1
|
McGaley J, Schneider B, Paszkowski U. The AMSlide for noninvasive time-lapse imaging of arbuscular mycorrhizal symbiosis. J Microsc 2025; 297:289-303. [PMID: 38747391 PMCID: PMC11808451 DOI: 10.1111/jmi.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 02/11/2025]
Abstract
Arbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods. Here, we introduce the AMSlide: a noninvasive, high-resolution, live-imaging system optimised for AM symbiosis research. We demonstrate the AMSlide's applications in confocal microscopy of mycorrhizal roots, from whole colonisation zones to subcellular structures, over timeframes from minutes to weeks. The AMSlide's versatility for different microscope set-ups, imaging techniques, and plant and fungal species is also outlined. It is hoped that the AMSlide will be applied in future research to fill in the temporal blanks in our understanding of AM symbiosis, as well as broader root and rhizosphere processes.
Collapse
Affiliation(s)
- Jennifer McGaley
- Department of Plant SciencesCrop Science Centre, University of CambridgeCambridgeUK
| | - Ben Schneider
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Uta Paszkowski
- Department of Plant SciencesCrop Science Centre, University of CambridgeCambridgeUK
| |
Collapse
|
2
|
Zhang S, Wu Y, Skaro M, Cheong JH, Bouffier-Landrum A, Torrres I, Guo Y, Stupp L, Lincoln B, Prestel A, Felt C, Spann S, Mandal A, Johnson N, Arnold J. Computer vision models enable mixed linear modeling to predict arbuscular mycorrhizal fungal colonization using fungal morphology. Sci Rep 2024; 14:10866. [PMID: 38740920 DOI: 10.1038/s41598-024-61181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum bicolor and S. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.
Collapse
Affiliation(s)
- Shufan Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yue Wu
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | | | - Isaac Torrres
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yinping Guo
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Lauren Stupp
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Brooke Lincoln
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Anna Prestel
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Camryn Felt
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Sedona Spann
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Abhyuday Mandal
- Statistics Department, University of Georgia, Athens, GA, USA
| | - Nancy Johnson
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Caccia M, Marro N, Novák V, Ráez JAL, Castillo P, Janoušková M. Divergent colonization traits, convergent benefits: different species of arbuscular mycorrhizal fungi alleviate Meloidogyne incognita damage in tomato. MYCORRHIZA 2024; 34:145-158. [PMID: 38441668 PMCID: PMC10998783 DOI: 10.1007/s00572-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.
Collapse
Affiliation(s)
- Milena Caccia
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic.
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina.
| | - Nicolás Marro
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Václav Novák
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Juan Antonio López Ráez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Campus de Excelencia Internacional Agroalimentario, ceiA3, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Martina Janoušková
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| |
Collapse
|
4
|
Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, Malmstrom RR, Visel A, Scheller HV, Cole B. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2024; 10:673-688. [PMID: 38589485 PMCID: PMC11035146 DOI: 10.1038/s41477-024-01666-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.
Collapse
Affiliation(s)
- Karen Serrano
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret Bezrutczyk
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thai Dao
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan O'Malley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Henrik V Scheller
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Cole
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Zhao Y, Rodić N, Liaskos M, Assimopoulou AN, Lalaymia I, Declerck S. Effects of fungal endophytes and arbuscular mycorrhizal fungi on growth of Echium vulgare and alkannin/shikonin and their derivatives production in roots. Fungal Biol 2024; 128:1607-1615. [PMID: 38341266 DOI: 10.1016/j.funbio.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
Endophytic fungi as well as arbuscular mycorrhizal fungi (AMF) are known to stimulate plant growth and production of secondary metabolites in medicinal plants. Here, 10 endophytic fungi isolated from roots of wild Alkanna tinctoria plants and 5 AMF purchased from the Glomeromycota in vitro collection were evaluated, during two successive three-month greenhouse experiments, on the growth of Echium vulgare and alkannin/shikonin and their derivatives (A/Sd) production in the roots. Some of the endophytic fungi tested significantly increased plant growth parameters as compared to the control: Cladosporium allicinum, Cadophora sp., Clonostachys sp., Trichoderma hispanicum and Leptosphaeria ladina increased root volume, Plectosphaerella sp. And T. hispanicum root fresh weight and root water retention and T. hispanicum plant water retention. However, none of these fungi impacted A/Sd production. Conversely, none of the AMF strains tested impacted plant growth parameters, but those inoculated with Rhizophagus intraradices MUCL 49410 had a significantly higher concentration of alkannin/shikonin (A/S), acetyl-A/S, β,β- dimethylacryl-A/S, isovaleryl-A/S and total A/Sd, compared to the control plants. Further studies are needed to investigate the mechanisms involved in the production of A/Sd in plants associated to specific endophytic fungi/AMF and on the cultivation conditions required for optimal production of these compounds.
Collapse
Affiliation(s)
- Yanyan Zhao
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix Du Sud 2, Box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Nebojša Rodić
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation of AUTh, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Marios Liaskos
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry, Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation of AUTh, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Ismahen Lalaymia
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix Du Sud 2, Box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix Du Sud 2, Box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Guigard L, Jobert L, Busset N, Moulin L, Czernic P. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1278990. [PMID: 37941658 PMCID: PMC10628536 DOI: 10.3389/fpls.2023.1278990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR). There is scarce information on rice mycorrhization, despite the high potential of this symbiosis in a context of sustainable water management in rice production systems. Methods We studied the symbiotic compatibility (global mycorrhization & arbuscules intensity) and MIR phenotypes between six rice cultivars from two subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake, Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121 (RIN)). The impact of mycorrhization on rice growth and defence response to Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both phenotypic indexes and rice marker gene expression studies. Results All three AMF genotypes colonise the roots of all rice varieties, with clear differences in efficiency depending on the combination under study (from 27% to 84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively). Mycorrhization significantly (α=0.05) induced negative to beneficial effects on rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on the extent of Xoo symptoms on leaves (except for Azucena-RIN combination which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the most compatible AMF partner of rice, with high root colonisation intensity (84% of Nipponbare's roots hyphal colonisation), beneficial effects on rice growth (dry weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms (-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on leaves of two rice cultivars contrasting in their association with AMF show two different patterns of response on several physiological marker genes. Discussion Overall, the symbiotic compatibility between rice cultivars and AMF demonstrates adequate colonization, effectively restricting the nutrient starvation response and mitigating symptoms of phytopathogenic infection.
Collapse
Affiliation(s)
| | | | | | | | - Pierre Czernic
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
7
|
Pop-Moldovan V, Corcoz L, Stoian V, Moldovan C, Pleșa A, Vâtcă S, Stoian V, Vidican R. Models of mycorrhizal colonization patterns and strategies induced by biostimulator treatments in Zea mays roots. FRONTIERS IN PLANT SCIENCE 2022; 13:1052066. [PMID: 36466252 PMCID: PMC9713310 DOI: 10.3389/fpls.2022.1052066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Agronomic inputs and technologies, especially fertilizers, act on the evolution of the symbiotic partnership between arbuscular mycorrhizal fungi and cultivated plants. The use of the MycoPatt method for the assessment of mycorrhizas in maize roots leads to the extraction of large parameter databases with an increased resolution over the colonization mechanism. The application of a biostimulator treatment on plants acted toward a reduction of root permissiveness for mycorrhizas. The phenomenon was noticeable through an increased colonization variability that overlapped with plant nutritional needs. The annual characteristic of the plant was highlighted by the simultaneous presence of arbuscules and vesicles, with a high share of arbuscules in the advanced phenophases. Colonized root parts presented numerous arbuscule-dominated areas in all phenophases, which indicated a continuous formation of these structures and an intense nutrient transfer between partners. Mycorrhizal maps showed the slowing effect of the biostimulators on colonization, with one phenophase delay in the case of biostimulated plants compared to the ones without biostimulators. The forecast models presented gradual colonization in plants without biostimulators, with the expansion of new hyphal networks. The use of biostimulators on plants exhibited a lower permissiveness for new colonization areas, and the mechanism relies on hyphae developed in the former phenophases.
Collapse
Affiliation(s)
- Victoria Pop-Moldovan
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Larisa Corcoz
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Valentina Stoian
- Department of Plant Physiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristina Moldovan
- Department of Crop Plant, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Anca Pleșa
- Department of Grasslands and Forage Crops, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Sorin Vâtcă
- Department of Plant Physiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Stoian
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Roxana Vidican
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Evangelisti E, Turner C, McDowell A, Shenhav L, Yunusov T, Gavrin A, Servante EK, Quan C, Schornack S. Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots. THE NEW PHYTOLOGIST 2021; 232:2207-2219. [PMID: 34449891 DOI: 10.1111/nph.17697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Soil fungi establish mutualistic interactions with the roots of most vascular land plants. Arbuscular mycorrhizal (AM) fungi are among the most extensively characterised mycobionts to date. Current approaches to quantifying the extent of root colonisation and the abundance of hyphal structures in mutant roots rely on staining and human scoring involving simple yet repetitive tasks which are prone to variation between experimenters. We developed Automatic Mycorrhiza Finder (AMFinder) which allows for automatic computer vision-based identification and quantification of AM fungal colonisation and intraradical hyphal structures on ink-stained root images using convolutional neural networks. AMFinder delivered high-confidence predictions on image datasets of roots of multiple plant hosts (Nicotiana benthamiana, Medicago truncatula, Lotus japonicus, Oryza sativa) and captured the altered colonisation in ram1-1, str, and smax1 mutants. A streamlined protocol for sample preparation and imaging allowed us to quantify mycobionts from the genera Rhizophagus, Claroideoglomus, Rhizoglomus and Funneliformis via flatbed scanning or digital microscopy, including dynamic increases in colonisation in whole root systems over time. AMFinder adapts to a wide array of experimental conditions. It enables accurate, reproducible analyses of plant root systems and will support better documentation of AM fungal colonisation analyses. AMFinder can be accessed at https://github.com/SchornacklabSLCU/amfinder.
Collapse
Affiliation(s)
| | - Carl Turner
- Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, CB3 0WA, UK
| | - Alice McDowell
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Liron Shenhav
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Temur Yunusov
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Aleksandr Gavrin
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Emily K Servante
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Clément Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | |
Collapse
|
9
|
McGaley J, Paszkowski U. Visualising an invisible symbiosis. PLANTS, PEOPLE, PLANET 2021; 3:462-470. [PMID: 34938955 PMCID: PMC8651000 DOI: 10.1002/ppp3.10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/14/2023]
Abstract
Despite the vast abundance and global importance of plant and microbial species, the large majority go unnoticed and unappreciated by humans, contributing to pressing issues including the neglect of study and research of these organisms, the lack of interest and support for their protection and conservation, low microbial and botanical literacy in society, and a growing disconnect between people and nature. The invisibility of many of these organisms is a key factor in their oversight by society, but also points to a solution: sharing the wealth of visual data produced during scientific research with a broader audience. Here, we discuss how the invisible can be visualised for a public audience, and the benefits it can bring. SUMMARY Whether too small, slow or concealed, the majority of species on Earth go unseen by humans. One such rather unobservable group of organisms are the arbuscular mycorrhizal (AM) fungi, who form beneficial symbioses with plants. AM symbiosis is ubiquitous and vitally important globally in ecosystem functioning, but partly as a consequence of its invisibility, it receives disproportionally little attention and appreciation. Yet AM fungi, and other unseen organisms, need not remain overlooked: from decades of scientific research there exists a goldmine of visual data, which if shared effectively we believe can alleviate the issues of low awareness. Here, we use examples from our experience of public engagement with AM symbiosis as well as evidence from the literature to outline the diverse ways in which invisible organisms can be visualised for a broad audience. We highlight outcomes and knock-on consequences of this visualisation, ranging from improved human mental health to environmental protection, making the case for researchers to share their images more widely for the benefit of plants (and fungi and other overlooked organisms), people and planet.
Collapse
Affiliation(s)
| | - Uta Paszkowski
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Roy J, van Duijnen R, Leifheit EF, Mbedi S, Temperton VM, Rillig MC. Legacy effects of pre-crop plant functional group on fungal root symbionts of barley. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02378. [PMID: 33988274 DOI: 10.1002/eap.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, a group of widespread fungal symbionts of crops, could be important in driving crop yield across crop rotations through plant-soil feedbacks (PSF). However, whether preceding crops have a legacy effect on the AM fungi of the subsequent crop is poorly known. We set up an outdoor mesocosm crop rotation experiment that consisted of a first phase growing either one of four pre-crops establishing AM and/or rhizobial symbiosis or not (spring barley, faba bean, lupine, canola), followed by an AM crop, winter barley. After the pre-crop harvest, carbon-rich organic substrates were applied to test whether it attenuated, accentuated or modified the effect of pre-crops. The pre-crop mycorrhizal status, but not its rhizobial status, affected the richness and composition of AM fungi, and this difference, in particular community composition, persisted and increased in the roots of winter barley. The effect of a pre-crop was driven by its single symbiotic group, not its mixed symbiotic group and/or by a crop-species-specific effect. This demonstrates that the pre-crop symbiotic group has lasting legacy effects on the AM fungal communities and may steer the AM fungal community succession across rotation phases. This effect was accentuated by sawdust amendment, but not wheat straw. Based on the previous observation of decreased crop yield after AM pre-crops, our findings suggest negative PSF at the level of the plant symbiotic group driven by a legacy effect of crop rotation history on AM fungal communities, and that a focus on crop symbiotic group offers additional understanding of PSF.
Collapse
Affiliation(s)
- Julien Roy
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | | | - Eva F Leifheit
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Susan Mbedi
- Naturkundemuseum Berlin, Berlin, 10115, Germany
- Berlin Center for Genomics in Biodiversity Reseach, Berlin, 14195, Germany
| | - Vicky M Temperton
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
11
|
Montero H, Lee T, Pucker B, Ferreras-Garrucho G, Oldroyd G, Brockington SF, Miyao A, Paszkowski U. A mycorrhiza-associated receptor-like kinase with an ancient origin in the green lineage. Proc Natl Acad Sci U S A 2021; 118:e2105281118. [PMID: 34161289 PMCID: PMC8237591 DOI: 10.1073/pnas.2105281118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor-like kinases (RLKs) are key cell signaling components. The rice ARBUSCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that ARK1 has an ancient paralogue in spermatophytes, ARK2 Single ark2 and ark1/ark2 double mutants in rice showed a nonredundant AM symbiotic function for OsARK2 Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that OsARK1 and OsARK2 orchestrate symbiosis in a common pathway. ARK lineage proteins harbor a newly identified SPARK domain in their extracellular regions, which underwent parallel losses in ARK1 and ARK2 in monocots. This protein domain has ancient origins in streptophyte algae and defines additional overlooked groups of putative cell surface receptors.
Collapse
Affiliation(s)
- Héctor Montero
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom;
| | - Tak Lee
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Giles Oldroyd
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, Ibaraki 305-8518 Tsukuba, Japan
| | - Uta Paszkowski
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB3 0LE, United Kingdom;
| |
Collapse
|
12
|
Hu W, Pan L, Chen H, Tang M. VBA-AMF: A VBA Program Based on the Magnified Intersections Method for Quantitative Recording of Root Colonization by Arbuscular Mycorrhizal Fungi. Indian J Microbiol 2020; 60:374-378. [PMID: 32647395 PMCID: PMC7329954 DOI: 10.1007/s12088-020-00866-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
The extent of mycorrhizal fungi colonization is an important factor for determining the function of mycorrhizal fungi in fungi-host interaction, and quantifying the extent of mycorrhizal fungi colonization is a fundamental and essential task for researchers engaged in mycorrhizal studies. Intersect methods, such as the gridline intersect and magnified intersections methods, are accurate and objective, and are widely used to assess the colonization status of arbuscular mycorrhizal (AM) fungus. However, no convenient procedures or add-ins for Excel spreadsheets have been developed to simplify these methods. Here, we propose a procedure using the Visual Basic for Application (VBA) program in Excel that is based on the magnified intersections method, which we refer to as VBA-AMF (arbuscular mycorrhizal fungi). Time-saving and convenience are the two most prominent advantages of the VBA-AMF procedure, as it enables researchers to compute the colonization rate of AM fungi in roots, and consequently the extent of root colonization by AM fungi. VBA-AMF can also be modified to measure the status of other fungal colonizations in plant roots following the same strategy.
Collapse
Affiliation(s)
- Wentao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Lan Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Ming Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| |
Collapse
|
13
|
Banasiak J, Borghi L, Stec N, Martinoia E, Jasiński M. The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza. FRONTIERS IN PLANT SCIENCE 2020; 11:18. [PMID: 32117367 PMCID: PMC7019051 DOI: 10.3389/fpls.2020.00018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/10/2020] [Indexed: 05/03/2023]
Abstract
Strigolactones (SLs) are plant-derived signaling molecules that stimulate the hyphal branching of arbuscular mycorrhizal fungi (AMF), and consequently promote symbiotic interaction between the fungus and the plant. Currently, our knowledge on the molecular mechanism of SL transport is restricted to the Solanaceae family. In the Solanaceae family, SL translocation toward the rhizosphere occurs through the exodermis via hypodermal passage cells and involves a member of the G subfamily, of the ATP-binding cassette (ABC) membrane transporters. Most Fabaceae species, including those that are agriculturally important, have a different root anatomy compared to most angiosperm plants (i.e., lacking an exodermis). Thus, we have investigated how SL transport occurs in the model legume Medicago truncatula. Here, we show that overexpression of a SL transporter from petunia (PaPDR1) enhances AMF colonization rates in M. truncatula. This result demonstrates the importance of ABCG proteins for the translocation of orobanchol-type molecules to facilitate arbuscular mycorrhiza, regardless of root anatomy and phylogenetic relationships. Moreover, our research has led to the identification of Medicago ABCG59, a close homologue of Petunia PDR1, that exhibits root specific expression and is up-regulated by phosphate starvation as well as in the presence of rac-GR24, a synthetic SL. Its promoter is active in cortical cells, root tips, and the meristematic zone of nodules. The mtabcg59 loss-of-function mutant displayed a reduced level of mycorrhization compared to the WT plants but had no impact on the number of nodules after Sinorhizobium meliloti inoculation. The reduced mycorrhization indicates that less SLs are secreted by the mutant plants, which is in line with the observation that mtabcg59 exudates exhibit a reduced stimulatory effect on the germination of the parasitic plant Phelipanche ramosa compared to the corresponding wild type.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lorenzo Borghi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Natalia Stec
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
14
|
A Review of Studies from the Last Twenty Years on Plant–Arbuscular Mycorrhizal Fungi Associations and Their Uses for Wheat Crops. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this work was to summarize the most recent research focused on the study of plant–arbuscular mycorrhizal fungi (AMF) symbiosis, both in a generic context and in the specific context of wheat cultivation. Taking into account the last 20 years, the most significant studies on the main plant advantages taken from this association are reviewed herein. Positive advances that have been reported stem from the mutualistic relationship between the plant and the mycorrhizal fungus, revealing better performance for the host in terms of nutrient uptake and protection from salinity, lack of water, and excess phytotoxic elements. Mycorrhiza studies and the recent progress in research in this sector have shown a possible solution for environmental sustainability: AMF represent a valid alternative to overcome the loss of biological fertility of soils, reduce chemical inputs, and alleviate the effects of biotic and abiotic stress.
Collapse
|
15
|
Bueno CG, Aldrich-Wolfe L, Chaudhary VB, Gerz M, Helgason T, Hoeksema JD, Klironomos J, Lekberg Y, Leon D, Maherali H, Öpik M, Zobel M, Moora M. Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room. THE NEW PHYTOLOGIST 2019; 224:1415-1418. [PMID: 31246312 DOI: 10.1111/nph.15976] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Affiliation(s)
- C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND, 58108, USA
| | - V Bala Chaudhary
- Department of Environmental Science and Studies, DePaul University, 1110 West Belden Ave, Chicago, IL, 60614-2245, USA
| | - Maret Gerz
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Thorunn Helgason
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - John Klironomos
- Department of Biology, University of British Columbia-Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ylva Lekberg
- MPG Ranch, 1001 S. Higgins Ave, Missoula, MT, 59801, USA
- Department of Ecosystem Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Daniela Leon
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| |
Collapse
|
16
|
Chiapello M, Das D, Gutjahr C. Ramf: An Open-Source R Package for Statistical Analysis and Display of Quantitative Root Colonization by Arbuscular Mycorrhiza Fungi. FRONTIERS IN PLANT SCIENCE 2019; 10:1184. [PMID: 31611898 PMCID: PMC6777641 DOI: 10.3389/fpls.2019.01184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Data analysis and graphical representation form an essential part of scientific research dissemination. The life-science community is moving towards a more transparent presentation of single data points or data distributions and away from mean values displayed as bar charts. To facilitate transparent data display to the mycorrhiza community, we present "Ramf" an open-source R package for statistical analysis and preparation of a variety of publication-ready plots, custom-made for analyzing and displaying quantitative root colonization by arbuscular mycorrhiza fungi or any kind of data to be displayed in the same format. Ramf replaces the scripting needed for data analysis and can be readily used by researchers not acquainted with R. In addition, the package is open to improvements by the community. Ramf is available at https://github.com/mchiapello/Ramf.
Collapse
Affiliation(s)
- Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Torino, Italy
| | - Debatosh Das
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
17
|
Gibelin-Viala C, Amblard E, Puech-Pages V, Bonhomme M, Garcia M, Bascaules-Bedin A, Fliegmann J, Wen J, Mysore KS, le Signor C, Jacquet C, Gough C. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2019; 223:1516-1529. [PMID: 31058335 DOI: 10.1111/nph.15891] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 05/26/2023]
Abstract
Plant -specific lysin-motif receptor-like kinases (LysM-RLKs) are implicated in the perception of N-acetyl glucosamine-containing compounds, some of which are important signal molecules in plant-microbe interactions. Among these, both lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs) are proposed as arbuscular mycorrhizal (AM) fungal symbiotic signals. COs can also activate plant defence, although there are scarce data about CO production by pathogens, especially nonfungal pathogens. We tested Medicago truncatula mutants in the LysM-RLK MtLYK9 for their abilities to interact with the AM fungus Rhizophagus irregularis and the oomycete pathogen Aphanomyces euteiches. This prompted us to analyse whether A. euteiches can produce COs. Compared with wild-type plants, Mtlyk9 mutants had fewer infection events and were less colonised by the AM fungus. By contrast, Mtlyk9 mutants were more heavily infected by A. euteiches and showed more disease symptoms. Aphanomyces euteiches was also shown to produce short COs, mainly CO II, but also CO III and CO IV, and traces of CO V, both ex planta and in planta. MtLYK9 thus has a dual role in plant immunity and the AM symbiosis, which raises questions about the functioning and the ancestral origins of such a receptor protein.
Collapse
Affiliation(s)
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Magali Garcia
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Adeline Bascaules-Bedin
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Judith Fliegmann
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Jiangqi Wen
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Clare Gough
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| |
Collapse
|