1
|
Boussardon C, Simon M, Carrie C, Fuszard M, Meyer EH, Budar F, Keech O. The atypical proteome of mitochondria from mature pollen grains. Curr Biol 2025; 35:776-787.e5. [PMID: 39879974 DOI: 10.1016/j.cub.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
To propagate their genetic material, flowering plants rely on the production of large amounts of pollen grains that are capable of germinating on a compatible stigma. Pollen germination and pollen tube growth are thought to be extremely energy-demanding processes. This raises the question of whether mitochondria from pollen grains are specifically tuned to support this developmental process. To address this question, we isolated mitochondria from both mature pollen and floral buds using the isolation of mitochondria tagged in specific cell-type (IMTACT) strategy and examined their respective proteomes. Strikingly, mitochondria from mature pollen grains have lost many proteins required for genome maintenance, gene expression, and translation. Conversely, a significant accumulation of proteins associated with the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and Ca2+ homeostasis was observed. This supports the current model in which pollen requires large quantities of ATP for tube growth but also identifies an unexpected depletion of the gene expression machinery, aligned with the fact that the mitochondrial genome is actively degraded during pollen maturation. Altogether, our results uncover that mitochondria from mature pollen grains are strategically prepared for action by increasing their respiratory capacity and dismantling their gene expression machinery, which raises new questions about the assembly of respiratory complexes in pollen mitochondria, as they rely on the integration of proteins coded by the nuclear and mitochondrial genomes. In addition, the approach described here opens a new range of possibilities for studying mitochondria during pollen development and in pollen-specific mitochondrial events.
Collapse
Affiliation(s)
- Clément Boussardon
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden
| | - Matthieu Simon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Chris Carrie
- School of Biological Sciences, University of Auckland, 3 Symonds St., Auckland 1142, New Zealand
| | - Matthew Fuszard
- Core Facility - Proteomic mass Spectrometry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle (Saale), Germany
| | - Etienne H Meyer
- Department of Plant Physiology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany.
| | - Françoise Budar
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
2
|
Li W, Jia B, Sheng J, Shen Y, Jin J, Sun X, Liu X, Sun M. Genome-Wide Identification and Expression Profiling Analysis of the Mitochondrial Calcium Uniporter Gene Family Under Abiotic Stresses in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3176. [PMID: 39599385 PMCID: PMC11598098 DOI: 10.3390/plants13223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The mitochondrial calcium uniporters (MCUs) are a family of calcium unidirectional transporters important for cytoplasmic Ca2+ signals. Though the MCU proteins in several plant species have been investigated, genome-wide analysis of MCUs in alfalfa is lacking. Here, via genome-wide analysis, a total of 5, 20, and 6 MCU genes were identified in three different alfalfa cultivars, namely Medicago truncatula Jemalong A17, Medicago sativa XinJiangDaYe, and M. sativa Zhongmu No. 1, respectively. They were further phylogenetically classified into three subfamilies. Most MCU genes have only one intron, and gene duplication events of MCU genes were observed within each alfalfa accession and between different accessions. All alfalfa MCU proteins contained a highly conserved MCU domain and 10 conserved motifs, featuring two transmembrane domains and a DI/VME motif. According to the tissue expression data of M. sativa Zhongmu No. 1, MsMCU6.2 was the most abundant transcript with the highest expression in the leaf, and MsMCU5 and MsMCU1.2 showed higher expression levels in the stem than other tissues. We analyzed the expression profiles of five MCU genes (MsMCU1.1/1.2/5/6.1/6.2) under salt, drought, and cold stresses via qRT-PCR assays. All five MCU genes were induced by drought stress, except MsMCU5, whose expression was up-regulated by salt stress, while cold stress slightly altered MsMCU expression. Nine potential interacting proteins and three miRNAs targeting MtMCUs were predicted. These results provide detailed knowledge of alfalfa MCU genes and suggest their potential functions in abiotic stress response.
Collapse
Affiliation(s)
- Wanhong Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Jiaxun Sheng
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Jun Jin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Xiangping Liu
- Grassland Science Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Hu S, Wang C, Zhang R, Gao Y, Li K, Shen J. Optimizing pollen germination and subcellular dynamics in pollen tube of Torreya grandis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112227. [PMID: 39173887 DOI: 10.1016/j.plantsci.2024.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Torreya grandis, a dioecious Taxaceae species of significant economic value in southeast China, presents challenges for natural pollination due to asynchronous maturation of its sex organs and low pollen vitality. In order to enhance fertilization success through artificial pollination of T. grandis, this study investigated the optimal conditions for in vitro pollen germination and pollen tube growth of T. grandis. The optimal in vitro growth medium was found to contain 29 mM sucrose, 0.8 mM H3BO3, 0.72 mM CaCl2, and 0.32 mM MgSO4, supplemented with 4 μM NAA, 2 μM GA3, and 5 μM 2,4-D at pH=5.6. Under these conditions, we achieved a maximum pollen germination ratio of 69.99 ± 5.17 % and a pollen tube length of 34.38 ± 6.04 µm after 6 days germination at 28°C. FM4-64 dye and Mitotracker Red staining revealed highly dynamics of vesicles and mitochondria during germination, which were accumulated at the tip of pollen tube and exhibited biphasic movement patterns. The total number, motion rate, and movement velocity of vesicles as well as mitochondria showed an initially increase followed by a gradual decrease pattern. The presence of sucrose in the medium significantly increased the dynamics and metabolic activity of both vesicles and mitochondria, which may relate with higher pollen germination ratio and faster pollen tube growth compared to sucrose-depleted conditions. Thus, these findings shed light on the physiological characteristics of Torreya pollen germination and provide scientific information for improving Torreya fruit yield through artificial pollination.
Collapse
Affiliation(s)
- Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengqiao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China; SFGA Research Center for Torreya Grandis, Hangzhou 311300, China
| | - Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Keyu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
4
|
Gutiérrez-Mireles ER, Páez-Franco JC, Rodríguez-Ruíz R, Germán-Acacio JM, López-Aquino MC, Gutiérrez-Aguilar M. An Arabidopsis mutant line lacking the mitochondrial calcium transport regulator MICU shows an altered metabolite profile. PLANT SIGNALING & BEHAVIOR 2023; 18:2271799. [PMID: 37879964 PMCID: PMC10601504 DOI: 10.1080/15592324.2023.2271799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Plant metabolism is constantly changing and requires input signals for efficient regulation. The mitochondrial calcium uniporter (MCU) couples organellar and cytoplasmic calcium oscillations leading to oxidative metabolism regulation in a vast array of species. In Arabidopsis thaliana, genetic deletion of AtMICU leads to altered mitochondrial calcium handling and ultrastructure. Here we aimed to further assess the consequences upon genetic deletion of AtMICU. Our results confirm that AtMICU safeguards intracellular calcium transport associated with carbohydrate, amino acid, and phytol metabolism modifications. The implications of such alterations are discussed.
Collapse
Affiliation(s)
- Emilia R. Gutiérrez-Mireles
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Carlos Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Raúl Rodríguez-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Manuel Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M. Casandra López-Aquino
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
Corti F, Festa M, Stein F, Stevanato P, Siroka J, Navazio L, Vothknecht UC, Alboresi A, Novák O, Formentin E, Szabò I. Comparative analysis of wild-type and chloroplast MCU-deficient plants reveals multiple consequences of chloroplast calcium handling under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1228060. [PMID: 37692417 PMCID: PMC10485843 DOI: 10.3389/fpls.2023.1228060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023]
Abstract
Introduction Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.
Collapse
Affiliation(s)
| | | | - Frank Stein
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Jitka Siroka
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ute C. Vothknecht
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
6
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
7
|
Genome-wide transcriptome analysis of the orphan crop tef (Eragrostis tef (Zucc.) Trotter) under long-term low calcium stress. Sci Rep 2022; 12:19552. [PMID: 36380130 PMCID: PMC9666473 DOI: 10.1038/s41598-022-23844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca2+) is one of the essential mineral nutrients for plant growth and development. However, the effects of long-term Ca2+ deficiency in orphan crops such as Tef [(Eragrostis tef) (Zucc.) Trotter], which accumulate high levels of Ca in the grains, remained unknown. Tef is a staple crop for nearly 70 million people in East Africa, particularly in Ethiopia and Eritrea. It is one of the most nutrient-dense grains, and is also more resistant to marginal soils and climatic conditions than main cereals like corn, wheat, and rice. In this study, tef plants were grown in a hydroponic solution containing optimum (1 mM) or low (0.01 mM) Ca2+, and plant growth parameters and whole-genome transcriptome were analyzed. Ca+2-deficient plants exhibited leaf necrosis, leaf curling, and growth stunting symptoms. Ca2+ deficiency significantly decreased root and shoot Ca, potassium (K), and copper content in both root and shoots. At the same time, it greatly increased root iron (Fe) content, suggesting the role of Ca2+ in the uptake and/or translocation of these minerals. Transcriptomic analysis using RNA-seq revealed that members of Ca2+ channels, including the cyclic nucleotide-gated channels and glutamate receptor-like channels, Ca2+-transporters, Ca2+-binding proteins and Ca2+-dependent protein kinases were differentially regulated by Ca+2 treatment. Moreover, several Fe/metal transporters, including members of vacuolar Fe transporters, yellow stripe-like, natural resistance-associated macrophage protein, and oligo-peptide transporters, were differentially regulated between shoot and root in response to Ca2+ treatment. Taken together, our findings suggest that Ca2+ deficiency affects plant growth and mineral accumulation by regulating the transcriptomes of several transporters and signaling genes.
Collapse
|
8
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|
9
|
Fu S, Yang Y, Wang P, Ying Z, Xu W, Zhou Z. Comparative transcriptomic analysis of normal and abnormal in vitro flowers in Cymbidium nanulum Y. S. Wu et S. C. Chen identifies differentially expressed genes and candidate genes involved in flower formation. FRONTIERS IN PLANT SCIENCE 2022; 13:1007913. [PMID: 36352857 PMCID: PMC9638074 DOI: 10.3389/fpls.2022.1007913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
It is beneficial for breeding and boosting the flower value of ornamental plants such as orchids, which can take several years of growth before blooming. Over the past few years, in vitro flowering of Cymbidium nanulum Y. S. Wu et S. C. Chen has been successfully induced; nevertheless, the production of many abnormal flowers has considerably limited the efficiency of this technique. We carried out transcriptomic analysis between normal and abnormal in vitro flowers, each with four organs, to investigate key genes and differentially expressed genes (DEGs) and to gain a comprehensive perspective on the formation of abnormal flowers. Thirty-six DEGs significantly enriched in plant hormone signal transduction, and photosynthesis-antenna proteins pathways were identified as key genes. Their broad upregulation and several altered transcription factors (TFs), including 11 MADS-box genes, may contribute to the deformity of in vitro flowers. By the use of weighted geneco-expression network analysis (WGCNA), three hub genes, including one unknown gene, mitochondrial calcium uniporter (MCU) and harpin-induced gene 1/nonrace-specific disease resistance gene 1 (NDR1/HIN1-Like) were identified that might play important roles in floral organ formation. The data presented in our study may serve as a comprehensive resource for understanding the regulatory mechanisms underlying flower and floral organ formation of C. nanulum Y. S. Wu et S. C. Chen in vitro.
Collapse
|
10
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
11
|
Ocampo-Hernández B, Gutiérrez Mireles ER, Gutiérrez-Aguilar M. Morphology and permeability transitions in plant mitochondria: Different aspects of the same event? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148586. [PMID: 35772521 DOI: 10.1016/j.bbabio.2022.148586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plant mitochondria are sensitive organelles affected by changing environmental stressors. Upon heat shock or the presence of reactive oxygen species, plant mitochondria undergo in vivo morphological derangements associated with the extensively characterized opening of the mitochondrial permeability transition pore. Nevertheless, the classic mitochondrial permeability transition is known to be triggered by calcium overload causing mitochondrial swelling and dysfunction. Here we review evidence concerning calcium handling, permeability transition and mitochondrial impairments in plants, supporting the notion that the mitochondrial morphology transition is an in vivo indicator of the permeability transition.
Collapse
Affiliation(s)
- Bryan Ocampo-Hernández
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México City, México
| | - Emilia R Gutiérrez Mireles
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México City, México
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México City, México.
| |
Collapse
|
12
|
Li J, Sun M, Liu Y, Sun X, Yin K. Genome-Wide Identification of Wild Soybean Mitochondrial Calcium Uniporter Family Genes and Their Responses to Cold and Carbonate Alkaline Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:867503. [PMID: 35592573 PMCID: PMC9111538 DOI: 10.3389/fpls.2022.867503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The mitochondrial calcium uniporter (MCU), as an important component of the Ca2+ channel uniporter complex, plays a regulatory role in intracellular Ca2+ signal transduction. However, only a few studies to date have investigated plant MCU genes. In this study, we identified the MCU family genes in wild soybean and investigated their expression under cold and carbonate alkaline stresses. Eleven Glycine soja MCU genes (GsMCUs) were identified and clustered into two subgroups (subgroups I and II), and subgroup II could be further divided into two branches (MCU5 and MCU6). A total of 21 pairs of GsMCUs were characterized as duplicated genes, and displayed a similar exon-intron architecture. All GsMCU proteins contained one conserved MCU domain, within which two transmembrane domains were found. An analysis of the conserved motifs further supported that the GsMCUs showed high conservation in protein sequence and structure. Moreover, we found that all GsMCUs were expressed ubiquitously in different tissues and organs, and GsMCUs from the same subgroup displayed varied tissue expression profiles. In addition, based on RNA-seq and qRT-PCR assays, six and nine GsMCUs were differentially expressed under cold and carbonate alkaline stress, respectively. Promoter analysis also uncovered the existence of two canonical cold-related cis-acting elements, LTR and DRE/CRT, as well as stress-related phytohormone-responsive elements. Our results provide valuable information about the MCU family in soybean responses to cold and carbonate alkaline stress, which will be helpful in further characterizing their biological roles in response to abiotic stress.
Collapse
Affiliation(s)
- Jianwei Li
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yu Liu
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
13
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
14
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
15
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
16
|
Yang H, You C, Yang S, Zhang Y, Yang F, Li X, Chen N, Luo Y, Hu X. The Role of Calcium/Calcium-Dependent Protein Kinases Signal Pathway in Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:633293. [PMID: 33767718 PMCID: PMC7985351 DOI: 10.3389/fpls.2021.633293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 05/21/2023]
Abstract
Pollen tube (PT) growth as a key step for successful fertilization is essential for angiosperm survival and especially vital for grain yield in cereals. The process of PT growth is regulated by many complex and delicate signaling pathways. Among them, the calcium/calcium-dependent protein kinases (Ca2+/CPKs) signal pathway has become one research focus, as Ca2+ ion is a well-known essential signal molecule for PT growth, which can be instantly sensed and transduced by CPKs to control myriad biological processes. In this review, we summarize the recent progress in understanding the Ca2+/CPKs signal pathway governing PT growth. We also discuss how this pathway regulates PT growth and how reactive oxygen species (ROS) and cyclic nucleotide are integrated by Ca2+ signaling networks.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chen You
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Shaoyu Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yuping Zhang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fan Yang
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - Xue Li
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Ning Chen
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Luo
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Gutiérrez-Aguilar M. Mitochondrial calcium transport and permeability transition as rational targets for plant protection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148288. [PMID: 32800781 DOI: 10.1016/j.bbabio.2020.148288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition (MPT) is a death-inducing mechanism that collapses electrochemical gradients across inner mitochondrial membranes. Several studies in model plants have detailed potential MPT-dependent cell death upon abiotic stress in response to heat shock, ultraviolet radiation, heavy metal toxicity and waterlogging. However, the molecular specifics of the MPT and its possible role on plant cell death remain controversial. This review addresses previous and recent developments on the role(s) of the MPT in plants. Considering these advances, MPT targeting can constitute a plausible strategy to ameliorate cell death in plants upon abiotic stress.
Collapse
Affiliation(s)
- Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México City, Mexico.
| |
Collapse
|
18
|
Channels and transporters for inorganic ions in plant mitochondria: Prediction and facts. Mitochondrion 2020; 53:224-233. [PMID: 32540403 DOI: 10.1016/j.mito.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.
Collapse
|
19
|
Kimata Y, Higaki T, Kurihara D, Ando N, Matsumoto H, Higashiyama T, Ueda M. Mitochondrial dynamics and segregation during the asymmetric division of Arabidopsis zygotes. QUANTITATIVE PLANT BIOLOGY 2020; 1:e3. [PMID: 37077329 PMCID: PMC10095797 DOI: 10.1017/qpb.2020.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 05/02/2023]
Abstract
The zygote is the first cell of a multicellular organism. In most angiosperms, the zygote divides asymmetrically to produce an embryo-precursor apical cell and a supporting basal cell. Zygotic division should properly segregate symbiotic organelles, because they cannot be synthesized de novo. In this study, we revealed the real-time dynamics of the principle source of ATP biogenesis, mitochondria, in Arabidopsis thaliana zygotes using live-cell observations and image quantifications. In the zygote, the mitochondria formed the extended structure associated with the longitudinal array of actin filaments (F-actins) and were polarly distributed along the apical-basal axis. The mitochondria were then temporally fragmented during zygotic division, and the resulting apical cells inherited mitochondria at higher concentration compared to the basal cells. Further observation of postembryonic organs showed that these mitochondrial behaviours are characteristic of the zygote. Overall, our results showed that the zygote has spatiotemporal regulation that unequally distributes the mitochondria.
Collapse
Affiliation(s)
- Yusuke Kimata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto860-8555, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- JST, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Naoe Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hikari Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Author for correspondence: M. Ueda, Tel.: +81 22-795-6713; E-mail:
| |
Collapse
|
20
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
21
|
Dubinin MV, Belosludtsev KN. Taxonomic Features of Specific Ca2+ Transport Mechanisms in Mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Ortiz-Jiménez DJ, López-Aquino CM, Flores-Herrera C, Preciado-Linares G, Gonzalez-Vizueth I, García-Arrazola R, Araiza-Olivera D, Gutiérrez-Aguilar M. A simple method for mitochondrial respiration and calcium uptake assessment in pollen tubes. MethodsX 2019; 6:1741-1746. [PMID: 31406686 PMCID: PMC6682373 DOI: 10.1016/j.mex.2019.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
Key mitochondrial processes are known to be widely conserved throughout the eukaryotic domain. However, the scarce availability of working materials may restrict the assessment of such mitochondrial activities in several working models. Pollen tube mitochondrial studies represent one example of this, where tests have been often restricted due the physical impossibility of performing experiments with isolated mitochondria in enough quantities. Here we detail a method to measure in situ mitochondrial respiratory chain activity and calcium transport in tobacco pollen tubes. •Digitonin-mediated plasmalemma permeabilization allows efficient assessment of mitochondrial respiration and calcium uptake.•This method allows quick, reliable and portable measurements from low to high cellular densities, versus methods requiring intracellular calcium reporters.
Collapse
Affiliation(s)
- Diana J. Ortiz-Jiménez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Casandra M. López-Aquino
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Cesar Flores-Herrera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Gisela Preciado-Linares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Israel Gonzalez-Vizueth
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Roeb García-Arrazola
- Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM, Circuito Exterior, Ciudad Universitaria 04510. México City, Mexico
| | - Daniela Araiza-Olivera
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria 04510. México City, Mexico
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
- Corresponding author.
| |
Collapse
|
23
|
Scheible N, McCubbin A. Signaling in Pollen Tube Growth: Beyond the Tip of the Polarity Iceberg. PLANTS (BASEL, SWITZERLAND) 2019; 8:E156. [PMID: 31181594 PMCID: PMC6630365 DOI: 10.3390/plants8060156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
The coordinated growth of pollen tubes through floral tissues to deliver the sperm cells to the egg and facilitate fertilization is a highly regulated process critical to the Angiosperm life cycle. Studies suggest that the concerted action of a variety of signaling pathways underlies the rapid polarized tip growth exhibited by pollen tubes. Ca2+ and small GTPase-mediated pathways have emerged as major players in the regulation of pollen tube growth. Evidence suggests that these two signaling pathways not only integrate with one another but also with a variety of other important signaling events. As we continue to elucidate the mechanisms involved in pollen tube growth, there is a growing importance in taking a holistic approach to studying these pathways in order to truly understand how tip growth in pollen tubes is orchestrated and maintained. This review considers our current state of knowledge of Ca2+-mediated and GTPase signaling pathways in pollen tubes, how they may intersect with one another, and other signaling pathways involved. There will be a particular focus on recent reports that have extended our understanding in these areas.
Collapse
Affiliation(s)
- Nolan Scheible
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | - Andrew McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
- Center for Reproductive Biology, Pullman, WA, 99164, USA.
| |
Collapse
|
24
|
Flores-Herrera C, Preciado-Linares G, Gonzalez-Vizueth I, Corona de la Peña N, Gutiérrez-Aguilar M. In situ assessment of mitochondrial calcium transport in tobacco pollen tubes. PROTOPLASMA 2019; 256:503-509. [PMID: 30288611 DOI: 10.1007/s00709-018-1316-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Pollen tubes require functional mitochondria in order to achieve fast and sustained growth. In addition, cell wall expansion requires a calcium gradient in the tube apex formed by a dedicated array of calcium pumps and channels. Most studies have traditionally focused on the molecular aspects of calcium interactions and transport across the pollen tube plasmalemma. However, calcium transients across mitochondrial membranes from pollen tubes are beginning to be studied. Here, we report the presence of a ruthenium red-sensitive mitochondrial calcium uniporter-like activity in tobacco pollen tubes with functional oxidative phosphorylation. The present study provides a framework to measure in situ specifics of mitochondrial transport and respiration in pollen tubes from different plants. The relevance of a mitochondrial calcium uniporter for pollen tube growth is discussed.
Collapse
Affiliation(s)
- Cesar Flores-Herrera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Gisela Preciado-Linares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Israel Gonzalez-Vizueth
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico
| | - Norma Corona de la Peña
- Unidad de Investigación en Trombosis, Hemostasia y Aterogénesis, Hospital Carlos McGregor, México City, Mexico
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México City, Mexico.
| |
Collapse
|
25
|
Hu Y, Zou W, Wang Z, Zhang Y, Hu Y, Qian J, Wu X, Ren Y, Zhao J. Translocase of the Outer Mitochondrial Membrane 40 Is Required for Mitochondrial Biogenesis and Embryo Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:389. [PMID: 31001303 PMCID: PMC6455079 DOI: 10.3389/fpls.2019.00389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/13/2019] [Indexed: 05/08/2023]
Abstract
In eukaryotes, mitochondrion is an essential organelle which is surrounded by a double membrane system, including the outer membrane, intermembrane space and the inner membrane. The translocase of the outer mitochondrial membrane (TOM) complex has attracted enormous interest for its role in importing the preprotein from the cytoplasm into the mitochondrion. However, little is understood about the potential biological function of the TOM complex in Arabidopsis. The aim of the present study was to investigate how AtTOM40, a gene encoding the core subunit of the TOM complex, works in Arabidopsis. As a result, we found that lack of AtTOM40 disturbed embryo development and its pattern formation after the globular embryo stage, and finally caused albino ovules and seed abortion at the ratio of a quarter in the homozygous tom40 plants. Further investigation demonstrated that AtTOM40 is wildly expressed in different tissues, especially in cotyledons primordium during Arabidopsis embryogenesis. Moreover, we confirmed that the encoded protein AtTOM40 is localized in mitochondrion, and the observation of the ultrastructure revealed that mitochondrion biogenesis was impaired in tom40-1 embryo cells. Quantitative real-time PCR was utilized to determine the expression of genes encoding outer mitochondrial membrane proteins in the homozygous tom40-1 mutant embryos, including the genes known to be involved in import, assembly and transport of mitochondrial proteins, and the results demonstrated that most of the gene expressions were abnormal. Similarly, the expression of genes relevant to embryo development and pattern formation, such as SAM (shoot apical meristem), cotyledon, vascular primordium and hypophysis, was also affected in homozygous tom40-1 mutant embryos. Taken together, we draw the conclusion that the AtTOM40 gene is essential for the normal structure of the mitochondrion, and participates in early embryo development and pattern formation through maintaining the biogenesis of mitochondria. The findings of this study may provide new insight into the biological function of the TOM40 subunit in higher plants.
Collapse
|
26
|
Zheng YY, Lin XJ, Liang HM, Wang FF, Chen LY. The Long Journey of Pollen Tube in the Pistil. Int J Mol Sci 2018; 19:E3529. [PMID: 30423936 PMCID: PMC6275014 DOI: 10.3390/ijms19113529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
In non-cleistogamous plants, the male gametophyte, the pollen grain is immotile and exploits various agents, such as pollinators, wind, and even water, to arrive to a receptive stigma. The complex process of pollination involves a tubular structure, i.e., the pollen tube, which delivers the two sperm cells to the female gametophyte to enable double fertilization. The pollen tube has to penetrate the stigma, grow in the style tissues, pass through the septum, grow along the funiculus, and navigate to the micropyle of the ovule. It is a long journey for the pollen tube and its two sperm cells before they meet the female gametophyte, and it requires very accurate regulation to perform successful fertilization. In this review, we update the knowledge of molecular dialogues of pollen-pistil interaction, especially the progress of pollen tube activation and guidance, and give perspectives for future research.
Collapse
Affiliation(s)
- Yang-Yang Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xian-Ju Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hui-Min Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fang-Fei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Katano K, Honda K, Suzuki N. Integration between ROS Regulatory Systems and Other Signals in the Regulation of Various Types of Heat Responses in Plants. Int J Mol Sci 2018; 19:ijms19113370. [PMID: 30373292 PMCID: PMC6274784 DOI: 10.3390/ijms19113370] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022] Open
Abstract
Because of their sessile lifestyle, plants cannot escape from heat stress and are forced to alter their cellular state to prevent damage. Plants, therefore, evolved complex mechanisms to adapt to irregular increases in temperature in the natural environment. In addition to the ability to adapt to an abrupt increase in temperature, plants possess strategies to reprogram their cellular state during pre-exposure to sublethal heat stress so that they are able to survive under subsequent severe heat stress. Such an acclimatory response to heat, i.e., acquired thermotolerance, might depend on the maintenance of heat memory and propagation of long-distance signaling. In addition, plants are able to tailor their specific cellular state to adapt to heat stress combined with other abiotic stresses. Many studies revealed significant roles of reactive oxygen species (ROS) regulatory systems in the regulation of these various heat responses in plants. However, the mode of coordination between ROS regulatory systems and other pathways is still largely unknown. In this review, we address how ROS regulatory systems are integrated with other signaling networks to control various types of heat responses in plants. In addition, differences and similarities in heat response signals between different growth stages are also addressed.
Collapse
Affiliation(s)
- Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, 102-8554 Tokyo, Japan.
| | | | | |
Collapse
|
28
|
Abstract
Mitochondrial Ca2+ regulation is crucial for bioenergetics and cellular signaling. The mechanisms controlling mitochondrial calcium homeostasis have been recently unraveled with the discovery of mitochondrial inner membrane proteins that regulate mitochondrial Ca2+ uptake and extrusion. Mitochondrial Ca2+ uptake depends on a large complex of proteins centered around the Ca2+ channel protein, mitochondrial Ca2+ uniporter (MCU) in close interactions with several regulatory subunits (MCUb, EMRE, MICU1, MICU2). Mitochondrial Ca2+ extrusion is mainly mediated by the mitochondrial Na+/Ca2+/Li+ exchanger (NCLX). Here, we review the major players of mitochondrial Ca2+ homeostasis and their physiological functions.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.
| |
Collapse
|
29
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|