1
|
Du E, Li P, Zhao W, Luo R, Chen Y, Lu M, Sun Z, Gui F. Claroideoglomus etunicatum and Bacillus thuringiensis Affect the Growth of the Invasive Plant Ageratina adenophora and Its Defense Against the Specialist Herbivore Procecidochares utilis. Microorganisms 2024; 12:2438. [PMID: 39770640 PMCID: PMC11676846 DOI: 10.3390/microorganisms12122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Exotic plants can selectively recruit beneficial microorganisms, such as arbuscular mycorrhizal fungi (AMFs) and Bacillus spp., during their invasion process to enhance growth and competitiveness by improving nutrient absorption and strengthening defense capabilities against herbivores. However, research in the context of invasive plants remains limited. In this study, a greenhouse pot experiment was conducted to examine the effects of different treatments on the growth and defense of Ageratina adenophora. The treatments included no inoculation, inoculation with Bacillus thuringiensis (BT), inoculation with arbuscular mycorrhizal fungus (Claroideoglomus etunicatum, CE), dual inoculation with BT and CE (BT + CE), and the presence or absence of Procecidochares utilis. The results showed that both CE and BT + CE significantly enhanced nutrient concentration and promoted the growth of A. adenophora. The aboveground biomass increased by 35.48 and 53.38% under non-parasitism and by 68.03% and 103.72% under the parasitism of P. utilis for these two treatments, respectively. In comparison to the control P. utilis-parasitized A. adenophora, the BT, CE, and BT + CE treatments significantly increased protective enzyme activity, jasmonic acid concentration, and secondary metabolites. Our study indicates that the recruitment of B. thuringiensis in the rhizosphere of A. adenophora can enhance its defense ability, while C. etunicatum improved both growth and defense ability. The interaction effects of these two microorganisms enhances the regulation of growth and defense ability of A. adenophora against P. utilis parasitism, providing insights into the feedback effects of beneficial microorganisms on the interactions between invasive plants and biological control.
Collapse
Affiliation(s)
- Ewei Du
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (E.D.); (P.L.); (W.Z.); (R.L.); (Y.C.); (Z.S.)
| | - Pengcun Li
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (E.D.); (P.L.); (W.Z.); (R.L.); (Y.C.); (Z.S.)
| | - Wenyuan Zhao
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (E.D.); (P.L.); (W.Z.); (R.L.); (Y.C.); (Z.S.)
| | - Rongchao Luo
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (E.D.); (P.L.); (W.Z.); (R.L.); (Y.C.); (Z.S.)
| | - Yaping Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (E.D.); (P.L.); (W.Z.); (R.L.); (Y.C.); (Z.S.)
| | - Minghong Lu
- Nation Agricultural Technology Extending and Service Center, Beijing 100125, China;
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (E.D.); (P.L.); (W.Z.); (R.L.); (Y.C.); (Z.S.)
| | - Furong Gui
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (E.D.); (P.L.); (W.Z.); (R.L.); (Y.C.); (Z.S.)
- Graduate School, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Wang T, Ruan Y, Xu Q, Shen Q, Ling N, Vandenkoornhuyse P. Effect of plant-derived microbial soil legacy in a grafting system-a turn for the better. MICROBIOME 2024; 12:234. [PMID: 39543707 PMCID: PMC11566652 DOI: 10.1186/s40168-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Plant-soil feedback arises from microbial legacies left by plants in the soil. Grafting is a common technique used to prevent yield declines in monocultures. Yet, our understanding of how grafting alters the composition of soil microbiota and how these changes affect subsequent crop performance remains limited. Our experiment involved monoculturing ungrafted and grafted watermelons to obtain conditioned soils, followed by growing the watermelons on the conditioned soils to investigate plant-soil feedback effects. RESULTS Ungrafted plants grew better in soil previously conditioned by a different plant (heterospecific soil) while grafted plants grew better in soil conditioned by the same plant (conspecific soil). We demonstrated experimentally that these differences in growth were linked to changes in microorganisms. Using a supervised machine learning algorithm, we showed that differences in the relative abundance of certain genera, such as Rhizobium, Chryseobacterium, Fusarium, and Aspergillus, significantly influenced the conspecific plant-soil feedback. Metabolomic analyses revealed that ungrafted plants in heterospecific soil enriched arginine biosynthesis, whereas grafted plants in conspecific soil increased sphingolipid metabolism. Elsewhere, the metagenome-assembled genomes (MAGs) of ungrafted plants identified in heterospecific soil include Chryseobacterium and Lysobacter, microorganisms having been prominently identified in earlier research as contributors to plant growth. Metabolic reconstruction revealed the putative ability of Chryseobacterium to convert D-glucono-1,5-lactone to gluconic acid, pointing to distinct disease-suppressive mechanisms and hence distinct microbial functional legacies between grafted and ungrafted plants. CONCLUSIONS Our findings show a deep impact of the soil microbial reservoir on plant growth and suggest the necessity to protect and improve this microbial community in agricultural soils. The work also suggests possibilities of optimizing microbiota-mediated benefits through grafting herein, a way that "engineered" soil microbial communities for better plant growth. Video Abstract.
Collapse
Affiliation(s)
- Tingting Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Université de Rennes, CNRS, UMR 6553 ECOBIO (écosystèmes, biodiversité, évolution), Rennes, 35000, France
| | - Yang Ruan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qicheng Xu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730020, China.
| | - Philippe Vandenkoornhuyse
- Université de Rennes, CNRS, UMR 6553 ECOBIO (écosystèmes, biodiversité, évolution), Rennes, 35000, France
| |
Collapse
|
3
|
Liu H, Shi Y, Zou Y, Song Z, Tian H, Yang X, Li X. The effects of lead (Pb) and pest damage on soil enzyme activities, pakchoi and Spodoptera litura performance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:473-481. [PMID: 39295446 DOI: 10.1017/s0007485324000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Plant-soil interactions have bottom-up and top-down effects within a plant community. Heavy metal pollution can change plant-soil interactions, directly influence bottom-up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant-soil interactions through top-down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil-plant-herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.
Collapse
Affiliation(s)
- Huiyang Liu
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Yimeng Shi
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Yuxuan Zou
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Zaiya Song
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Huai Tian
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xianjun Yang
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xiaohong Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| |
Collapse
|
4
|
Wang Z, Fu X, Kuramae EE. Insight into farming native microbiome by bioinoculant in soil-plant system. Microbiol Res 2024; 285:127776. [PMID: 38820701 DOI: 10.1016/j.micres.2024.127776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Applying beneficial microorganisms (BM) as bioinoculants presents a promising soil-amendment strategy while impacting the native microbiome, which jointly alters soil-plant performance. Leveraging the untapped potential of native microbiomes alongside bioinoculants may enable farmers to sustainably regulate soil-plant systems via natural bioresources. This review synthesizes literature on native microbiome responses to BMs and their interactive effects on soil and plant performance. We highlight that native microbiomes harbor both microbial "helpers" that can improve soil fertility and plant productivity, as well as "inhibitors" that hinder these benefits. To harness the full potential of resident microbiome, it is crucial to elucidate their intricate synergistic and antagonistic interplays with introduced BMs and clarify the conditions that facilitate durable BM-microbiome synergies. Hence, we indicate current challenges in predicting these complex microbial interactions and propose corresponding strategies for microbiome breeding via BM bioinoculant. Overall, fully realizing the potential of BMs requires clarifying their interactions with native soil microbiomes and judiciously engineering microbiome to harness helpful microbes already present within agroecosystems.
Collapse
Affiliation(s)
- Zhikang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, the Netherlands
| | - Xiangxiang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, the Netherlands; Ecology and biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
5
|
Brock MT, Morrison HG, Maignien L, Weinig C. Impacts of sample handling and storage conditions on archiving physiologically active soil microbial communities. FEMS Microbiol Lett 2024; 371:fnae044. [PMID: 38866716 DOI: 10.1093/femsle/fnae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Soil microbial communities are fundamental to ecosystem processes and plant growth, yet community composition is seasonally and successionally dynamic, which interferes with long-term iterative experimentation of plant-microbe interactions. We explore how soil sample handling (e.g. filtering) and sample storage conditions impact the ability to revive the original, physiologically active, soil microbial community. We obtained soil from agricultural fields in Montana and Oklahoma, USA and samples were sieved to 2 mm or filtered to 45 µm. Sieved and filtered soil samples were archived at -20°C or -80°C for 50 days and revived for 2 or 7 days. We extracted DNA and the more transient RNA pools from control and treatment samples and characterized microbial communities using 16S amplicon sequencing. Filtration and storage treatments significantly altered soil microbial communities, impacting both species richness and community composition. Storing sieved soil at -20°C did not alter species richness and resulted in the least disruption to the microbial community composition in comparison to nonarchived controls as characterized by RNA pools from soils of both sites. Filtration significantly altered composition but not species richness. Archiving sieved soil at -20°C could allow for long-term and repeated experimentation on preserved physiologically active microbial communities.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
| | - Loïs Maignien
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
- Laboratory of Microbiology of Extreme Environments, UMR 6197 - CNRS-Ifremer-UBO, Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale (UBO), Technopole Brest-Iroise, 4 rue Dumont d'Urville, 29280 Plouzané, France
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Program in Ecology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| |
Collapse
|
6
|
Goossens EP, Minden V, Van Poucke F, Olde Venterink H. Negative plant-soil feedbacks disproportionally affect dominant plants, facilitating coexistence in plant communities. NPJ BIODIVERSITY 2023; 2:27. [PMID: 39242901 PMCID: PMC11332034 DOI: 10.1038/s44185-023-00032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 09/09/2024]
Abstract
Plant-soil feedbacks (PSFs) are suggested to be major drivers of plant species coexistence and exotic invasions in natural plant communities, where species with more positive PSFs are thought to be more abundant in communities. Most evidence for this comes from mesocosm experiments with single species, but whether the results are transposable to diverse plant communities is mostly not verified and remains debated. We performed a combined monoculture and community experiment to test whether PSFs in monocultures predict PSFs in communities, and to infer the role of PSFs in invasive plant success. We found that (1) PSFs from monocultures were poor predictors for PSFs in plant communities, (2) competitive strength of invasive species did not consistently depend on PSF, and (3) dominant species experienced a significantly stronger negative PSFs than non-dominant species when grown in community. Hence, PSFs of plant species in monocultures seem less predictive for their abundance in plant communities or for invasibility than previously assumed. Nevertheless, PSF-and particularly negative PSF-seems indeed a major driver of plant species coexistence, with a strong species-specific pathogenic effect on dominant plants facilitating the persistence of rare species.
Collapse
Affiliation(s)
- Elias P Goossens
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Vanessa Minden
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Flor Van Poucke
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
7
|
Gao L, Wei C, He Y, Tang X, Chen W, Xu H, Wu Y, Wilschut RA, Lu X. Aboveground herbivory can promote exotic plant invasion through intra- and interspecific aboveground-belowground interactions. THE NEW PHYTOLOGIST 2023; 237:2347-2359. [PMID: 36200166 DOI: 10.1111/nph.18520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.
Collapse
Affiliation(s)
- Lunlun Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Chunqiang Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Guangxi Institute of Botany, Chinese Academy of Science, 540016, Guilin, China
| | - Yifan He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Xuefei Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
| | - Wei Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Hao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Henan, China
| | - Rutger A Wilschut
- Ecology Group, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Department of Nematology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| |
Collapse
|
8
|
Florianová A, Hanzelková V, Drtinová L, Pánková H, Cajthaml T, Münzbergová Z. Plant-soil interactions in the native range of two congeneric species with contrasting invasive success. Oecologia 2023; 201:461-477. [PMID: 36745217 PMCID: PMC9945059 DOI: 10.1007/s00442-023-05329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
The aim of this study was to compare plant-soil interactions in the native range of two congeneric European species differing in their invasive success in the world: a globally invasive Cirsium vulgare and non-invasive C. oleraceum. We assessed changes in soil nutrients and soil biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and unconditioned soil, from which all, some or no biota was excluded. The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling establishment which benefited from the presence of unconditioned biota transferred by soil filtrate. Biomass of both species increased in soil with self-conditioned soil filtrate and decreased in soil with self-conditioned whole-soil inoculum compared to unconditioned filtrate and inoculum. However, the increase was smaller and the decrease greater for the invasive species. The invasive species allocated less biomass to roots when associated with harmful biota, reducing negative effects of the biota on its performance. The results show that in the native range the invasive species is more limited by self-conditioned pathogens and benefits more from unconditioned mutualists and thus may benefit more from loss of effectively specialized soil biota in a secondary range. Our study highlights the utility of detailed plant-soil feedback research in species native range for understanding factors regulating species performance in their native range and pinpointing the types of biota involved in their regulation.
Collapse
Affiliation(s)
- Anna Florianová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic.
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| | - Věra Hanzelková
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Lucie Drtinová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Hana Pánková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| |
Collapse
|
9
|
Zhang L, Chen A, Li Y, Li D, Cheng S, Cheng L, Liu Y. Differences in Phenotypic Plasticity between Invasive and Native Plants Responding to Three Environmental Factors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121970. [PMID: 36556335 PMCID: PMC9781723 DOI: 10.3390/life12121970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
The phenotypic plasticity hypothesis suggests that exotic plants may have greater phenotypic plasticity than native plants. However, whether phenotypic changes vary according to different environmental factors has not been well studied. We conducted a multi-species greenhouse experiment to study the responses of six different phenotypic traits, namely height, leaf number, specific leaf area, total biomass, root mass fraction, and leaf mass fraction, of native and invasive species to nutrients, water, and light. Each treatment was divided into two levels: high and low. In the nutrient addition experiment, only the leaf mass fraction and root mass fraction of the plants supported the phenotypic plasticity hypothesis. Then, none of the six traits supported the phenotypic plasticity hypothesis in the water or light treatment experiments. The results show that, for different environmental factors and phenotypes, the phenotypic plasticity hypothesis of plant invasion is inconsistent. When using the phenotypic plasticity hypothesis to explain plant invasion, variations in environmental factors and phenotypes should be considered.
Collapse
Affiliation(s)
- Luna Zhang
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Anqun Chen
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanjiao Li
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
- Correspondence: (Y.L.); (Y.L.)
| | - Duohui Li
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
| | - Shiping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
| | - Liping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Key Laboratory for Value Realization of Ecological Products of Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands in Pingdingshan City, Pingdingshan University, Pingdingshan 467000, China
| | - Yinzhan Liu
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (Y.L.); (Y.L.)
| |
Collapse
|
10
|
Dadzie FA, Moles AT, Erickson TE, Slavich E, Muñoz‐Rojas M. Native bacteria and cyanobacteria can influence seedling emergence and growth of native plants used in dryland restoration. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frederick A. Dadzie
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
| | - Angela T. Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
| | - Todd E. Erickson
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park Western Australia Australia
| | - Eve Slavich
- School of Mathematics and Statistics UNSW Sydney Sydney New South Wales Australia
| | - Miriam Muñoz‐Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
- Department of Plant Biology and Ecology University of Seville Seville Spain
| |
Collapse
|
11
|
Xu H, Qu Q, Wang Z, Xue S, Xu Z. Plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation responses to plant-soil feedbacks during community succession: A 3-year pot experiment in China. FRONTIERS IN PLANT SCIENCE 2022; 13:1009886. [PMID: 36204057 PMCID: PMC9531649 DOI: 10.3389/fpls.2022.1009886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Studying plant-soil feedback (PSF) can improve the understanding of the plant community composition and structure; however, changes in plant-soil-enzyme stoichiometry in response to PSF are unclear. The present study aimed to analyze the changes in plant-soil-enzyme stoichiometry and microbial nutrient limitation to PSF, and identify the roles of nutrient limitation in PSF. Setaria viridis, Stipa bungeana, and Bothriochloa ischaemum were selected as representative grass species in early-, mid-, and late-succession; furthermore, three soil types were collected from grass species communities in early-, mid-, and late-succession to treat the three successional species. A 3-year (represents three growth periods) PSF experiment was performed with the three grasses in the soil in the three succession stages. We analyzed plant biomass and plant-soil-enzyme C-N-P stoichiometry for each plant growth period. The plant growth period mainly affected the plant C:N in the early- and late- species but showed a less pronounced effect on the soil C:N. During the three growth periods, the plants changed from N-limited to P-limited; the three successional species soils were mainly limited by N, whereas the microbes were limited by both C and N. The plant-soil-enzyme stoichiometry and plant biomass were not significantly correlated. In conclusion, during PSF, the plant growth period significantly influences the plant-soil-microbial nutrient limitations. Plant-soil-enzyme stoichiometry and microbial nutrient limitation cannot effectively explain PSF during succession on the Loess Plateau.
Collapse
Affiliation(s)
- Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Qu
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Zhanhui Wang
- Hebei Drinking Water Safety Monitoring Technol Inn, Chengde, China
| | - Sha Xue
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Qiao X, Bei S, Wang G, Li C, Li H, Zhang J, Zhang F. Soil biota is decisive for overyielding in intercropping under low phosphorus conditions. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xu Qiao
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant‐Soil Interactions Ministry of Education, China Agricultural University Beijing China
- Institute of Medicinal Plant Development, Peking Union Medical College Chinese Academy of Medical Sciences Beijing China
| | - Shuikuan Bei
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant‐Soil Interactions Ministry of Education, China Agricultural University Beijing China
| | - Guangzhou Wang
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant‐Soil Interactions Ministry of Education, China Agricultural University Beijing China
| | - Chunjie Li
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant‐Soil Interactions Ministry of Education, China Agricultural University Beijing China
| | - Haigang Li
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant‐Soil Interactions Ministry of Education, China Agricultural University Beijing China
- College of Grassland, Resources and Environment Inner Mongolia Agricultural University Hohhot China
| | - Junling Zhang
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant‐Soil Interactions Ministry of Education, China Agricultural University Beijing China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant‐Soil Interactions Ministry of Education, China Agricultural University Beijing China
| |
Collapse
|
13
|
Raglin SS, Kent AD, Ngumbi EN. Herbivory Protection via Volatile Organic Compounds Is Influenced by Maize Genotype, Not Bacillus altitudinis-Enriched Bacterial Communities. Front Microbiol 2022; 13:826635. [PMID: 35586862 PMCID: PMC9108721 DOI: 10.3389/fmicb.2022.826635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Belowground, plants interact with beneficial soil microbes such as plant growth-promoting rhizobacteria (PGPR). PGPR are rhizosphere bacteria that colonize roots and elicit beneficial effects in plants such as improved plant growth, pathogen resistance, abiotic stress tolerance, and herbivore protection. Treatment of plants with PGPR has been shown to trigger the emission of volatile organic compounds (VOCs). Volatile emissions can also be triggered by herbivory, termed herbivore-induced plant volatiles (HIPV), with important ramifications for chemical-mediated plant and insect interactions. Much of our current understanding of PGPR and herbivore-induced volatiles is based on studies using one plant genotype, yet domestication and modern breeding has led to the development of diverse germplasm with altered phenotypes and chemistry. In this study, we investigated if volatile emissions triggered by PGPR colonization and herbivory varies by maize genotype and microbial community assemblages. Six maize genotypes representing three decades of crop breeding and two heterotic groups were used, with four microbiome treatments: live or sterilized soil, with or without a Bacillus inoculant. Soil sterilization was used to delay microbiome establishment, resulting in low-diversity treatments. At planting, maize seeds were inoculated with PGPR Bacillus altitudinis AP-283 and grown under greenhouse conditions. Four weeks post planting, plants were subjected to feeding by third instar Helicoverpa zea (Lepidoptera: Noctuidae) larvae. Volatiles were collected using solid phase microextraction and analyzed with gas chromatography-mass spectrometry. Illumina NovaSeq 16S rRNA amplicon sequencing was carried out to characterize the rhizosphere microbiome. Maize genotype significantly influenced total volatile emissions, and relative abundance of volatile classes. We did not document a strong influence of microbe treatment on plant VOC emissions. However, inoculating plants with PGPR improved plant growth under sterile conditions. Taken together, our results suggest that genotypic variation is the dominant driver in HIPV composition and individual HIPV abundances, and any bacterial-mediated benefit is genotype and HIPV-specific. Therefore, understanding the interplay of these factors is necessary to fully harness microbially-mediated benefits and improve agricultural sustainability.
Collapse
Affiliation(s)
- Sierra S. Raglin
- Microbial Ecology Laboratory, Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Angela D. Kent
- Microbial Ecology Laboratory, Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Esther N. Ngumbi
- Departments of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Esther N. Ngumbi,
| |
Collapse
|
14
|
Buchenau N, van Kleunen M, Wilschut RA. Direct and legacy‐mediated drought effects on plant performance are species‐specific and depend on soil community composition. OIKOS 2022. [DOI: 10.1111/oik.08959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Buchenau
- Dept of Biology, Univ. of Konstanz Konstanz Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | | | | |
Collapse
|
15
|
Van De Walle R, Massol F, Vandegehuchte ML, Bonte D. The distribution and impact of an invasive plant species (Senecio inaequidens) on a dune building engineer (Calamagrostis arenaria). NEOBIOTA 2022. [DOI: 10.3897/neobiota.72.78511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Disturbance is thought to enhance the probability of invasive species establishment, a prerequisite for naturalisation. Coastal dunes are characterised by disturbance in the form of sand dynamics. We studied the effect of this disturbance on the establishment and spread of an invasive plant species (Senecio inaequidens) in European coastal dunes. Local sand dynamics dictate the spatial configuration of marram grass (Calamagrostis arenaria). Therefore, marram grass configuration was used as a reliable proxy for disturbance. Since marram grass plays a crucial role in natural dune formation, we evaluated the possible effects S. inaequidens could have on this process, if it is able to naturalise in European coastal dunes.
We expected the highest probability of S. inaequidens establishment at intermediate marram grass cover because too low cover would increase sand burial, whereas high cover would increase competition. However, our results indicate that S. inaequidens is quite capable of handling higher levels of sand burial. Thus, the probability of S. inaequidens establishment was high under low marram cover but slightly lowered when marram cover was high, hinting at the importance of competition.
We expected a negative impact of Senecio-altered soils on marram grass growth mediated by soil biota. However, marram grass grew better in sand gathered underneath Senecio plants due to abiotic soil modifications. This enhanced growth may be caused by Senecio leaf litter elevating nutrient concentrations in an otherwise nutrient-poor substrate. If such increased plant growth is a general phenomenon, further expansion of S. inaequidens could accelerate natural succession in European coastal dunes.
Collapse
|
16
|
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJ, Dicke M. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. THE NEW PHYTOLOGIST 2021; 232:2475-2490. [PMID: 34537968 PMCID: PMC9291931 DOI: 10.1111/nph.17746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.
Collapse
Affiliation(s)
- Julia Friman
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Julian Haller
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Kris de Kreek
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Joop J.A. van Loon
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
17
|
Zhang J, Vrieling K, Klinkhamer PG, Bezemer T. Exogenous application of plant defense hormones alters the effects of live soils on plant performance. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Simberloff D, Kaur H, Kalisz S, Bezemer TM. Novel chemicals engender myriad invasion mechanisms. THE NEW PHYTOLOGIST 2021; 232:1184-1200. [PMID: 34416017 DOI: 10.1111/nph.17685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Non-native invasive species (NIS) release chemicals into the environment that are unique to the invaded communities, defined as novel chemicals. Novel chemicals impact competitors, soil microbial communities, mutualists, plant enemies, and soil nutrients differently than in the species' native range. Ecological functions of novel chemicals and differences in functions between the native and non-native ranges of NIS are of immense interest to ecologists. Novel chemicals can mediate different ecological, physiological, and evolutionary mechanisms underlying invasion hypotheses. Interactions amongst the NIS and resident species including competitors, soil microbes, and plant enemies, as well as abiotic factors in the invaded community are linked to novel chemicals. However, we poorly understand how these interactions might enhance NIS performance. New empirical data and analyses of how novel chemicals act in the invaded community will fill major gaps in our understanding of the chemistry of biological invasions. A novel chemical-invasion mechanism framework shows how novel chemicals engender invasion mechanisms beyond plant-plant or plant-microorganism interactions.
Collapse
Affiliation(s)
- Daniel Simberloff
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - Harleen Kaur
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Susan Kalisz
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - T Martijn Bezemer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, Leiden, 2300 RA, the Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 6700 AB, Wageningen, the Netherlands
| |
Collapse
|
19
|
Monohon SJ, Manter DK, Vivanco JM. Conditioned soils reveal plant-selected microbial communities that impact plant drought response. Sci Rep 2021; 11:21153. [PMID: 34707132 PMCID: PMC8551274 DOI: 10.1038/s41598-021-00593-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Rhizobacterial communities can contribute to plant trait expression and performance, including plant tolerance against abiotic stresses such as drought. The conditioning of microbial communities related to disease resistance over generations has been shown to develop suppressive soils which aid in plant defense responses. Here, we applied this concept for the development of drought resistant soils. We hypothesized that soils conditioned under severe drought stress and tomato cultivation over two generations, will allow for plant selection of rhizobacterial communities that provide plants with improved drought resistant traits. Surprisingly, the plants treated with a drought-conditioned microbial inoculant showed significantly decreased plant biomass in two generations of growth. Microbial community composition was significantly different between the inoculated and control soils within each generation (i.e., microbial history effect) and for the inoculated soils between generations (i.e., conditioning effect). These findings indicate a substantial effect of conditioning soils on the abiotic stress response and microbial recruitment of tomato plants undergoing drought stress.
Collapse
Affiliation(s)
- Samantha J Monohon
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel K Manter
- USDA-ARS, Soil Management and Sugar Beet Research, Fort Collins, CO, USA
| | - Jorge M Vivanco
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
20
|
Pélissier R, Violle C, Morel JB. Plant immunity: Good fences make good neighbors? CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102045. [PMID: 33965754 DOI: 10.1016/j.pbi.2021.102045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Plant immunity is modulated by several abiotic factors, and microbiome has emerged as a major biotic driver of plant resistance. Recently, a few studies showed that plants also modify resistance to pests and pathogens in their neighborhood. Several types of neighborhood could be identified depending on the biological processes at play: intraspecific and interspecific competition, kin and stranger recognition, plant-soil feedbacks, and danger signaling. This review highlights that molecules exchanged aboveground and belowground between plants can modulate plant immunity, either constitutively or after damage or attack. An intriguing relationship between allelopathy and immunity has been evidenced and should merit further investigation. Interestingly, most reported cases of modulation of immunity by the neighbors are positive, opening new perspectives for the understanding of natural plant communities as well as for the design of more diverse cultivated systems.
Collapse
Affiliation(s)
- Rémi Pélissier
- PHIM Plant Health Institute, CEFE, Univ Montpellier, Institut Agro, INRAE, CIRAD, TA A-54/K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry, Campus du CNRS, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, TA A-54 / K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France.
| |
Collapse
|
21
|
Wilschut RA, Geisen S. Nematodes as Drivers of Plant Performance in Natural Systems. TRENDS IN PLANT SCIENCE 2021; 26:237-247. [PMID: 33214031 DOI: 10.1016/j.tplants.2020.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 05/21/2023]
Abstract
Nematodes form an important part of soil biodiversity as the most abundant and functionally diverse animals affecting plant performance. Most studies on plant-nematode interactions are focused on agriculture, while plant-nematode interactions in nature are less known. Here we highlight that nematodes can contribute to vegetation dynamics through direct negative effects on plants, and indirect positive effects through top-down predation on plant-associated organisms. Global change alters these interactions, of which better understanding is rapidly needed to better predict functional consequences. By expanding the knowledge of plant-nematode interactions in natural systems, an increase in basic understanding of key ecological topics such as plant-soil interactions and plant invasion dynamics will be obtained, while also increasing the insights and potential biotic repertoire to be applicable in sustainable plant management.
Collapse
Affiliation(s)
- Rutger A Wilschut
- Ecology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Stefan Geisen
- Department of Nematology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Qin F, Yu S. Compatible Mycorrhizal Types Contribute to a Better Design for Mixed Eucalyptus Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:616726. [PMID: 33643349 PMCID: PMC7907608 DOI: 10.3389/fpls.2021.616726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Mixed-species forest plantation is a sound option to facilitate ecological restoration, plant diversity and ecosystem functions. Compatible species combinations are conducive to reconstruct plant communities that can persist at a low cost without further management and even develop into natural forest communities. However, our understanding of how the compatibility of mycorrhizal types mediates species coexistence is still limited, especially in a novel agroforestry system. Here, we assessed the effects of mycorrhizal association type on the survival and growth of native woody species in mixed-species Eucalyptus plantations. To uncover how mycorrhizal type regulates plant-soil feedbacks, we first conducted a pot experiments by treating distinct mycorrhizal plants with soil microbes from their own or other mycorrhizal types. We then compared the growth response of arbuscular mycorrhizal plants and ectomycorrhizal plants to different soil microbial compositions associated with Eucalyptus plants. We found that the type of mycorrhizal association had a significant impact on the survival and growth of native tree species in the Eucalyptus plantations. The strength and direction of the plant-soil feedbacks of focal tree species depended on mycorrhizal type. Non-mycorrhizal plants had consistent negative feedbacks with the highest survival in the Eucalyptus plantations, whereas nitrogen-fixing plants had consistent positive feedbacks and the lowest survival. Arbuscular mycorrhizal and ectomycorrhizal plants performed varied feedback responses to soil microbes from distinct mycorrhizal plant species. Non-mycorrhizal plants grew better with Eucalyptus soil microbes while nitrogen-fixing plants grew worse with their own conspecific soil microbes. Different soil microbial compositions of Eucalyptus consistently increased the aboveground growth of arbuscular mycorrhizal plants, but the non-mycorrhizal microbial composition of the Eucalyptus soil resulted in greater belowground growth of ectomycorrhizal plants. Overall, Eucalyptus plants induced an unfavorable soil community, impeding coexistence with other mycorrhizal plants. Our study provides consistent observational and experimental evidence that mycorrhizal-mediated plant-microbial feedback on species coexistence among woody species. These findings are with important implications to optimize the species combinations for better design of mixed forest plantations.
Collapse
|
23
|
De Long JR, Heinen R, Jongen R, Hannula SE, Huberty M, Kielak AM, Steinauer K, Bezemer TM. How plant–soil feedbacks influence the next generation of plants. Ecol Res 2020. [DOI: 10.1111/1440-1703.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan R. De Long
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Wageningen UR Greenhouse Horticulture Bleiswijk The Netherlands
| | - Robin Heinen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
- Lehrstuhl fur Terrestrische Okologie, Landnutzung und Umwelt Technische Universitat Munchen, Wissenschaftszentrum Weihenstephan fur Ernahrung Freising Germany
| | - Renske Jongen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - S. Emilia Hannula
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Martine Huberty
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
| | - Anna M. Kielak
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - Katja Steinauer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry Leiden University Leiden The Netherlands
| |
Collapse
|
24
|
Kostenko O, Bezemer TM. Abiotic and Biotic Soil Legacy Effects of Plant Diversity on Plant Performance. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Pineda A, Kaplan I, Hannula SE, Ghanem W, Bezemer TM. Conditioning the soil microbiome through plant-soil feedbacks suppresses an aboveground insect pest. THE NEW PHYTOLOGIST 2020; 226:595-608. [PMID: 31863484 PMCID: PMC7155073 DOI: 10.1111/nph.16385] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 05/21/2023]
Abstract
Soils and their microbiomes are now recognized as key components of plant health, but how to steer those microbiomes to obtain their beneficial functions is still unknown. Here, we assess whether plant-soil feedbacks can be applied in a crop system to shape soil microbiomes that suppress herbivorous insects in above-ground tissues. We used four grass and four forb species to condition living soil. Then we inoculated those soil microbiomes into sterilized soil and grew chrysanthemum as a focal plant. We evaluated the soil microbiome in the inocula and after chrysanthemum growth, as well as plant and herbivore parameters. We show that inocula and inoculated soil in which a focal plant had grown harbor remarkably different microbiomes, with the focal plant exerting a strong negative effect on fungi, especially arbuscular mycorrhizal fungi. Soil inoculation consistently induced resistance against the thrips Frankliniella occidentalis, but not against the mite Tetranychus urticae, when compared with sterilized soil. Additionally, plant species shaped distinct microbiomes that had different effects on thrips, chlorogenic acid concentrations in leaves and plant growth. This study provides a proof-of-concept that the plant-soil feedback concept can be applied to steer soil microbiomes with the goal of inducing resistance above ground against herbivorous insects.
Collapse
Affiliation(s)
- Ana Pineda
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
| | - Ian Kaplan
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
- Department of EntomologyPurdue UniversityWest LafayetteIN47907USA
| | - S. Emilia Hannula
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
| | - Wadih Ghanem
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
- Department of EntomologyPurdue UniversityWest LafayetteIN47907USA
| | - T. Martijn Bezemer
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABthe Netherlands
- Institute of BiologySection Plant Ecology and PhytochemistryLeiden UniversityLeiden2300 RAthe Netherlands
| |
Collapse
|
26
|
Huberty M, Martis B, van Kampen J, Choi YH, Vrieling K, Klinkhamer PGL, Bezemer TM. Soil Inoculation Alters Leaf Metabolic Profiles in Genetically Identical Plants. J Chem Ecol 2020; 46:745-755. [PMID: 32020484 PMCID: PMC7429552 DOI: 10.1007/s10886-020-01156-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Abiotic and biotic properties of soil can influence growth and chemical composition of plants. Although it is well-known that soil microbial composition can vary greatly spatially, how this variation affects plant chemical composition is poorly understood. We grew genetically identical Jacobaea vulgaris in sterilized soil inoculated with live soil collected from four natural grasslands and in 100% sterilized soil. Within each grassland we sampled eight plots, totalling 32 different inocula. Two samples per plot were collected, leading to three levels of spatial variation: within plot, between and within grasslands. The leaf metabolome was analysed with 1H Nuclear magnetic resonance spectroscopy (NMR) to investigate if inoculation altered the metabolome of plants and how this varied between and within grasslands. Inoculation led to changes in metabolomics profiles of J. vulgaris in two out of four sites. Plants grown in sterilized and inoculated soils differed in concentrations of malic acid, tyrosine, trehalose and two pyrrolizidine alkaloids (PA). Metabolomes of plants grown in inoculated soils from different sites varied in glucose, malic acid, trehalose, tyrosine and in one PA. The metabolome of plants grown in soils with inocula from the same site was more similar than with inocula from distant sites. We show that soil influences leaf metabolomes. Performance of aboveground insects often depends on chemical composition of plants. Hence our results imply that soil microbial communities, via affecting aboveground plant metabolomes, can impact aboveground plant-insect food chains but that it is difficult to make general predictions due to spatial variation in soil microbiomes.
Collapse
Affiliation(s)
- Martine Huberty
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands. .,Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, The Netherlands. .,Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Beverly Martis
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Jorian van Kampen
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands.,College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.,Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
27
|
Heinen R, Biere A, Bezemer TM. Plant traits shape soil legacy effects on individual plant–insect interactions. OIKOS 2019. [DOI: 10.1111/oik.06812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Robin Heinen
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
- Inst. of Biology, Leiden Univ. Leiden the Netherlands
| | - Arjen Biere
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
| | - T. Martijn Bezemer
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
- Inst. of Biology, Leiden Univ. Leiden the Netherlands
| |
Collapse
|
28
|
Piazza G, Ercoli L, Nuti M, Pellegrino E. Interaction Between Conservation Tillage and Nitrogen Fertilization Shapes Prokaryotic and Fungal Diversity at Different Soil Depths: Evidence From a 23-Year Field Experiment in the Mediterranean Area. Front Microbiol 2019; 10:2047. [PMID: 31551981 PMCID: PMC6737287 DOI: 10.3389/fmicb.2019.02047] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 01/20/2023] Open
Abstract
Soil biodiversity accomplishes key roles in agro-ecosystem services consisting in preserving and enhancing soil fertility and nutrient cycling, crop productivity and environmental protection. Thus, the improvement of knowledge on the effect of conservation practices, related to tillage and N fertilization, on soil microbial communities is critical to better understand the role and function of microorganisms in regulating agro-ecosystems. In the Mediterranean area, vulnerable to climate change and suffering for management-induced losses of soil fertility, the impact of conservation practices on soil microbial communities is of special interest for building mitigation and adaptation strategies to climate change. A long-term experiment, originally designed to investigate the effect of tillage and N fertilization on crop yield and soil organic carbon, was utilized to understand the effect of these management practices on soil prokaryotic and fungal community diversity. The majority of prokaryotic and fungal taxa were common to all treatments at both soil depths, whereas few bacterial taxa (Cloacimonates, Spirochaetia and Berkelbacteria) and a larger number of fungal taxa (i.e., Coniphoraceae, Debaryomycetaceae, Geastraceae, Cordicypitaceae and Steccherinaceae) were unique to specific management practices. Soil prokaryotic and fungal structure was heavily influenced by the interaction of tillage and N fertilization: the prokaryotic community structure of the fertilized conventional tillage system was remarkably different respect to the unfertilized conservation and conventional systems in the surface layer. In addition, the effect of N fertilization in shaping the fungal community structure of the surface layer was higher under conservation tillage systems than under conventional tillage systems. Soil microbial community was shaped by soil depth irrespective of the effect of plowing and N addition. Finally, chemical and enzymatic parameters of soil and crop yields were significantly related to fungal community structure along the soil profile. The findings of this study gave new insights on the identification of management practices supporting and suppressing beneficial and detrimental taxa, respectively. This highlights the importance of managing soil microbial diversity through agro-ecological intensified systems in the Mediterranean area.
Collapse
|
29
|
Sendek A, Karakoç C, Wagg C, Domínguez-Begines J, do Couto GM, van der Heijden MGA, Naz AA, Lochner A, Chatzinotas A, Klotz S, Gómez-Aparicio L, Eisenhauer N. Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 2019; 9:9650. [PMID: 31273222 PMCID: PMC6609766 DOI: 10.1038/s41598-019-45702-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023] Open
Abstract
Droughts associated with climate change alter ecosystem functions, especially in systems characterized by low biodiversity, such as agricultural fields. Management strategies aimed at buffering climate change effects include the enhancement of intraspecific crop diversity as well as the diversity of beneficial interactions with soil biota, such as arbuscular mycorrhizal fungi (AMF). However, little is known about reciprocal relations of crop and AMF diversity under drought conditions. To explore the interactive effects of plant genotype richness and AMF richness on plant yield under ambient and drought conditions, we established fully crossed diversity gradients in experimental microcosms. We expected highest crop yield and drought tolerance at both high barley and AMF diversity. While barley richness and AMF richness altered the performance of both barley and AMF, they did not mitigate detrimental drought effects on the plant and AMF. Root biomass increased with mycorrhiza colonization rate at high AMF richness and low barley richness. AMF performance increased under higher richness of both barley and AMF. Our findings indicate that antagonistic interactions between barley and AMF may occur under drought conditions, particularly so at higher AMF richness. These results suggest that unexpected alterations of plant-soil biotic interactions could occur under climate change.
Collapse
Affiliation(s)
- Agnieszka Sendek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.
- Department of Geobotany and Botanical Garden, Martin Luther University of Halle-Wittenberg, Am Kirchweg 2, 06108, Halle, Germany.
| | - Canan Karakoç
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, Zürich, CH-8057, Switzerland
- Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jara Domínguez-Begines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Gabriela Martucci do Couto
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Marcel G A van der Heijden
- Plant-Soil-Interactions, Department of Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ali Ahmad Naz
- Crop Genetics and Biotechnology Unit, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Stefan Klotz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
| | - Lorena Gómez-Aparicio
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|