1
|
Bosch M, Franklin-Tong V. Regulating programmed cell death in plant cells: Intracellular acidification plays a pivotal role together with calcium signaling. THE PLANT CELL 2024; 36:4692-4702. [PMID: 39197046 PMCID: PMC11530775 DOI: 10.1093/plcell/koae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Programmed cell death (PCD) occurs in different tissues in response to a number of different signals in plant cells. Drawing from work in several different contexts, including root-cap cell differentiation, plant response to biotic and abiotic stress, and some self-incompatibility (SI) systems, the data suggest that, despite differences, there are underlying commonalities in the early decision-making stages of PCD. Here, we focus on how 2 cellular events, increased [Ca2+]cyt levels and cytosolic acidification, appear to act as early signals involved in regulating both developmental and stimulus-induced PCD in plant cells.
Collapse
Affiliation(s)
- Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Vernonica Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Vorster J, van der Westhuizen W, du Plessis G, Marais D, Sparvoli F, Cominelli E, Camilli E, Ferrari M, Le Donne C, Marconi S, Lisciani S, Losa A, Sala T, Kunert K. In order to lower the antinutritional activity of serine protease inhibitors, we need to understand their role in seed development. FRONTIERS IN PLANT SCIENCE 2023; 14:1252223. [PMID: 37860251 PMCID: PMC10582697 DOI: 10.3389/fpls.2023.1252223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Proteases, including serine proteases, are involved in the entire life cycle of plants. Proteases are controlled by protease inhibitors (PI) to limit any uncontrolled or harmful protease activity. The role of PIs in biotic and abiotic stress tolerance is well documented, however their role in various other plant processes has not been fully elucidated. Seed development is one such area that lack detailed work on the function of PIs despite the fact that this is a key process in the life cycle of the plant. Serine protease inhibitors (SPI) such as the Bowman-Birk inhibitors and Kunitz-type inhibitors, are abundant in legume seeds and act as antinutrients in humans and animals. Their role in seed development is not fully understood and present an interesting research target. Whether lowering the levels and activity of PIs, in order to lower the anti-nutrient levels in seed will affect the development of viable seed, remains an important question. Studies on the function of SPI in seed development are therefore required. In this Perspective paper, we provide an overview on the current knowledge of seed storage proteins, their degradation as well as on the serine protease-SPI system in seeds and what is known about the consequences when this system is modified. We discuss areas that require investigation. This includes the identification of seed specific SPIs; screening of germplasms, to identify plants with low seed inhibitor content, establishing serine protease-SPI ratios and lastly a focus on molecular techniques that can be used to modify seed SPI activity.
Collapse
Affiliation(s)
- Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Willem van der Westhuizen
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Gedion du Plessis
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Diana Marais
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Mishra LS, Kim S, Caddell DF, Coleman‐Derr D, Funk C. Loss of Arabidopsis matrix metalloproteinase-5 affects root development and root bacterial communities during drought stress. PHYSIOLOGIA PLANTARUM 2021; 172:1045-1058. [PMID: 33616955 PMCID: PMC8247326 DOI: 10.1111/ppl.13299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 05/30/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endo-peptidases that in mammals are known to be involved in remodeling the extracellular matrix (ECM) in developmental and pathological processes. In this study, we report At5-MMP of Arabidopsis thaliana to be important for root development and root bacterial communities. At5-MMP is mainly localized in the root vasculature and lateral root, an At5-MMP T-DNA insertion mutant (mmp5 KO) showed reduced root growth and a lower number of root apexes, causing reduced water uptake from the soil. Subsequently, mmp5 KO is sensitive to drought stress. Inhibited auxin transport was accompanied with resistance to indole-3-acetic acid (IAA), 2, 4-dichlorophenoxyacetic acid (2, 4-D), and 1-naphthaleneacetic acid (NAA). The content of endogenous abscisic acid (ABA) was lower in roots of mmp5 KO than in wild type. Genes responsive to ABA as well as genes encoding enzymes of the proline biosynthesis were expressed to a lower extent in mmp5 KO than in wild type. Moreover, drought stress modulated root-associated bacterial communities of mmp5 KO: the number of Actinobacteria increased. Therefore, At5-MMP modulates auxin/ABA signaling rendering the plant sensitive to drought stress and recruiting differential root bacterial communities.
Collapse
Affiliation(s)
| | - Sung‐Yong Kim
- Department of ChemistryUmeå UniversityUmeåSweden
- Department of Plant BreedingSwedish University of Agricultural SciencesUppsalaSweden
| | - Daniel F. Caddell
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Agriculture‐Agricultural Research ServicePlant Gene Expression CenterAlbanyCaliforniaUSA
| | - Devin Coleman‐Derr
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Agriculture‐Agricultural Research ServicePlant Gene Expression CenterAlbanyCaliforniaUSA
| | | |
Collapse
|
4
|
Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. BIOLOGY 2021; 10:167. [PMID: 33672235 PMCID: PMC7926383 DOI: 10.3390/biology10020167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph-angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The "default" VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.
Collapse
Affiliation(s)
- Jaana Künnapuu
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Honey Bokharaie
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Michael Jeltsch
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
| |
Collapse
|
5
|
Atkinson N, Mao Y, Chan KX, McCormick AJ. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts. Nat Commun 2020; 11:6303. [PMID: 33298923 PMCID: PMC7726157 DOI: 10.1038/s41467-020-20132-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Photosynthetic CO2 fixation in plants is limited by the inefficiency of the CO2-assimilating enzyme Rubisco. In most eukaryotic algae, Rubisco aggregates within a microcompartment known as the pyrenoid, in association with a CO2-concentrating mechanism that improves photosynthetic operating efficiency under conditions of low inorganic carbon. Recent work has shown that the pyrenoid matrix is a phase-separated, liquid-like condensate. In the alga Chlamydomonas reinhardtii, condensation is mediated by two components: Rubisco and the linker protein EPYC1 (Essential Pyrenoid Component 1). Here, we show that expression of mature EPYC1 and a plant-algal hybrid Rubisco leads to spontaneous condensation of Rubisco into a single phase-separated compartment in Arabidopsis chloroplasts, with liquid-like properties similar to a pyrenoid matrix. This work represents a significant initial step towards enhancing photosynthesis in higher plants by introducing an algal CO2-concentrating mechanism, which is predicted to significantly increase the efficiency of photosynthetic CO2 uptake.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Kher Xing Chan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
6
|
Muszyńska E, Labudda M. Effects of lead, cadmium and zinc on protein changes in Silene vulgaris shoots cultured in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111086. [PMID: 32781345 DOI: 10.1016/j.ecoenv.2020.111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In the present research, Silene vulgaris as a representative species growing on both unpolluted and heavy metal (HM) polluted terrains were used to identify ecotype-specific responses to metallic stress. Growth, cell ultrastructure and element accumulations were compared between non-metallicolous (NM), calamine (CAL) and serpentine (SER) specimens untreated with HMs and treated with Pb, Cd and Zn ions under in vitro conditions. Moreover, proteins' modifications related to their level, carbonylation and degradations via vacuolar proteases were verified and linked with potential mechanisms to cope with ions toxicity. Our experiment revealed diversified strategy of HM uptake in NM and both metallicolous ecotypes, in which antagonistic relationship of Zn and Pb/Cd ions provided survival benefits for the whole organism. Despite this similarity, growth rate and metabolic pathways induced in CAL and SER shoots varied significantly. Exposition to HMs in CAL culture led to drop in protein level by approximately 16% compared to the control. This parameter nearly correlated with the enhanced activity of proteases at pH 5.2 as well as possible glutamate changes to proline and reduced glutathione, resulting in intensified growth and first signs of cell senescence. In turn, SER shoots were characterized by growth retardation (to 53% of the control), although protein level and carbonylation were not modified, while a deeper insight into protein network showed its remodeling towards production of polyamines and 2-oxoglutarate delivered to the Krebs cycle. Contrary, an uncontrolled HM influx in NM shoots contributed to morpho-structural disorders accompanied by an increase activity of proteases involved in the degradation of oxidized proteins, what pointed to metal-induced autophagy. Taken together, S. vulgaris ecotypes respond to stress by triggering various mechanisms engaged their survival and/or death under HM treatment.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| |
Collapse
|
7
|
Mata MT, Palma A, García-Gómez C, López-Parages M, Vázquez V, Cheng-Sánchez I, Sarabia F, López-Figueroa F, Jiménez C, Segovia M. Type II-Metacaspases are involved in cell stress but not in cell death in the unicellular green alga Dunaliella tertiolecta. MICROBIAL CELL 2019; 6:494-508. [PMID: 31799323 PMCID: PMC6859423 DOI: 10.15698/mic2019.11.696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ultraviolet radiation (UVR; 280–400 nm) has a great impact on aquatic ecosystems by affecting ecophysiological and biogeochemical processes as a consequence of the global change scenario generated by anthropogenic activities. We studied the effect of PAR (P)+UVA (A)+UVB (B) i.e. PAB, on the molecular physiology of the unicellular green alga Dunaliella tertiolecta for six days. We assessed the relationship between the triggered UVR stress response and metacaspases and caspase-like (CL)activities, which are proteases denoted to participate in cell death (CD) in phytoplankton. UVR inhibited cell growth and in vivo chlorophyll a fluorescence but did not cause cell death. Western blot analyses reflected that Type-II metacaspases (MCs) are present and appear to be involved in UVR induced-cell stress but not in dark-induced CD in D. tertiolecta. Enzyme kinetics revealed that cleavage of the MCs-reporter substrates RVRR, QRR, GRR, LKR, HEK, and VLK was 10-fold higher than WEHD, DEVD, IETD, and LETD CLs-substrates. The lowest apparent Michaelis-Menten constants (KMap) corresponded to RVRRase (37.5 μM) indicating a high affinity by the RVRR substrate. The inhibition of enzymatic activities by using inhibitors with different target sites for hydrolyses demonstrated that from all of the R/ Kase activities only RVRRase was a potential candidate for being a metacaspase. In parallel, zymograms and peptide-mass fingerprinting analyses revealed the identities of such Rase activities suggesting an indirect evidence of possible natural physiological substrates of MCs. We present evidence of type II-MCs not being involved in CD in D. tertiolecta, but rather in survival strategies under the stressful irradiance conditions applied in this study.
Collapse
Affiliation(s)
- M Teresa Mata
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain.,Present address: Antofagasta Bioinnovation Center (CBIA), Department of Biotechnology, Faculty of Marine Sciences and Biological Resources. University of Antofagasta, Antofagasta, Chile
| | - Armando Palma
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| | - Candela García-Gómez
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain.,Present address: Spanish Oceanographic Institute, Puerto Pesquero, 29640-Fuengirola, Málaga, Spain
| | - María López-Parages
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| | - Víctor Vázquez
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| | - Iván Cheng-Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| | - Félix López-Figueroa
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| | - Carlos Jiménez
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| | - María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Blvd. Louis Pasteur s / n, 29071-Málaga, Spain
| |
Collapse
|
8
|
Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2965-2978. [PMID: 30753698 DOI: 10.1093/jxb/ery464] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.
Collapse
Affiliation(s)
- Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
9
|
Stael S, Van Breusegem F, Gevaert K, Nowack MK. Plant proteases and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1991-1995. [PMID: 31222306 PMCID: PMC6460956 DOI: 10.1093/jxb/erz126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
10
|
Liu H, Hu M, Wang Q, Cheng L, Zhang Z. Role of Papain-Like Cysteine Proteases in Plant Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1717. [PMID: 30564252 PMCID: PMC6288466 DOI: 10.3389/fpls.2018.01717] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Papain-like cysteine proteases (PLCP) are prominent peptidases found in most living organisms. In plants, PLCPs was divided into nine subgroups based on functional and structural characterization. They are key enzymes in protein proteolysis and involved in numerous physiological processes. In this paper, we reviewed the updated achievements of physiological roles of plant PLCPs in germination, development, senescence, immunity, and stress responses.
Collapse
Affiliation(s)
- Huijuan Liu
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Menghui Hu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qi Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
- *Correspondence: Zaibao Zhang,
| |
Collapse
|