C, Ding Z, Cai Z, Ruan Y, Lü P, Liu Y. Exogenous Melatonin Boosts Heat Tolerance in Rosa hybrida via RhCOMT1 Modulation. PLANTS (BASEL, SWITZERLAND) 2024; 14:29. [PMID: 39795289 PMCID: PMC11722804 DOI: 10.3390/plants14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Rosa hybrida is one the most commonly cultivated ornamental plant of economic importance and faces major challenges under heat stress. Melatonin has been widely shown to regulate plant stress response; however, the exact mechanism involved in heat stress in R. hybrida has yet to be determined. Here, we observed that R. hybrida in vitro plantlets supplemented with melatonin in the culture medium exhibited higher chlorophyll content, relative ion leakage, and fresh weight after 12 d of high-temperature treatment; the optimal concentration was established at 5 mg/L. Using molecular and biochemical techniques, we explored the roles of a melatonin synthase gene RhCOMT1, which expression was influenced by heat stress and melatonin. RhCOMT1 was located in the nuclear-cytoplasmic under ambient conditions, while heat stress translocated the distribution of RhCOMT1 to chloroplasts. Overexpression of RhCOMT1 in rose petal enhanced thermotolerance, and silencing of RhCOMT1 reduced thermotolerance via affect H2O2 content and relative ion leakage. These findings collectively emphasize the pivotal role of melatonin in enhancing thermotolerance to R. hybrida by alleviation of oxidative stress, through modulation of RhCOMT1 expression and location.
Collapse
Affiliation(s)
- Chenyang Li
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhiyin Ding
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| | - Zipeng Cai
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| | - Yongying Ruan
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| | - Peitao Lü
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yang Liu
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China; (Z.D.); (Z.C.); (Y.R.)
| |
Collapse
|
5
|
Barrientos-Sanhueza C, Zurita-Silva A, Knipfer T, McElrone AJ, Cuneo IF. Unique root hydraulic and mechanical properties support the resilience of grapevines adapted to the Atacama Desert. PLANT, CELL & ENVIRONMENT 2024; 47:5126-5139. [PMID: 39163322 DOI: 10.1111/pce.15085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
Cortical lacunae caused by drought, especially observed in hybrids originating from Vitis rupestris, disrupt the connection between roots and soil. Yet, the physiological processes behind lacuna formation during drought and its consistency across Vitis species remain unclear. Here, we used a root pressure probe to investigate fine root hydraulic and mechanical properties, in the arid-adapted R-65 and drought-susceptible 101-14Mgt cultivars. We then performed P-V curves, root sap osmolality, and electrolyte leakage (EL) and used fluorescent light microscopy techniques. Only 101-14Mgt showed lacunae formation during drought due to its stiffer cortical tissue, unlike R-65. Lacunae resulted in a notable decline in root hydraulic conductivity during severe drought, with increased EL and root sap osmolality, indicating potential cellular damage. R-65 displayed different and xerophyte-like characteristics featuring a higher turgor loss point and decreased root capacitance, essential for maintaining root structural integrity in arid conditions. Our findings highlight lacuna formation is impacted by root tissue elasticity possibly linked to specific Vitis species favoring deeper rooting. In arid-adapted grapevines, hydraulic regulators such as reduced turgor loss point, and root capacitance could contribute to enhanced drought tolerance.
Collapse
Affiliation(s)
- Cesar Barrientos-Sanhueza
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Zurita-Silva
- Centro de Investigación Intihuasi, Instituto de Investigaciones Agropecuarias INIA, La Serena, Chile
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J McElrone
- USDA-ARS, Davis, California, USA
- Department of Viticulture & Enology, University of California, Davis, California, USA
| | - Italo F Cuneo
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Ahmad A, Sajjad M, Sadau SB, Elasad M, Sun L, Quan Y, Wu A, Boying L, Wei F, Wu H, Chen P, Fu X, Ma L, Wang H, Wei H, Yu S. GhJUB1_3-At positively regulate drought and salt stress tolerance under control of GhHB7, GhRAP2-3 and GhRAV1 in Cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14497. [PMID: 39223909 DOI: 10.1111/ppl.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
Climate change severely affects crop production. Cotton is one of the primary fiber crops in the world and its production is susceptible to various environmental stresses, especially drought and salinity. Development of stress tolerant genotypes is the only way to escape from these environmental constraints. We identified sixteen homologs of the Arabidopsis JUB1 gene in cotton. Expression of GhJUB1_3-At was significantly induced in the temporal expression analysis of GhJUB1 genes in the roots of drought tolerant (H177) and susceptible (S9612) cotton genotypes under drought. The silencing of the GhJUB1_3-At gene alone and together with its paralogue GhJUB1_3-Dt reduced the drought tolerance in cotton plants. The transgenic lines exhibited tolerance to the drought and salt stress as compared to the wildtype (WT). The chlorophyll and relative water contents of wildtype decreased under drought as compared to the transgenic lines. The transgenic lines showed decreased H2O2 and increased proline levels under drought and salt stress, as compared to the WT, indicating that the transgenic lines have drought and salt stress tolerance. The expression analysis of the transgenic lines and WT revealed that GAI was upregulated in the transgenic lines in normal conditions as compared to the WT. Under drought and salt treatment, RAB18 and RD29A were strongly upregulated in the transgenic lines as compared to the WT. Conclusively, GhJUB1_3-At is not an auto activator and it is regulated by the crosstalk of GhHB7, GhRAP2-3 and GhRAV1. GhRAV1, a negative regulator of abiotic stress tolerance and positive regulator of leaf senescence, suppresses the expression of GhJUB1_3-At under severe circumstances leading to plant death.
Collapse
Affiliation(s)
- Adeel Ahmad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, Pakistan
| | - Muhammad Sajjad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Salisu Bello Sadau
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | - Lu Sun
- Handan Academy of Agricultural Sciences, Handan, Hebei, China
| | - Yuewei Quan
- Handan Academy of Agricultural Sciences, Handan, Hebei, China
| | - Aimin Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lian Boying
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Fei Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongmei Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Pengyun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiaokang Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liang Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hantao Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hengling Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Shuxun Yu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization /Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
7
|
Deore P, Tsang Min Ching SJ, Nitschke MR, Rudd D, Brumley DR, Hinde E, Blackall LL, van Oppen MJH. Unique photosynthetic strategies employed by closely related Breviolum minutum strains under rapid short-term cumulative heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4005-4023. [PMID: 38636949 PMCID: PMC11233414 DOI: 10.1093/jxb/erae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.
Collapse
Affiliation(s)
- Pranali Deore
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington 6102, New Zealand
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
8
|
Saini S, Raj K, Saini AK, Kumar R, Saini A, Khan A, Kumar P, Devi G, Bhambhu MK, McKenzie CL, Lal M, Wati L. Unravelling the synergistic interaction of Thrips tabaci and newly recorded, Thrips parvispinus with Alternaria porri (Ellis.) Cif., inciting onion purple blotch. Front Microbiol 2024; 15:1321921. [PMID: 38505553 PMCID: PMC10948439 DOI: 10.3389/fmicb.2024.1321921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Onion purple blotch is the most indispensable foliar disease of crop and has become a major concern for farmers and research fraternity. An attempt to investigate the role of injury in parasitism by Alternaria porri indicated that disease incidence and severity enhance considerably with injury. Thrips injured plants inoculated with A. porri presented 100% incidence and 52-72% severity while mechanically injured plants inoculated with A. porri showed 60-70% incidence and 28-34% severity. The uninjured plants showed considerably less disease incidence (30-40%) and severity (10-16%). Injured inoculated plants presented reduced leaf length and leaf area while the leaf diameter remained unaffected. The lesion number, lesion length and size was substantially enhanced with concomitant infestation of pest and pathogen. Thrips tabaci injury led to more pronounced symptoms of purple blotch compared to Thrips parvispinus injury. There was substantial decrease in photosynthetic rate and chlorophyll content with stress imposed on plant whilst the relative stress injury was enhanced. The induction of injury and inoculation of A. porri had an impact on the concentration of total phenolics, total soluble sugars, total proteins and hydrogen peroxide in onion leaves. A. porri combined with injury caused a more pronounced decrease in total soluble sugars and total protein content while enhancement in total phenolics and hydrogen peroxide content compared to uninjured plants. The dynamic nature of morpho-physiological and biochemical changes owing to stress conditions imposed on onion plant adds an extra layer of complexity in understanding the onion plant physiology and their ability to work out in response to challenging environment conditions.
Collapse
Affiliation(s)
- Shubham Saini
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Kushal Raj
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Anil Kumar Saini
- Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Rakesh Kumar
- Department of Vegetable Science, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Ankit Saini
- Department of Entomology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Aslam Khan
- Department of Entomology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Pankaj Kumar
- Department of Entomology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Geeta Devi
- Department of Entomology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Mukul Kumar Bhambhu
- Department of Nematology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Cindy L. McKenzie
- ARS Horticultural Research Laboratory, USDA, Fort Pierce, FL, United States
| | - Makhan Lal
- Department of Vegetable Science, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Leela Wati
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana, India
| |
Collapse
|
9
|
Lee A, Park HJ, Jo SH, Jung H, Kim HS, Lee HJ, Kim YS, Jung C, Cho HS. The spliceophilin CYP18-2 is mainly involved in the splicing of retained introns under heat stress in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1113-1133. [PMID: 36636802 DOI: 10.1111/jipb.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 05/13/2023]
Abstract
Peptidyl-prolyl isomerase-like 1 (PPIL1) is associated with the human spliceosome complex. However, its function in pre-mRNA splicing remains unclear. In this study, we show that Arabidopsis thaliana CYCLOPHILIN 18-2 (AtCYP18-2), a PPIL1 homolog, plays an essential role in heat tolerance by regulating pre-mRNA splicing. Under heat stress conditions, AtCYP18-2 expression was upregulated in mature plants and GFP-tagged AtCYP18-2 redistributed to nuclear and cytoplasmic puncta. We determined that AtCYP18-2 interacts with several spliceosome complex BACT components in nuclear puncta and is primarily associated with the small nuclear RNAs U5 and U6 in response to heat stress. The AtCYP18-2 loss-of-function allele cyp18-2 engineered by CRISPR/Cas9-mediated gene editing exhibited a hypersensitive phenotype to heat stress relative to the wild type. Moreover, global transcriptome profiling showed that the cyp18-2 mutation affects alternative splicing of heat stress-responsive genes under heat stress conditions, particularly intron retention (IR). The abundance of most intron-containing transcripts of a subset of genes essential for thermotolerance decreased in cyp18-2 compared to the wild type. Furthermore, the intron-containing transcripts of two heat stress-related genes, HEAT SHOCK PROTEIN 101 (HSP101) and HEAT SHOCK FACTOR A2 (HSFA2), produced functional proteins. HSP101-IR-GFP localization was responsive to heat stress, and HSFA2-III-IR interacted with HSF1 and HSP90.1 in plant cells. Our findings reveal that CYP18-2 functions as a splicing factor within the BACT spliceosome complex and is crucial for ensuring the production of adequate levels of alternatively spliced transcripts to enhance thermotolerance.
Collapse
Affiliation(s)
- Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo Bio, Anseong, 17558, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34141, Korea
| |
Collapse
|
10
|
Gong XW, Hao GY. The synergistic effect of hydraulic and thermal impairments accounts for the severe crown damage in Fraxinus mandshurica seedlings following the combined drought-heatwave stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159017. [PMID: 36167124 DOI: 10.1016/j.scitotenv.2022.159017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Drought combined with extreme heatwaves has been increasingly identified as the important trigger of worldwide tree mortality in the context of climate change; nonetheless, our understanding of the potential hydraulic and thermal impairments of hot droughts to trees and the subsequent post-recovery process remains limited. To investigate the response of tree water and carbon relations to drought, heatwave, and combined drought-heatwave stresses, three-year-old potted seedlings of Fraxinus mandshurica Rupr., a dominant tree species in temperate forests of northeast China, were grown under well-watered and drought-stressed conditions and exposed to a rapid, acute heatwave treatment. During the heatwave treatment with a maximum temperature exceeding 40 °C for two days, the leaf temperature of drought-stressed seedlings was, on average, 5 °C higher than that of well-watered counterparts due to less effective evaporative cooling, indicating that soil water availability influenced leaf thermoregulatory capacity during hot extremes. Consistently, more pronounced crown damage, as shown by 13 % irreversible leaf scorch, was found in seedlings under the drought-heatwave treatment relative to sole heatwave treatment, alongside the more severe stem xylem embolism and leaf electrolyte leakage. While the heatwave treatment accelerated the depletion of non-structural carbohydrates in drought-stressed seedlings, the increase of branch soluble sugar concentration in response to heatwave might be related to the requirement for maintaining hydraulic functioning via osmoregulation under high dehydration risk. The coordination between leaf stomatal conductance and total non-structural carbohydrate content during the post-heatwave recovery phase implied that plant-water relations and carbon physiology were closely coupled in coping with hot droughts. This study highlights that, under scenarios of aggravating drought co-occurring with heatwaves, tree seedlings could face a high risk of crown decline in relation to the synergistically increased hydraulic and thermal impairments.
Collapse
Affiliation(s)
- Xue-Wei Gong
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China.
| |
Collapse
|
11
|
Yudina L, Sukhova E, Popova A, Zolin Y, Abasheva K, Grebneva K, Sukhov V. Local action of moderate heating and illumination induces propagation of hyperpolarization electrical signals in wheat plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1062449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Electrical signals (ESs), which are generated in irritated zones of plants and propagate into their non-irritated parts, are hypothesized to be an important mechanism of a plant systemic response on the local action of adverse factors. This hypothesis is supported by influence of ESs on numerous physiological processes including expression of defense genes, production of stress phytohormones, changes in photosynthetic processes and transpiration, stimulation of respiration and others. However, there are several questions, which require solution to support the hypothesis. Particularly, the non-physiological stimuli (e.g., strong heating or burning) are often used for induction of ESs; in contrast, the ES induction under action of physiological stressors with moderate intensities requires additional investigations. Influence of long-term environmental factors on generation and propagation of ESs is also weakly investigated. In the current work, we investigated ESs induced by local action of the moderate heating and illumination in wheat plants under irrigated and drought conditions. It was shown that combination of the moderate heating (40°C) and illumination (blue light, 540 μmol m−2s−1) induced electrical signals which were mainly depolarization electrical signals near the irritation zone and hyperpolarization electrical signals (HESs) on the distance from this zone. The moderate soil drought did not influence HESs; in contrast, the strong soil drought significantly decreased amplitude of HESs. Finally, it was shown that the moderate heating could induce HESs without additional action of illumination. It was hypothesized that both hyperpolarization and depolarization ESs could be caused by the hydraulic wave.
Collapse
|
12
|
Liu J, Liu J, Wang H, Khan A, Xu Y, Hou Y, Wang Y, Zhou Z, Zheng J, Liu F, Cai X. Genome wide identification of GDSL gene family explores a novel GhirGDSL26 gene enhancing drought stress tolerance in cotton. BMC PLANT BIOLOGY 2023; 23:14. [PMID: 36609252 PMCID: PMC9824929 DOI: 10.1186/s12870-022-04001-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Current climate change scenarios are posing greater threats to the growth and development of plants. Thus, significant efforts are required that can mitigate the negative effects of drought on the cotton plant. GDSL esterase/lipases can offer an imperative role in plant development and stress tolerance. However, thesystematic and functional roles of the GDSL gene family, particularly in cotton under water deficit conditions have not yet been explored. RESULTS In this study, 103, 103, 99, 198, 203, 239, 249, and 215 GDSL proteins were identified in eight cotton genomes i.e., Gossypium herbaceum (A1), Gossypium arboretum (A2), Gossypium raimondii (D5), Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium tomentosum (AD3), Gossypium mustelinum (AD4), Gossypium darwinii (AD5), respectively. A total of 198 GDSL genes of Gossypium hirsutum were divided into eleven clades using phylogenetic analysis, and the number of GhirGDSL varied among different clades. The cis-elements analysis showed that GhirGDSL gene expression was mainly related to light, plant hormones, and variable tense environments. Combining the results of transcriptome and RT-qPCR, GhirGDSL26 (Gh_A01G1774), a highly up-regulated gene, was selected for further elucidating its tole in drought stress tolerance via estimating physiological and biochemical parameters. Heterologous expression of the GhirGDSL26 gene in Arabidopsis thaliana resulted in a higher germination and survival rates, longer root lengths, lower ion leakage and induced stress-responsive genes expression under drought stress. This further highlighted that overexpressed plants had a better drought tolerance as compared to the wildtype plants. Moreover, 3, 3'-diaminobenzidine (DAB) and Trypan staining results indicated reduced oxidative damage, less cell membrane damage, and lower ion leakage in overexpressed plants as compared to wild type. Silencing of GhirGDSL26 in cotton via VIGS resulting in a susceptible phenotype, higher MDA and H2O2 contents, lower SOD activity, and proline content. CONCLUSION Our results demonstrated that GhirGDSL26 plays a critical role in cotton drought stress tolerance. Current findings enrich our knowledge of GDSL genes in cotton and provide theoretical guidance and excellent gene resources for improving drought tolerance in cotton.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jiangna Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Heng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aziz Khan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, 530005, Nanning, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
| |
Collapse
|
13
|
Zhu Y, Kuang W, Leng J, Wang X, Qiu L, Kong X, Wang Y, Zhao Q. The apple 14-3-3 gene MdGRF6 negatively regulates salt tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1161539. [PMID: 37077638 PMCID: PMC10106762 DOI: 10.3389/fpls.2023.1161539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
The 14-3-3 (GRF, general regulatory factor) regulatory proteins are highly conserved and are widely distributed throughout the eukaryotes. They are involved in the growth and development of organisms via target protein interactions. Although many plant 14-3-3 proteins were identified in response to stresses, little is known about their involvement in salt tolerance in apples. In our study, nineteen apple 14-3-3 proteins were cloned and identified. The transcript levels of Md14-3-3 genes were either up or down-regulated in response to salinity treatments. Specifically, the transcript level of MdGRF6 (a member of the Md14-3-3 genes family) decreased due to salt stress treatment. The phenotypes of transgenic tobacco lines and wild-type (WT) did not affect plant growth under normal conditions. However, the germination rate and salt tolerance of transgenic tobacco was lower compared to the WT. Transgenic tobacco demonstrated decreased salt tolerance. The transgenic apple calli overexpressing MdGRF6 exhibited greater sensitivity to salt stress compared to the WT plants, whereas the MdGRF6-RNAi transgenic apple calli improved salt stress tolerance. Moreover, the salt stress-related genes (MdSOS2, MdSOS3, MdNHX1, MdATK2/3, MdCBL-1, MdMYB46, MdWRKY30, and MdHB-7) were more strongly down-regulated in MdGRF6-OE transgenic apple calli lines than in the WT when subjected to salt stress treatment. Taken together, these results provide new insights into the roles of 14-3-3 protein MdGRF6 in modulating salt responses in plants.
Collapse
Affiliation(s)
- Yuqing Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Kuang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jun Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xue Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Linlin Qiu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiangyue Kong
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
- *Correspondence: Qiang Zhao, ; Yongzhang Wang,
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
- *Correspondence: Qiang Zhao, ; Yongzhang Wang,
| |
Collapse
|
14
|
Xie C, Yang L, Jia G, Yan K, Zhang S, Yang G, Wu C, Gai Y, Zheng C, Huang J. Maize HEAT UP-REGULATED GENE 1 plays vital roles in heat stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6417-6433. [PMID: 35709944 DOI: 10.1093/jxb/erac262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing temperature is one of the major threats to maize growth and yield globally. Under heat stress conditions, intracellular protein homeostasis is seriously disturbed, leading to accumulation of abnormally folded proteins, especially in the endoplasmic reticulum (ER). Molecular chaperones are vital players in the renaturation process and in preventing protein aggregation. However, heat stress tolerance-associated chaperones are not well documented in maize. Here, we characterized the biological roles of HEAT UP-REGULATED GENE 1 (ZmHUG1) in maize. ZmHUG1 encodes a heat-inducible holdase-type molecular chaperone localized in the ER. Knockout mutant of ZmHUG1 exhibited remarkably enhanced sensitivity to heat stress. Accordingly, the zmhug1 mutant showed severe ER stress under high temperature. MAIZE PRENYLATED RAB ACCEPTOR 1.C1 (ZmPRA1.C1) was identified as a client of ZmHUG1, and heat-induced aggregation of ZmPRA1.C1 was accelerated in the zmhug1 mutant. Furthermore, the expression of ZmHUG1 was rapidly transactivated by ER stress sensor BASIC LEUCINE ZIPPER DOMAIN 60 (bZIP60) when heat stress occurred. This study reveals a ZmHUG1-based thermo-protective mechanism in maize.
Collapse
Affiliation(s)
- Chen Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Liu Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guixian Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yingping Gai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
15
|
Pavlovič A, Jakšová J, Kučerová Z, Špundová M, Rác M, Roudnický P, Mithöfer A. Diethyl ether anesthesia induces transient cytosolic [Ca 2+] increase, heat shock proteins, and heat stress tolerance of photosystem II in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:995001. [PMID: 36172556 PMCID: PMC9511054 DOI: 10.3389/fpls.2022.995001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 05/27/2023]
Abstract
General volatile anesthetic diethyl ether blocks sensation and responsive behavior not only in animals but also in plants. Here, using a combination of RNA-seq and proteomic LC-MS/MS analyses, we investigated the effect of anesthetic diethyl ether on gene expression and downstream consequences in plant Arabidopsis thaliana. Differential expression analyses revealed reprogramming of gene expression under anesthesia: 6,168 genes were upregulated, 6,310 genes were downregulated, while 9,914 genes were not affected in comparison with control plants. On the protein level, out of 5,150 proteins identified, 393 were significantly upregulated and 227 were significantly downregulated. Among the highest significantly downregulated processes in etherized plants were chlorophyll/tetrapyrrole biosynthesis and photosynthesis. However, measurements of chlorophyll a fluorescence did not show inhibition of electron transport through photosystem II. The most significantly upregulated process was the response to heat stress (mainly heat shock proteins, HSPs). Using transgenic A. thaliana expressing APOAEQUORIN, we showed transient increase of cytoplasmic calcium level [Ca2+]cyt in response to diethyl ether application. In addition, cell membrane permeability for ions also increased under anesthesia. The plants pre-treated with diethyl ether, and thus with induced HSPs, had increased tolerance of photosystem II to subsequent heat stress through the process known as cross-tolerance or priming. All these data indicate that diethyl ether anesthesia may partially mimic heat stress in plants through the effect on plasma membrane.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jana Jakšová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Zuzana Kučerová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Marek Rác
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
16
|
Matsui A, Todaka D, Tanaka M, Mizunashi K, Takahashi S, Sunaoshi Y, Tsuboi Y, Ishida J, Bashir K, Kikuchi J, Kusano M, Kobayashi M, Kawaura K, Seki M. Ethanol induces heat tolerance in plants by stimulating unfolded protein response. PLANT MOLECULAR BIOLOGY 2022; 110:131-145. [PMID: 35729482 DOI: 10.1007/s11103-022-01291-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/26/2022] [Indexed: 05/24/2023]
Abstract
Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.
Collapse
Affiliation(s)
- Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Todaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kayoko Mizunashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuji Sunaoshi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Yuuri Tsuboi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Khurram Bashir
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
17
|
Mondal NK, Debnath P. Impact of two commercially available hair dyes on germination, morpho-physiology, and biochemistry of Cicer arietinum L. and cytotoxicity study on Allium cepa L. root tip. ENVIRONMENTAL RESEARCH 2022; 208:112681. [PMID: 35016865 DOI: 10.1016/j.envres.2022.112681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Contamination of agricultural land and surface water by personal care products and pharmaceutical constituents is a potential environmental threat. The active ingredients of personal care products are life-threatening for users. Present work highlighted the efficacy of the different components of two commercially available hair dyes (synthetic and herbal) on germination, morpho-physiological, biochemical parameters of Cicer arietinum, and cytotoxicity study by Allium cepa root tip. Different treatments such as T1 (control), T2 (cream colour rich), T3 (developer) (The ingredients T2 and T3 are from the same hair dye), T4 (an equal mixture of T2 and T3), and T5 (herbal dye) were considered to run this experiment. The results revealed that all the treatments improve germination with respect to control. Moreover, GSI data suggests that T2 showed the highest germination speed and T3 showed the lowest with respect to other treatments. But root lengths are severely affected by the treatments T3 (100% developer of synthetic hair dye), T4 (an equal mixture of T2 (100% cream colour rich) and T3), and T5 (100% herbal hair dye) with respect to control.T2 also showed the highest root tolerance of all treatments other than control. Similarly, one-way ANOVA results revealed that both fresh weight of roots (p ≤ 0.03) and shoots (p ≤ 0.03) are statistically significant among the different treatments. Moreover, both proline and root ion leakage are higher in the treatment T4 and T5 with respect to control, respectively. On the other hand, the cytotoxicity study highlighted that treatments T3 and T4 showed a higher level of aberration and significantly lower mitotic index compared to treatment T5. Therefore, finally, it may be concluded that both individual and combined forms of ingredients of hair dyes are toxic with respect to cell division and overall plant growth and development.
Collapse
Affiliation(s)
- Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, India.
| | - Priyanka Debnath
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, India
| |
Collapse
|
18
|
Shiraku ML, Magwanga RO, Zhang Y, Hou Y, Kirungu JN, Mehari TG, Xu Y, Wang Y, Wang K, Cai X, Zhou Z, Liu F. Late embryogenesis abundant gene LEA3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton. Int J Biol Macromol 2022; 207:700-714. [PMID: 35341886 DOI: 10.1016/j.ijbiomac.2022.03.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Plants have evolved a complex and organized response to abiotic stress that involves physiological and metabolic reprogramming, transcription control, epigenetic regulation, and expressions of thousand interacting genes for instance the late embryogenesis abundant (LEA) proteins are expressed in multiple environmental variables during the plant developmental period, and thus play critical role in enhancing drought and salt stress tolerance. A comprehensive molecular and functional characterization of the LEA3 gene was carried out in cotton under abiotic stress conditions in order to elucidate their functions. Seventy eight genes were identified in cotton, and were clustered into six clades moreover; the LEA genes were more upregulated in the tissues of the tetraploid cotton compared to the diploid type. A key gene, Gh_A08G0694 was the most upregulated, and was knocked in tetraploid cotton, the knocked out significantly increased the susceptibility of cotton plants to salinity and drought stresses, moreover, several ABA/stress-associated genes were down regulated. Similarly, overexpression of the key gene, significantly increased tolerance of the overexpressed plants to drought and salinity stress. The key gene is homologous to GhLEA3 protein, found to have strong interaction to key abiotic stress tolerance genes, voltage-dependent anion channel 1 (VDAC1) and glyceraldehyde-3-phosphate dehydrogenase A (gapA).
Collapse
Affiliation(s)
- Margaret L Shiraku
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China; School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Yuanyuan Zhang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China
| | - Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.
| |
Collapse
|
19
|
Helaly MN, El-Hoseiny HM, Elsheery NI, Kalaji HM, de los Santos-Villalobos S, Wróbel J, Hassan IF, Gaballah MS, Abdelrhman LA, Mira AM, Alam-Eldein SM. 5-Aminolevulinic Acid and 24-Epibrassinolide Improve the Drought Stress Resilience and Productivity of Banana Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:743. [PMID: 35336624 PMCID: PMC8949027 DOI: 10.3390/plants11060743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
Plant growth, development, and productivity are adversely affected under drought conditions. Previous findings indicated that 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBL) play an important role in the plant response to adverse environmental conditions. This study demonstrated the role of ALA and EBL on oxidative stress and photosynthetic capacity of drought-stressed 'Williams' banana grown under the Egyptian semi-arid conditions. Exogenous application of either ALA or EBL at concentrations of 15, 30, and 45 mg·L-1 significantly restored plant photosynthetic activity and increased productivity under reduced irrigation; this was equivalent to 75% of the plant's total water requirements. Both compounds significantly reduced drought-induced oxidative damages by increasing antioxidant enzyme activities (superoxide dismutase 'SOD', catalase 'CAT', and peroxidase 'POD') and preserving chloroplast structure. Lipid peroxidation, electrolyte loss and free non-radical H2O2 formation in the chloroplast were noticeably reduced compared to the control, but chlorophyll content and photosynthetic oxygen evolution were increased. Nutrient uptake, auxin and cytokinin levels were also improved with the reduced abscisic acid levels. The results indicated that ALA and EBL could reduce the accumulation of reactive oxygen species and maintain the stability of the chloroplast membrane structure under drought stress. This study suggests that the use of ALA or EBL at 30 mg·L-1 can promote the growth, productivity and fruit quality of drought-stressed banana plants.
Collapse
Affiliation(s)
- Mohamed N. Helaly
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Hanan M. El-Hoseiny
- Horticulture Department, Faculty of Desert and Environmental Agriculture, Matrouh University, Fouka 51511, Egypt;
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland; or
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al.Hrabska 3, 05-090 Pruszków, Poland
| | | | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology, 71-434 Szczecin, Poland;
| | - Islam F. Hassan
- Water Relations and Field Irrigation Department, Agricultural and Biological Research Institute, National Research Center, Giza 12622, Egypt; (I.F.H.); (M.S.G.)
| | - Maybelle S. Gaballah
- Water Relations and Field Irrigation Department, Agricultural and Biological Research Institute, National Research Center, Giza 12622, Egypt; (I.F.H.); (M.S.G.)
| | - Lamyaa A. Abdelrhman
- Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza 12619, Egypt;
| | - Amany M. Mira
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Shamel M. Alam-Eldein
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
20
|
Jedynak P, Trzebuniak KF, Chowaniec M, Zgłobicki P, Banaś AK, Mysliwa-Kurdziel B. Dynamics of Etiolation Monitored by Seedling Morphology, Carotenoid Composition, Antioxidant Level, and Photoactivity of Protochlorophyllide in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 12:772727. [PMID: 35265091 PMCID: PMC8900029 DOI: 10.3389/fpls.2021.772727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Although etiolated Arabidopsis thaliana seedlings are widely used as a model to study the de-etiolation process, the etiolation itself at the molecular level still needs elucidation. Here, we monitored the etiolation dynamics for wild type A. thaliana seedlings and lutein-deficient (lut2) mutant between 2 and 12 days of their growth in the absence of light. We analyzed the shape of the apex, the growth rate, the carotenoids and protochlorophyllide (Pchlide) accumulation, and the light-dependent protochlorophyllide oxidoreductase (LPOR) transcripts. Differences concerning the apical hook curvature and cotyledon opening among seedlings of the same age were observed, mostly after day 6 of the culture. We categorized the observed apex shapes and presented quantitatively how distribution among the categories changed during 12 days of seedling growth. The Pchlide654/Pchlide633 ratio, corresponding to the amount of the photoactive Pchlide, was the highest in the youngest seedlings, and decreased with their age. LPORA, LPORB, and LPORC transcripts were detected in etiolated seedlings, and their content decreased during seedling growth. Expression of SAG12 or SAG13 senescence markers, depletion in antioxidants, and excess ion leakage were not observed during the etiolation. Lack of lutein in the lut2 mutant resulted in slow Pchlide accumulation and affected other xanthophyll composition.
Collapse
Affiliation(s)
- Pawel Jedynak
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamil Filip Trzebuniak
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Chowaniec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Seydel C, Kitashova A, Fürtauer L, Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13602. [PMID: 34802152 DOI: 10.1111/ppl.13602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates are direct products of photosynthetic CO2 assimilation. Within a changing temperature regime, both photosynthesis and carbohydrate metabolism need tight regulation to prevent irreversible damage of plant tissue and to sustain energy metabolism, growth and development. Due to climate change, plants are and will be exposed to both long-term and short-term temperature changes with increasing amplitude. Particularly sudden fluctuations, which might comprise a large temperature amplitude from low to high temperature, pose a challenge for plants from the cellular to the ecosystem level. A detailed understanding of fundamental regulatory processes, which link photosynthesis and carbohydrate metabolism under such fluctuating environmental conditions, is essential for an estimate of climate change consequences. Further, understanding these processes is important for biotechnological application, breeding and engineering. Environmental light and temperature regimes are sensed by a molecular network that comprises photoreceptors and molecular components of the circadian clock. Photosynthetic efficiency and plant productivity then critically depend on enzymatic regulation and regulatory circuits connecting plant cells with their environment and re-stabilising photosynthetic efficiency and carbohydrate metabolism after temperature-induced deflection. This review summarises and integrates current knowledge about re-stabilisation of photosynthesis and carbohydrate metabolism after perturbation by changing temperature (heat and cold).
Collapse
Affiliation(s)
- Charlotte Seydel
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
22
|
Hoshikawa K, Pham D, Ezura H, Schafleitner R, Nakashima K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:786688. [PMID: 35003175 PMCID: PMC8739973 DOI: 10.3389/fpls.2021.786688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops to future challenges. The global surface temperature is predicted to rise by an average of 0.3°C during the next decade, and the Paris Agreement (Paris Climate Accords) aims to limit global warming to below an average of 2°C, preferably to 1.5°C compared to pre-industrial levels. Even if the goal of the Paris Agreement can be met, the predicted rise in temperatures will increase the likelihood of extreme weather events, including heatwaves, making heat stress (HS) a major global abiotic stress factor for many crops. HS can have adverse effects on plant morphology, physiology, and biochemistry during all stages of vegetative and reproductive development. In fruiting vegetables, even moderate HS reduces fruit set and yields, and high temperatures may result in poor fruit quality. In this review, we emphasize the effects of abiotic stress, especially at high temperatures, on crop plants, such as tomatoes, touching upon key processes determining plant growth and yield. Specifically, we investigated the molecular mechanisms involved in HS tolerance and the challenges of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively improving the heat tolerance of vegetable crops.
Collapse
Affiliation(s)
- Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Vegetable Diversity and Improvement, World Vegetable Center, Tainan, Taiwan
| | - Dung Pham
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
23
|
Abarghuei FM, Etemadi M, Ramezanian A, Esehaghbeygi A, Alizargar J. An Application of Cold Atmospheric Plasma to Enhance Physiological and Biochemical Traits of Basil. PLANTS 2021; 10:plants10102088. [PMID: 34685897 PMCID: PMC8540659 DOI: 10.3390/plants10102088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the effects of dielectric barrier discharge cold atmospheric plasma on the performance of basil (Ocimum basilicum L. cv. Genovese Gigante). Evaluations were carried out on several physiological and biochemical traits, including ion leakage, water relative content, proline and protein accumulation, chlorophyll and carotenoid contents, and antioxidant activity. Before planting, basil seeds were treated by cold atmospheric plasma under voltages of 10, 15, and 20 kV for 10, 20, and 30 min. The ion leakage rate in plants was significantly affected by the interaction between plasma and radiation time. In most treatments, the application of plasma significantly reduced the ion leakage rate. The application of plasma (10 and 20 kV) for 10 min significantly increased the relative water content of basil leaves. The maximum amount of total chlorophyll and carotenoid content occurred after applying plasma for 20 min with 15 kV. Furthermore, 10 and 15 kV treatments of atmospheric cold plasma for 10 min caused a significant increase in antioxidant activity. The highest total flavonoids were obtained after applying 15 kV treatments for 20 min and 20 kV for 30 min, respectively. Cold atmospheric plasma significantly increased the activity of peroxidase as an antioxidant enzyme. Moreover, the minimum and maximum values of microbial load based on logarithm ten were reached after applying 10 kV for 30 min and in the control group, respectively. In general, the results showed that dielectric barrier discharge cold atmospheric plasma could significantly improve basil plants’ physiological and biochemical traits.
Collapse
Affiliation(s)
- Faezeh Mirazimi Abarghuei
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
| | - Ali Esehaghbeygi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| |
Collapse
|
24
|
Effects of Maternal Environment on Seed Germination and Seedling Vigor of Petunia × hybrida under Different Abiotic Stresses. PLANTS 2021; 10:plants10030581. [PMID: 33808598 PMCID: PMC8003445 DOI: 10.3390/plants10030581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023]
Abstract
Seed germination and seedling vigor can be affected by environmental cues experienced by the mother plant. However, information about how the maternal environment affects seed quality is scarce in ornamental plants. This study aimed to investigate the effects of two different maternal environments on the seed germination and seedling vigor of Petunia × hybrida under a variety of abiotic stresses. Petunia mother plants were grown in either a greenhouse during the summer months or an indoor controlled-temperature-and-light environment. Collected seeds were subjected to external stressors, including polyethylene glycol (PEG), sodium chloride (NaCl), high temperature, and abscisic acid (ABA), to determine seed germination percentage and seedling vigor. Results indicated that seeds harvested from the mother plants grown in a controlled environment germinated better than seeds harvested from the mother plants grown in the greenhouse when suboptimal germination conditions were applied. Additionally, the seedlings from the controlled maternal environment performed better in both ABA and salinity stress tests than the greenhouse seedlings. Interestingly, the greenhouse seedlings displayed less reactive oxygen species (ROS) damage and lower electrolyte leakage than the controlled environment seedlings under dehydration stress. The difference in germination and seedling vigor of seeds from the two different maternal environments might be due to the epigenetic memory inherited from the mother plants. This study highlighted the strong impact of the maternal environment on seed germination and seedling vigor in Petunia and may assist in high-quality seed production in ornamental plants.
Collapse
|
25
|
Shiraku ML, Magwanga RO, Cai X, Kirungu JN, Xu Y, Mehari TG, Hou Y, Wang Y, Agong SG, Peng R, Wang K, Zhou Z, Liu F. Functional Characterization of GhACX3 Gene Reveals Its Significant Role in Enhancing Drought and Salt Stress Tolerance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:658755. [PMID: 34447398 PMCID: PMC8382881 DOI: 10.3389/fpls.2021.658755] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/17/2021] [Indexed: 05/03/2023]
Abstract
The acyl-coenzyme A oxidase 3 (ACX3) gene involved in the β-oxidation pathway plays a critical role in plant growth and development as well as stress response. Earlier on, studies focused primarily on the role of β-oxidation limited to fatty acid breakdown. However, ACX3 peroxisomal β-oxidation pathways result in a downstream cascade of events that act as a transduction of biochemical and physiological responses to stress. A role that is yet to be studied extensively. In this study, we identified 20, 18, 22, 23, 20, 11, and 9 proteins in Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum, G. darwinii, G. arboretum, and G. raimondii genomes, respectively. The tetraploid cotton genome had protein ranging between 18 and 22, while diploids had between 9 and 11. After analyzing the gene family evolution or selection pressure, we found that this gene family undergoes purely segmental duplication both in diploids and tetraploids. W-Box (WRKY-binding site), ABRE, CAAT-Box, TATA-box, MYB, MBS, LTR, TGACG, and CGTCA-motif are abiotic stress cis-regulatory elements identified in this gene family. All these are the binding sites for abiotic stress transcription factors, indicating that this gene is essential. Genes found in G. hirsutum showed a clear response to drought and salinity stress, with higher expression under drought and salt stress, particularly in the leaf and root, according to expression analysis. We selected Gh_DO1GO186, one of the highly expressed genes, for functional characterization. We functionally characterized the GhACX3 gene through overexpression and virus-induced gene silencing (VIGS). Overexpression of this gene enhanced tolerance under stress, which was exhibited by the germination assay. The overexpressed seed growth rate was faster relative to control under drought and salt stress conditions. The survival rate was also higher in overexpressed plants relative to control plants under stress. In contrast, the silencing of the GhACX3 gene in cotton plants resulted in plants showing the stress susceptibility phenotype and reduced root length compared to control. Biochemical analysis also demonstrated that GhACX3-silenced plants experienced oxidative stress while the overexpressed plants did not. This study has revealed the importance of the ACX3 family during stress tolerance and can breed stress-resilient cultivar.
Collapse
Affiliation(s)
- Margaret L. Shiraku
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Richard Odongo Magwanga
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Xiaoyan Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Joy Nyangasi Kirungu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Teame Gereziher Mehari
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Stephen Gaya Agong
- School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, China
| | - Kunbo Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Zhongli Zhou,
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Fang Liu,
| |
Collapse
|
26
|
Chávez-Arias CC, Ligarreto-Moreno GA, Ramírez-Godoy A, Restrepo-Díaz H. Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View. FRONTIERS IN PLANT SCIENCE 2021; 12:702841. [PMID: 34367221 PMCID: PMC8341156 DOI: 10.3389/fpls.2021.702841] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 05/10/2023]
Abstract
Maize (Zea mays L.) is one of the main cereals grown around the world. It is used for human and animal nutrition and also as biofuel. However, as a direct consequence of global climate change, increased abiotic and biotic stress events have been reported in different regions of the world, which have become a threat to world maize yields. Drought and heat are environmental stresses that influence the growth, development, and yield processes of maize crops. Plants have developed dynamic responses at the physiological, biochemical, and molecular levels that allow them to escape, avoid and/or tolerate unfavorable environmental conditions. Arthropod herbivory can generate resistance or tolerance responses in plants that are associated with inducible and constitutive defenses. Increases in the frequency and severity of abiotic stress events (drought and heat), as a consequence of climate change, can generate critical variations in plant-insect interactions. However, the behavior of herbivorous arthropods under drought scenarios is not well understood, and this kind of stress may have some positive and negative effects on arthropod populations. The simultaneous appearance of different environmental stresses and biotic factors results in very complex plant responses. In this review, recent information is provided on the physiological, biochemical, and molecular responses of plants to the combination of drought, heat stress, and the effect on some arthropod pests of interest in the maize crop.
Collapse
|
27
|
John SP, Hasenstein KH. Desiccation Mitigates Heat Stress in the Resurrection Fern, Pleopeltis polypodioides. FRONTIERS IN PLANT SCIENCE 2020; 11:597731. [PMID: 33329661 PMCID: PMC7733933 DOI: 10.3389/fpls.2020.597731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/10/2020] [Indexed: 05/13/2023]
Abstract
Although heat and desiccation stresses often coincide, the response to heat especially in desiccation tolerant plants is rarely studied. We subjected hydrated Pleopeltis polypodioides fronds to temperatures up to 50°C and dehydrated fronds up to 65°C for 24 h. The effect of heat stress was evaluated using morphological changes, photosystem (PS) II efficiency, and metabolic indicators. Pinnae of dried fronds exposed to more than 40°C curled tighter and became brittle compared to fronds dried at lower temperatures. Exposure to > 50°C leads to discolored fronds after rehydration. Hydrated fronds turned partially brown at > 35°C. Chlorophyll fluorescence (Ft) and quantum yield (Qy) increased following re-hydration but the recovery process after 40°C treatment lasted longer than at lower temperatures. Similarly, hydrated fronds showed reduced Qy when exposed to > 40°C. Dried and hydrated fronds remained metabolically active up to 40°C. Hydroperoxides and lipid hydroperoxides in dried samples remained high up to 50°C, but decreased in hydrated fronds at > 40°C. Catalase (CAT) and glutathione (GSH) oxidizing activities remained high up to 40°C in dehydrated fronds and up to 35°C in hydrated fronds. Major fatty acids detected in both dehydrated and hydrated fronds included palmitic (C16:0) and stearic (C18:0) acids, oleic (18:1), linoleic (C18:2); and linolenic (C18:3) acids. Linolenic acid was most abundant. In dried fronds, all fatty acids decreased at > 35°C. The combined data indicate that the thermotolerance of dry fronds is about 55°C but is at least 10°C lower for hydrated fronds.
Collapse
|
28
|
Basu PS, Pratap A, Gupta S, Sharma K, Tomar R, Singh NP. Physiological Traits for Shortening Crop Duration and Improving Productivity of Greengram ( Vigna radiata L. Wilczek) Under High Temperature. FRONTIERS IN PLANT SCIENCE 2019; 10:1508. [PMID: 31867025 PMCID: PMC6904351 DOI: 10.3389/fpls.2019.01508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 10/30/2019] [Indexed: 05/10/2023]
Abstract
Greengram is an important protein-rich food legume crop. During the reproductive stage, high temperatures cause flower drop, induce male sterility, impair anthesis, and shortens the grain-filling period. Initially, 116 genotypes were evaluated for 3 years in two locations, and based on flowering, biomass, and yield attributes, they were grouped into four major clusters. A panel of 17 contrasting genotypes was selected for their heat tolerance in high-temperature greenhouses. The seedlings of the selected genotypes were exposed to heat shock in the range 37°C-52°C and their recovery after heat shock was assessed at 30°C. The seedlings of EC 398889 turned completely green and rejuvenated, while those of LGG 460 failed to recover, therefore, EC 398889 and LGG 460 were identified as heat-tolerant and heat-sensitive genotypes, respectively. Except for EC 398889, the remaining genotypes could not survive after heat shock. Fresh seeds of EC 398889 and LGG 460 were planted in field and pollen fertility and sucrose-synthase (SuSy) activity in grains were assessed at high temperatures. The pollen germination and SuSy activity were normal even at temperatures beyond 40°C in EC 398889 and high SuSy activity enabled faster grain filling than in LGG 460. The precise phenotyping demonstrated significant differences in the light-temperature response of photosynthesis, chlorophyll fluorescence imaging of quantum yield (Fv/Fm), and electron transport rate (ETR) between heat-tolerant (EC 398889) and heat-sensitive (LGG 460) genotypes. Molecular profiling of selected accessions showed polymorphism with 11 SSR markers and the markers CEDG147, CEDG247, and CEDG044 distinguished tolerant and sensitive groups of accessions.
Collapse
Affiliation(s)
- Partha Sarathi Basu
- Division of Basic Science, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Aditya Pratap
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Sanjeev Gupta
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Kusum Sharma
- Division of Basic Science, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Rakhi Tomar
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| | - Narendra Pratap Singh
- Division of Crop Improvement, ICAR - Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|