1
|
Kremer A, Chen J, Lascoux M. 'Chimes of resilience': what makes forest trees genetically resilient? THE NEW PHYTOLOGIST 2025; 246:1934-1951. [PMID: 40190135 PMCID: PMC12059515 DOI: 10.1111/nph.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/28/2025] [Indexed: 05/10/2025]
Abstract
Forest trees are foundation species of many ecosystems and are challenged by global environmental changes. We assemble genetic facts and arguments supporting or undermining resilient responses of forest trees to those changes. Genetic resilience is understood here as the capacity of a species to restore its adaptive potential following environmental changes and disturbances. Importantly, the data come primarily from European temperate tree species with large distributions and consider only marginally species with small distributions. We first examine historical trajectories of trees during repeated climatic changes. Species that survived the Pliocene-Pleistocene transition and underwent the oscillations of glacial and interglacial periods were equipped with life history traits enhancing persistence and resilience. Evidence of their resilience also comes from the maintenance of large effective population sizes across time and rapid microevolutionary responses to recent climatic events. We then review genetic mechanisms and attributes shaping resilient responses. Usually, invoked constraints to resilience, such as genetic load or generation time and overlap, have limited consequences or are offset by positive impacts. Conversely, genetic plasticity, gene flow, introgression, genetic architecture of fitness-related traits and demographic dynamics strengthen resilience by accelerating adaptive responses. Finally, we address the limitations of this review and highlight critical research gaps.
Collapse
Affiliation(s)
- Antoine Kremer
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | - Jun Chen
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSE‐75236Sweden
| |
Collapse
|
2
|
Lu S, Liu L, Lei W, Wang D, Zhu H, Lai Q, Ma L, Ru D. Cryptic divergence in and evolutionary dynamics of endangered hybrid Picea brachytyla sensu stricto in the Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2024; 24:1202. [PMID: 39701948 DOI: 10.1186/s12870-024-05851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The visual similarities observed across various plant groups often conceal underlying genetic distinctions. This occurrence, known as cryptic diversity, underscores the key importance of identifying and understanding cryptic intraspecific evolutionary lineages in evolutionary ecology and conservation biology. RESULTS In this study, we conducted transcriptome analysis of 81 individuals from 18 natural populations of a northern lineage of Picea brachytyla sensu stricto that is endemic to the Qinghai-Tibet Plateau. Our analysis revealed the presence of two distinct local lineages, emerging approximately 444.8 thousand years ago (kya), within this endangered species. The divergence event aligns well with the geographic and climatic oscillations that occurred across the distributional range during the Mid-Pleistocene epoch. Additionally, we identified numerous environmentally correlated gene variants, as well as many other genes showing signals of positive selection across the genome. These factors likely contributed to the persistence and adaptation of the two distinct local lineages. CONCLUSIONS Our findings shed light on the highly dynamic evolutionary processes underlying the remarkably similar phenotypes of the two lineages of this endangered species. Importantly, these results enhance our understanding of the evolutionary past for this and for other endangered species with similar histories, and also provide guidance for the development of conservation plans.
Collapse
Affiliation(s)
- Shengming Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Weixiao Lei
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hui Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qing Lai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Liru Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Wei ZR, Jiao D, Wehenkel CA, Wei XX, Wang XQ. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2664-2682. [PMID: 39152659 DOI: 10.1111/jipb.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
Collapse
Affiliation(s)
- Zhou-Rui Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Christian Anton Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, 34000, Mexico
| | - Xiao-Xin Wei
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Gu W, Zhang T, Liu SY, Tian Q, Yang CX, Lu Q, Fu XG, Kates HR, Stull GW, Soltis PS, Soltis DE, Folk RA, Guralnick RP, Li DZ, Yi TS. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae. PLANT DIVERSITY 2024; 46:683-697. [PMID: 39811808 PMCID: PMC11726048 DOI: 10.1016/j.pld.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 01/16/2025]
Abstract
The angiosperm family Elaeagnaceae comprises three genera and ca. 100 species distributed mainly in Eurasia and North America. Little family-wide phylogenetic and biogeographic research on Elaeagnaceae has been conducted, limiting the application and preservation of natural genetic resources. Here, we reconstructed a strongly supported phylogenetic framework of Elaeagnaceae to better understand inter- and intrageneric relationships, as well as the origin and biogeographical history of the family. For this purpose, we used both nuclear and plastid sequences from Hyb-Seq and genome skimming approaches to reconstruct a well-supported phylogeny and, along with current distributional data, infer historical biogeographical processes. Our phylogenetic analyses of both nuclear and plastid data strongly support the monophyly of Elaeagnaceae and each of the three genera. Elaeagnus was resolved as sister to the well-supported clade of Hippophae and Shepherdia. The intrageneric relationships of Elaeagnus and Hippophae were also well resolved. High levels of nuclear gene tree conflict and cytonuclear discordance were detected within Elaeagnus, and our analyses suggest putative ancient and recent hybridization. We inferred that Elaeagnaceae originated at ca. 90.48 Ma (95% CI = 89.91-91.05 Ma), and long-distance dispersal likely played a major role in shaping its intercontinentally disjunct distribution. This work presents the most comprehensive phylogenetic framework for Elaeagnaceae to date, offers new insights into previously unresolved relationships in Elaeagnus, and provides a foundation for further studies on classification, evolution, biogeography, and conservation of Elaeagnaceae.
Collapse
Affiliation(s)
- Wei Gu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Qin Tian
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Chen-Xuan Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- School of Life Sciences, Yunnan University, Kunming 650504, Yunnan, China
| | - Qing Lu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Gang Fu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Heather R. Kates
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
| | - Gregory W. Stull
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
- Department of Biology, University of Florida, Gainesville, FL 32611, United States
| | - Ryan A. Folk
- Department of Biological Sciences, Mississippi State University, Mississippi, MS 39762, United States
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, United States
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
5
|
Cai J, Lu C, Cui Y, Wang Z, Zhang Q. OHDLF: A Method for Selecting Orthologous Genes for Phylogenetic Construction and Its Application in the Genus Camellia. Genes (Basel) 2024; 15:1404. [PMID: 39596605 PMCID: PMC11593501 DOI: 10.3390/genes15111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Accurate phylogenetic tree construction for species without reference genomes often relies on de novo transcriptome assembly to identify single-copy orthologous genes. However, challenges such as whole-genome duplication (WGD), heterozygosity, gene duplication, and loss can hinder the selection of these genes, leading to limited data for constructing reliable species trees. To address these issues, we developed a new analytical pipeline, OHDLF (Orthologous Haploid Duplication and Loss Filter), which filters orthologous genes from transcript data and adapts parameter settings based on genomic characteristics for further phylogenetic tree construction. In this study, we applied OHDLF to the genus Camellia and evaluated its effectiveness in constructing phylogenetic trees. The results highlighted the pipeline's ability to handle challenges like high heterozygosity and recent gene duplications by selectively retaining genes with a missing rate and merging duplicates with high similarity. This approach ensured the preservation of informative sites and produced a highly supported consensus tree for Camellia. Additionally, we evaluate the accuracy of the OHDLF phylogenetic trees for different species, demonstrating that the OHDLF pipeline provides a flexible and effective method for selecting orthologous genes and constructing accurate phylogenetic trees, adapting to the genomic characteristics of various plant groups.
Collapse
Affiliation(s)
- Junhao Cai
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| | - Cui Lu
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Yuwei Cui
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| | - Zhentao Wang
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| | - Qunjie Zhang
- Center of Genomics and Bioinformatics, Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.C.); (Z.W.)
| |
Collapse
|
6
|
Fang Y, Xiao X, Lin J, Lin Q, Wang J, Liu K, Li Z, Xing J, Liu Z, Wang B, Qi Y, Long X, Zeng X, Hu Y, Qi J, Qin Y, Yang J, Zhang Y, Zhang S, Ye D, Zhang J, Liu J, Tang C. Pan-genome and phylogenomic analyses highlight Hevea species delineation and rubber trait evolution. Nat Commun 2024; 15:7232. [PMID: 39174505 PMCID: PMC11341782 DOI: 10.1038/s41467-024-51031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/28/2024] [Indexed: 08/24/2024] Open
Abstract
The para rubber tree (Hevea brasiliensis) is the world's sole commercial source of natural rubber, a vital industrial raw material. However, the narrow genetic diversity of this crop poses challenges for rubber breeding. Here, we generate high-quality de novo genome assemblies for three H. brasiliensis cultivars, two H. brasiliensis wild accessions, and three other Hevea species (H. nitida, H. pauciflora, and H. benthamiana). Through analyzing genomes of 94 Hevea accessions, we identify five distinct lineages that do not align with their previous species delineations. We discover multiple accessions with hybrid origins between these lineages, indicating incomplete reproductive isolation between them. Only two out of four wild lineages have been introduced to commercial rubber cultivars. Furthermore, we reveal that the rubber production traits emerged following the development of a large REF/SRPP gene cluster and its functional specialization in rubber-producing laticifers within this genus. These findings would enhance rubber breeding and benefit research communities.
Collapse
Affiliation(s)
- Yongjun Fang
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Xiaohu Xiao
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Jishan Lin
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
| | - Qiang Lin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiang Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Kaiye Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Zhonghua Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Jianfeng Xing
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
| | - Zhenglin Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
| | - Baiyu Wang
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Yiying Qi
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyu Long
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Xia Zeng
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Yanshi Hu
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Jiyan Qi
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Yunxia Qin
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Jianghua Yang
- National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Yi Zhang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Shengmin Zhang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - De Ye
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Chaorong Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China.
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China.
- Yunnan Institute of Tropical Crops, Xishuangbanna, China.
| |
Collapse
|
7
|
Kang JS, Yu JG, Xiang QP, Zhang XC. The Possible Earliest Allopolyploidization in Tracheophytes Revealed by Phylotranscriptomics and Morphology of Selaginellaceae. Mol Biol Evol 2024; 41:msae153. [PMID: 39101470 PMCID: PMC11299036 DOI: 10.1093/molbev/msae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Selaginellaceae, originated in the Carboniferous and survived the Permian-Triassic mass extinction, is the largest family of lycophyte, which is sister to other tracheophytes. It stands out from tracheophytes by exhibiting extraordinary habitat diversity and lacking polyploidization. The organelle genome-based phylogenies confirmed the monophyly of Selaginella, with six or seven subgenera grouped into two superclades, but the phylogenetic positions of the enigmatic Selaginella sanguinolenta clade remained problematic. Here, we conducted a phylogenomic study on Selaginellaceae utilizing large-scale nuclear gene data from RNA-seq to elucidate the phylogeny and explore the causes of the phylogenetic incongruence of the S. sanguinolenta clade. Our phylogenetic analyses resolved three different positions of the S. sanguinolenta clade, which were supported by the sorted three nuclear gene sets, respectively. The results from the gene flow test, species network inference, and plastome-based phylogeny congruently suggested a probable hybrid origin of the S. sanguinolenta clade involving each common ancestor of the two superclades in Selaginellaceae. The hybrid hypothesis is corroborated by the evidence from rhizophore morphology and spore micromorphology. The chromosome observation and Ks distributions further suggested hybridization accompanied by polyploidization. Divergence time estimation based on independent datasets from nuclear gene sets and plastid genome data congruently inferred that allopolyploidization occurred in the Early Triassic. To our best knowledge, the allopolyploidization in the Mesozoic reported here represents the earliest record of tracheophytes. Our study revealed a unique triad of phylogenetic positions for a hybrid-originated group with comprehensive evidence and proposed a hypothesis for retaining both parental alleles through gene conversion.
Collapse
Affiliation(s)
- Jong-Soo Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ji-Gao Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
8
|
Liu Y, Xiao W, Wang F, Wang Y, Dong Y, Nie W, Tan C, An S, Chang E, Jiang Z, Wang J, Jia Z. Species divergence and environmental adaptation of Picea asperata complex at the whole genome level. Ecol Evol 2024; 14:e70126. [PMID: 39114168 PMCID: PMC11303459 DOI: 10.1002/ece3.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
To study the interspecific differentiation characteristics of species originating from recent radiation, the genotyping-by-sequencing (GBS) technique was used to explore the kinship, population structure, gene flow, genetic variability, genotype-environment association and selective sweeps of Picea asperata complex with similar phenotypes from a genome-wide perspective. The following results were obtained: 14 populations of P. asperata complex could be divided into 5 clades; P. wilsonii and P. neoveitchii diverged earlier and were more distantly related to the remaining 6 spruce species. Various geological events have promoted the species differentiation of P. asperata complex. There were four instances of gene flow among P. koraiensis, P. meyeri, P. asperata, P. crassifolia and P. mongolica. The population of P. mongolica had the highest level of nucleotide diversity, and P. neoveitchii may have experienced a bottleneck recently. Genotype-environment association found that a total of 20,808 genes were related to the environmental variables, which enhanced the adaptability of spruce in different environments. Genes that were selectively swept in the P. asperata complex were primarily associated with plant stress resistance. Among them were some genes involved in plant growth and development, heat stress, circadian rhythms and flowering. In addition to the commonly selected genes, different spruce species also displayed unique genes subjected to selective sweeps that improved their adaptability to different habitats. Understanding the interspecific gene flow and adaptive evolution of Picea species is beneficial to further understanding the species relationships of spruce and can provide a basis for studying spruce introgression and functional genomics.
Collapse
Affiliation(s)
- Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation InstituteChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation InstituteChinese Academy of ForestryBeijingChina
| | - Fude Wang
- Heilongjiang Forestry Research InstituteHarbinChina
| | - Ya Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation InstituteChinese Academy of ForestryBeijingChina
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation InstituteChinese Academy of ForestryBeijingChina
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation InstituteChinese Academy of ForestryBeijingChina
| | - Sanping An
- Research Institute of Forestry of Xiaolong MountainGansu Provincial Key Laboratory of Secondary Forest CultivationTianshuiChina
| | - Ermei Chang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation InstituteChinese Academy of ForestryBeijingChina
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| |
Collapse
|
9
|
Zhu H, Lei W, Lai Q, Sun Y, Ru D. Comparative analysis shows high level of lineage sorting in genomic regions with low recombination in the extended Picea likiangensis species complex. PLANT DIVERSITY 2024; 46:547-550. [PMID: 39280968 PMCID: PMC11390601 DOI: 10.1016/j.pld.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 09/18/2024]
Abstract
•Phylogenomic analysis uncovers widespread discordance in the extended Picea likiangensis complex.•Introgression (54.99%) and incomplete lineage sorting (ILS; 33.12%) are key drivers of this incongruity.•Recombination rates shape ILS and introgression, with high rates correlating with elevated levels.•Genes linked to abiotic stress responses exhibit significant introgression and ILS, suggesting adaptive evolution.•Lower recombination rates improve accuracy in species relationships.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Weixiao Lei
- Xi'an Center for Disease Control and Prevention, Xi'an 710068, China
| | - Qing Lai
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongshuai Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Liu Y, Xiao W, Wang F, Wang Y, Dong Y, Nie W, Tan C, An S, Chang E, Jiang Z, Wang J, Jia Z. Adaptive divergence, historical population dynamics, and simulation of suitable distributions for Picea Meyeri and P. Mongolica at the whole-genome level. BMC PLANT BIOLOGY 2024; 24:479. [PMID: 38816690 PMCID: PMC11137980 DOI: 10.1186/s12870-024-05166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
The taxonomic classification of Picea meyeri and P. mongolica has long been controversial. To investigate the genetic relatedness, evolutionary history, and population history dynamics of these species, genotyping-by-sequencing (GBS) technology was utilized to acquire whole-genome single nucleotide polymorphism (SNP) markers, which were subsequently used to assess population structure, population dynamics, and adaptive differentiation. Phylogenetic and population structural analyses at the genomic level indicated that although the ancestor of P. mongolica was a hybrid of P. meyeri and P. koraiensis, P. mongolica is an independent Picea species. Additionally, P. mongolica is more closely related to P. meyeri than to P. koraiensis, which is consistent with its geographic distribution. There were up to eight instances of interspecific and intraspecific gene flow between P. meyeri and P. mongolica. The P. meyeri and P. mongolica effective population sizes generally decreased, and Maxent modeling revealed that from the Last Glacial Maximum (LGM) to the present, their habitat areas decreased initially and then increased. However, under future climate scenarios, the habitat areas of both species were projected to decrease, especially under high-emission scenarios, which would place P. mongolica at risk of extinction and in urgent need of protection. Local adaptation has promoted differentiation between P. meyeri and P. mongolica. Genotype‒environment association analysis revealed 96,543 SNPs associated with environmental factors, mainly related to plant adaptations to moisture and temperature. Selective sweeps revealed that the selected genes among P. meyeri, P. mongolica and P. koraiensis are primarily associated in vascular plants with flowering, fruit development, and stress resistance. This research enhances our understanding of Picea species classification and provides a basis for future genetic improvement and species conservation efforts.
Collapse
Affiliation(s)
- Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fude Wang
- Heilongjiang Forestry Research Institute, Harbin, 150080, China
| | - Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Sanping An
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, 741022, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
11
|
Zhang Z, Liu G, Li M. Phylotranscriptomic discordance is best explained by incomplete lineage sorting within Allium subgenus Cyathophora and thus hemiplasy accounts for interspecific trait transition. PLANT DIVERSITY 2024; 46:28-38. [PMID: 38343588 PMCID: PMC10851291 DOI: 10.1016/j.pld.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 12/20/2024]
Abstract
The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification. Much can be learned about this process from phylogeny-based trait evolution. However, such inference is often plagued by genome-wide gene-tree discordance (GTD), mostly due to incomplete lineage sorting (ILS) and/or introgressive hybridization, especially when the genes underlying the traits appear discordant. Here, by collecting transcriptomes, whole chloroplast genomes (cpDNA), and population genetic datasets, we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent "phylogenetic discordance" between different morphological traits and probable species phylogeny in the Allium subg. Cyathophora. Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes (SCGs), as supported by the KS distribution. However, GTD was high across the genomes of subg. Cyathophora: ∼27%-38.9% of the SCG trees were in conflict with the species tree. Plasmid and nuclear incongruence was also present. Our coalescent simulations indicated that such GTD was mainly a product of ILS. Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg. Cyathophora phylogeny may have caused the character transition, as well as the anomalous cpDNA tree. Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.
Collapse
Affiliation(s)
- Zengzhu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Gang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Minjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| |
Collapse
|
12
|
Wang D, Sun Y, Lei W, Zhu H, Wang J, Bi H, Feng S, Liu J, Ru D. Backcrossing to different parents produced two distinct hybrid species. Heredity (Edinb) 2023; 131:145-155. [PMID: 37264213 PMCID: PMC10382510 DOI: 10.1038/s41437-023-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Repeated homoploid hybrid speciation (HHS) events with the same parental species have rarely been reported. In this study, we used population transcriptome data to test paraphyly and HHS events in the conifer Picea brachytyla. Our analyses revealed non-sister relationships for two lineages of P. brachytyla, with the southern lineage being placed within the re-circumscribed P. likiangensis species complex (PLSC) and P. brachytyla sensu stricto (s.s.) consisted solely of the northern lineage, forming a distinct clade that is paratactic to both the PLSC and P. wilsonii. Our phylogenetic and coalescent analyses suggested that P. brachytyla s.s. arose from HHS between the ancestor of the PLSC before its diversification and P. wilsonii through an intermediate hybrid lineage at an early stage and backcrossing to the ancestral PLSC. Additionally, P. purpurea shares the same parents and an extinct lineage with P. brachytyla s.s. but backcrossing to the other parent, P. wilsonii at a later stage. We reveal the first case that backcrossing to different parents of the same extinct hybrid lineage produced two different hybrid species. Our results highlight the existence of more reticulate evolution during species diversification in the spruce genus and more complex homoploid hybrid events than previously identified.
Collapse
Affiliation(s)
- Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yongshuai Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Weixiao Lei
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ji Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Hao Bi
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, Wang HF. Target sequence capture data shed light on the deeper evolutionary relationships of subgenus Chamaecerasus in Lonicera (Caprifoliaceae). Mol Phylogenet Evol 2023; 184:107808. [PMID: 37156329 DOI: 10.1016/j.ympev.2023.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The genus Lonicera L. is widely distributed in the north temperate zone and is well-known for its high species richness and morphological diversity. Previous studies have suggested that many sections of Lonicera are not monophyletic and phylogenetic relationships within the genus are still poorly resolved. In this study, we sampled 37 accessions of Lonicera, covering four sections of subgenus Chamaecerasus plus six outgroup taxa, to recover the main clades of Lonicera based on sequences of nuclear loci generated by target enrichment and cpDNA from genome skimming. We found extensive cytonuclear discordance across the subgenus. Both nuclear and plastid phylogenetic analyses supported subgenus Chamaecerasus sister to subgenus Lonicera. Within subgenus Chamaecerasus, sections Isika and Nintooa were each polyphyletic. Based on the nuclear and chloroplast phylogenies, we propose to merge Lonicera korolkowii into section Coeloxylosteum and Lonicera caerulea into section Nintooa. In addition, Lonicera is estimated to have originated in the mid Oligocene (26.45 Ma). The stem age of section Nintooa was estimated to be 17.09 Ma (95% HPD: 13.30-24.45). The stem age of subgenus Lonicera was estimated to be 16.35 Ma (95% HPD: 14.12-23.66). Ancestral area reconstruction analyses indicate that subgenus Chamaecerasus originated in East Asia and Central Asia. In addition, sections Coeloxylosteum and Nintooa originated in East Asia, with subsequent dispersals into other areas. The aridification of the Asian interior likely promoted the rapid radiation of sections Coeloxylosteum and Nintooa within this region. Moreover, our biogeographic analysis fully supports the Bering and the North Atlantic Land Bridge hypotheses for the intercontinental migrations in the Northern Hemisphere. Overall, this study provides new insights into the taxonomically complex lineages of subgenus Chamaecerasus and the process of speciation.
Collapse
Affiliation(s)
- Qing-Hui Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA; Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Hong-Xin Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Zhai Mingguo Academician Work Station, Sanya University, Sanya 572022, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14850, USA; BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Hua-Feng Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Zan T, He YT, Zhang M, Yonezawa T, Ma H, Zhao QM, Kuo WY, Zhang WJ, Huang CH. Phylogenomic analyses of Camellia support reticulate evolution among major clades. Mol Phylogenet Evol 2023; 182:107744. [PMID: 36842731 DOI: 10.1016/j.ympev.2023.107744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Camellia (Theaceae) is a morphologically highly diverse genus of flowering plants and includes many famous species with high economic value, and the phylogeny of this genus is not fully resolved. We used 95 transcriptomes from 87 Camellia species and identified 1481 low-copy genes to conduct a detailed analysis of the phylogeny of this genus according to various data-screening criteria. The results show that, very different from the two existing classification systems of Camellia, 87 species are grouped into 8 main clades and two independent species, and that all 8 clades except Clade 8 were strongly supported by almost all the coalescent or concatenated trees using different gene subsets. However, the relationships among these clades were weakly supported and different from analyses using different gene subsets; furthermore, they do not agree with the phylogeny from chloroplast genomes of Camellia. Additional analyses support reticulate evolution (probably resulting from introgression or hybridization) among some major Camellia lineages, providing explanation for extensive gene tree conflicts. Furthermore, we inferred that together with the formation of East Asian subtropical evergreen broad-leaved forests, Camellia underwent a radiative divergence of major clades at 23 ∼ 19 Ma in the late Miocene then had a subsequent species burst at 10 ∼ 5 Ma. Principal component and cluster analyses provides new insights into morphological changes underlying the evolution of Camellia and a reference to further clarify subgenus and sections of this genus. The comprehensive study here including a nuclear phylogeny and other analyses reveal the rapid evolutionary history of Camellia.
Collapse
Affiliation(s)
- Ting Zan
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yi-Tao He
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa 14 243-0034, Japan.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Qiang-Min Zhao
- Guangzhou Zongke Horticulture Development Co., Ltd., Guangzhou 511300, China.
| | - Wen-Yu Kuo
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Wen-Ju Zhang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chien-Hsun Huang
- Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
15
|
Wang Y, Jiang Z, Qin A, Wang F, Chang E, Liu Y, Nie W, Tan C, Yuan Y, Dong Y, Huang R, Jia Z, Wang J. Population Structure, Genetic Diversity and Candidate Genes for the Adaptation to Environmental Stress in Picea koraiensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1266. [PMID: 36986954 PMCID: PMC10055018 DOI: 10.3390/plants12061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Aili Qin
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Fude Wang
- Forestry Research Institute in Heilongjiang Province, Harbin 150081, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruizhi Huang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
16
|
Feng S, Wan W, Li Y, Wang D, Ren G, Ma T, Ru D. Transcriptome-based analyses of adaptive divergence between two closely related spruce species on the Qinghai-Tibet plateau and adjacent regions. Mol Ecol 2023; 32:476-491. [PMID: 36320185 DOI: 10.1111/mec.16758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Speciation among populations connected by gene flow is driven by adaptation to different environments, but underlying gene-environment associations remain largely unknown. Here, 162 individuals from 32 populations were sampled to obtain 191,648 independent single nucleotide polymorphisms (SNPs) across the genomes of two closely related spruce species, Picea asperata and Picea crassifolia, which occur on the Qinghai-Tibet Plateau and in surrounding regions. Using the SNP data set, genotype-environment associations and demographic modelling were used to examine local adaptation and genetic divergence between these two species. While morphologically similar, the two Picea species were genetically differentiated in multiple analyses. These species diverged despite continuous gene flow, and their initial divergence was dated back to the late Quaternary. The effective population sizes of both species have expanded since their divergence, as confirmed by niche distribution simulations. A total of 6365 genes were associated with the tested environmental variables; of these, 41 were positively selected in P. asperata and were mainly associated with temperature, while 83 were positively selected in P. crassifolia and were primarily associated with precipitation. These results deepen our understanding of the adaptive divergence and demographic histories of these two spruce species and highlight the importance of genomic data in deciphering the environmental selection underlying Quaternary interspecific divergence.
Collapse
Affiliation(s)
- Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wei Wan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - DongLei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Ma Y, Mao X, Wang J, Zhang L, Jiang Y, Geng Y, Ma T, Cai L, Huang S, Hollingsworth P, Mao K, Kang M, Li Y, Yang W, Wu H, Chen Y, Davis CC, Shrestha N, Ree RH, Xi Z, Hu Q, Milne RI, Liu J. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China. Natl Sci Rev 2022; 9:nwac276. [PMID: 36687562 PMCID: PMC9844246 DOI: 10.1093/nsr/nwac276] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Radiations are especially important for generating species biodiversity in mountainous ecosystems. The contribution of hybridization to such radiations has rarely been examined. Here, we use extensive genomic data to test whether hybridization was involved in evolutionary radiation within Rhododendron subgenus Hymenanthes, whose members show strong geographic isolation in the mountains of southwest China. We sequenced genomes for 143 species of this subgenus and 93 species of four other subgenera, and found that Hymenanthes was monophyletic and radiated during the late Oligocene to middle Miocene. Widespread hybridization events were inferred within and between the identified clades and subclades. This suggests that hybridization occurred both early and late during diversification of subgenus Hymenanthes, although the extent to which hybridization, speciation through mixing-isolation-mixing or hybrid speciation, accelerated the diversification needs further exploration. Cycles of isolation and contact in such and other montane ecosystems may have together promoted species radiation through hybridization between diverging populations and species. Similar radiation processes may apply to other montane floras in this region and elsewhere.
Collapse
Affiliation(s)
| | | | | | - Lei Zhang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuying Geng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tao Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Liming Cai
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | | | - Kangshan Mao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiling Li
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenlu Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haolin Wu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Richard H Ree
- Negaunee Integrative Research Center, Field Museum, Chicago, IL 60605, USA
| | - Zhenxiang Xi
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
18
|
Liu Y, Qin A, Wang Y, Nie W, Tan C, An S, Wang J, Chang E, Jiang Z, Jia Z. Interspecific Gene Flow and Selective Sweeps in Picea wilsonii, P. neoveitchii and P. likiangensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2993. [PMID: 36365446 PMCID: PMC9658573 DOI: 10.3390/plants11212993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Genome-wide single nucleotide polymorphism (SNP) markers were obtained by genotyping-by-sequencing (GBS) technology to study the genetic relationships, population structure, gene flow and selective sweeps during species differentiation of Picea wilsonii, P. neoveitchii and P. likiangensis from a genome-wide perspective. We used P. jezoensis and P. pungens as outgroups, and three evolutionary branches were obtained: P. likiangensis was located on one branch, two P. wilsonii populations were grouped onto a second branch, and two P. neoveitchii populations were grouped onto a third branch. The relationship of P. wilsonii with P. likiangensis was closer than that with P. neoveitchii. ABBA-BABA analysis revealed that the gene flow between P. neoveitchii and P. wilsonii was greater than that between P. neoveitchii and P. likiangensis. Compared with the background population of P. neoveitchii, the genes that were selected in the P. wilsonii population were mainly related to plant stress resistance, stomatal regulation, plant morphology and flowering. The genes selected in the P. likiangensis population were mainly related to plant stress resistance, leaf morphology and flowering. Selective sweeps were beneficial for improving the adaptability of spruce species to different habitats as well as to accelerate species differentiation. The frequent gene flow between spruce species makes their evolutionary relationships complicated. Insight into gene flow and selection pressure in spruce species will help us further understand their phylogenetic relationships and provide a scientific basis for their introduction, domestication and genetic improvement.
Collapse
Affiliation(s)
- Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Aili Qin
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Sanping An
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui 741002, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
19
|
Gagalova KK, Warren RL, Coombe L, Wong J, Nip KM, Yuen MMS, Whitehill JGA, Celedon JM, Ritland C, Taylor GA, Cheng D, Plettner P, Hammond SA, Mohamadi H, Zhao Y, Moore RA, Mungall AJ, Boyle B, Laroche J, Cottrell J, Mackay JJ, Lamothe M, Gérardi S, Isabel N, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I. Spruce giga-genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1469-1485. [PMID: 35789009 DOI: 10.1111/tpj.15889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.
Collapse
Affiliation(s)
- Kristina K Gagalova
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Johnathan Wong
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Carol Ritland
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Greg A Taylor
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Dean Cheng
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Patrick Plettner
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - S Austin Hammond
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
- Next-Generation Sequencing Facility, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Hamid Mohamadi
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Jérôme Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
| | - Joan Cottrell
- Forest Research, U.K. Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Midlothian, UK
| | - John J Mackay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Sébastien Gérardi
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Pavy
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, GIV 0A6, Canada
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
20
|
He J, Lyu R, Luo Y, Xiao J, Xie L, Wen J, Li W, Pei L, Cheng J. A phylotranscriptome study using silica gel-dried leaf tissues produces an updated robust phylogeny of Ranunculaceae. Mol Phylogenet Evol 2022; 174:107545. [PMID: 35690374 DOI: 10.1016/j.ympev.2022.107545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The utility of transcriptome data in plant phylogenetics has gained popularity in recent years. However, because RNA degrades much more easily than DNA, the logistics of obtaining fresh tissues has become a major limiting factor for widely applying this method. Here, we used Ranunculaceae to test whether silica-dried plant tissues could be used for RNA extraction and subsequent phylogenomic studies. We sequenced 27 transcriptomes, 21 from silica gel-dried (SD-samples) and six from liquid nitrogen-preserved (LN-samples) leaf tissues, and downloaded 27 additional transcriptomes from GenBank. Our results showed that although the LN-samples produced slightly better reads than the SD-samples, there were no significant differences in RNA quality and quantity, assembled contig lengths and numbers, and BUSCO comparisons between two treatments. Using these data, we conducted phylogenomic analyses, including concatenated- and coalescent-based phylogenetic reconstruction, molecular dating, coalescent simulation, phylogenetic network estimation, and whole genome duplication (WGD) inference. The resulting phylogeny was consistent with previous studies with higher resolution and statistical support. The 11 core Ranunculaceae tribes grouped into two chromosome type clades (T- and R-types), with high support. Discordance among gene trees is likely due to hybridization and introgression, ancient genetic polymorphism and incomplete lineage sorting. Our results strongly support one ancient hybridization event within the R-type clade and three WGD events in Ranunculales. Evolution of the three Ranunculaceae chromosome types is likely not directly related to WGD events. By clearly resolving the Ranunculaceae phylogeny, we demonstrated that SD-samples can be used for RNA-seq and phylotranscriptomic studies of angiosperms.
Collapse
Affiliation(s)
- Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Rudan Lyu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Yike Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jiamin Xiao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | - Wenhe Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Linying Pei
- Beijing Engineering Technology Research Center for Garden Plants, Beijing Forestry University Forest Science Co. Ltd., Beijing 100083, PR China
| | - Jin Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
21
|
Wang Y, Ruhsam M, Milne R, Graham SW, Li J, Tao T, Zhang Y, Mao K. Incomplete lineage sorting and local extinction shaped the complex evolutionary history of the Paleogene relict conifer genus, Chamaecyparis (Cupressaceae). Mol Phylogenet Evol 2022; 172:107485. [PMID: 35452840 DOI: 10.1016/j.ympev.2022.107485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
Inferring accurate biogeographic history of plant taxa with an East Asia (EA)-North America (NA) is usually hindered by conflicting phylogenies and a poor fossil record. The current distribution of Chamaecyparis (false cypress; Cupressaceae) with four species in EA, and one each in western and eastern NA, and its relatively rich fossil record, make it an excellent model for studying the EA-NA disjunction. Here we reconstruct phylogenomic relationships within Chamaecyparis using > 1400 homologous nuclear and 61 plastid genes. Our phylogenomic analyses using concatenated and coalescent approaches revealed strong cytonuclear discordance and conflicting topologies between nuclear gene trees. Incomplete lineage sorting (ILS) and hybridization are possible explanations of conflict; however, our coalescent analyses and simulations suggest that ILS is the major contributor to the observed phylogenetic discrepancies. Based on a well-resolved species tree and four fossil calibrations, the crown lineage of Chamaecyparis is estimated to have originated in the upper Cretaceous, followed by diversification events in the early and middle Paleogene. Ancestral area reconstructions suggest that Chamaecyparis had an ancestral range spanning both EA and NA. Fossil records further indicate that this genus is a relict of the "boreotropical" flora, and that local extinctions of European species were caused by global cooling. Overall, our results unravel a complex evolutionary history of a Paleogene relict conifer genus, which may have involved ILS, hybridization and the extinction of local species.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Science, School of Biological Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China; College of Science, Tibet University, Lhasa 850000, Xizang Autonomous Region, PR China.
| |
Collapse
|
22
|
Wu S, Wang Y, Wang Z, Shrestha N, Liu J. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. THE NEW PHYTOLOGIST 2022; 234:392-404. [PMID: 35020198 DOI: 10.1111/nph.17956] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The Qinghai-Tibet Plateau (QTP) sensu lato (sl), comprising the platform, the Himalaya and the Hengduan Mountains, is characterized by a large number of endemic plant species. This evolutionary cradle may have arisen from explosive species diversification because of geographic isolation. However, gene flow has been widely detected during the speciation processes of all groups examined, suggesting that natural selection may have also played an important role during species divergence in this region. In addition, natural hybrids have been recovered in almost all species-rich genera. This suggests that numerous species in this region are still 'on the speciation pathway to complete reproductive isolation (RI)'. Such hybrids could directly develop into new species through hybrid polyploidization and homoploid hybrid speciation (HHS). HHS may take place more easily than previously thought through alternate inheritance of alleles of parents at multiple RI loci. Therefore, isolation, selection and hybridization could together have promoted species diversification of numerous plant genera on the QTP sl. We emphasize the need for identification and functional analysis of alleles of major genes for speciation, and especially encourage investigations of parallel adaptive divergence causing RI across different lineages within similar but specific habitats in this region.
Collapse
Affiliation(s)
- Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yi Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zefu Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
23
|
Wang Z, Jiang Y, Yang X, Bi H, Li J, Mao X, Ma Y, Ru D, Zhang C, Hao G, Wang J, Abbott RJ, Liu J. Molecular signatures of parallel adaptive divergence causing reproductive isolation and speciation across two genera. Innovation (N Y) 2022; 3:100247. [PMID: 35519515 PMCID: PMC9065898 DOI: 10.1016/j.xinn.2022.100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/16/2022] [Indexed: 11/18/2022] Open
Abstract
Parallel evolution of reproductive isolation (PERI) provides strong evidence for natural selection playing a fundamental role in the origin of species. However, PERI has been rarely demonstrated for well established species drawn from different genera. In particular, parallel molecular signatures for the same genes in response to similar habitat divergence in such different lineages is lacking. Here, based on whole-genome sequencing data, we first explore the speciation process in two sister species of Carpinus (Betulaceae) in response to divergence for temperature and soil-iron concentration in habitats they occupy in northern and southwestern China, respectively. We then determine whether parallel molecular mutations occur during speciation in this pair of species and also in another sister-species pair of the related genus, Ostryopsis, which occupy similarly divergent habitats in China. We show that gene flow occurred during the origin of both pairs of sister species since approximately 9.8 or approximately 2 million years ago, implying strong natural selection during divergence. Also, in both species pairs we detected concurrent positive selection in a gene (LHY) for flowering time and in two paralogous genes (FRO4 and FRO7) of a gene family known to be important for iron tolerance. These changes were in addition to changes in other major genes related to these two traits. The different alleles of these particular candidate genes possessed by the sister species of Carpinus were functionally tested and indicated likely to alter flowering time and iron tolerance as previously demonstrated in the pair of Ostryopsis sister species. Allelic changes in these genes may have effectively resulted in high levels of prezygotic reproductive isolation to evolve between sister species of each pair. Our results show that PERI can occur in different genera at different timescales and involve similar signatures of molecular evolution at genes or paralogues of the same gene family, causing reproductive isolation as a consequence of adaptation to similarly divergent habitats. PERI provides strong evidence for natural selection playing a fundamental role in the origin of species PERI is rarely demonstrated for well-established species drawn from different genera We detected PERI across two genera (Carpinus and Ostryopsis) in the family Betulaceae PERI can occur in different genera at different timescales and involve molecular signatures at similar pathways
Collapse
Affiliation(s)
- Zefu Wang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyue Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hao Bi
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jialiang Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingxing Mao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yazhen Ma
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Cheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guoqian Hao
- Sichuan Tea College, Yibin University, Yibin 644000, China
| | - Jing Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | | | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Corresponding author
| |
Collapse
|
24
|
Insights into the Divergence of Chinese Ips Bark Beetles during Evolutionary Adaptation. BIOLOGY 2022; 11:biology11030384. [PMID: 35336758 PMCID: PMC8945085 DOI: 10.3390/biology11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Bark beetle species of the genus Ips are among the major pests of Chinese conifer forests. Based on mitochondrial genome and SNP, we investigated the phylogenetic relationships and evolutionary trends of 19 populations of six Ips species that had serious outbreaks in recent years. Our results demonstrated the relationships between Ips evolution and host plants, pheromones, and altitudinal differences, and provided new insights into the mechanism of adaptive evolution of Ips bark beetles. Abstract Many bark beetles of the genus Ips are economically important insect pests that cause severe damage to conifer forests worldwide. In this study, sequencing the mitochondrial genome and restriction site-associated DNA of Ips bark beetles helps us understand their phylogenetic relationships, biogeographic history, and evolution of ecological traits (e.g., pheromones and host plants). Our results show that the same topology in phylogenetic trees constructed in different ways (ML/MP/BI) and with different data (mtDNA/SNP) helps us to clarify the phylogenetic relationships between Chinese Ips bark beetle populations and Euramerican species and their higher order clades; Ips bark beetles are polyphyletic. The structure of the mitochondrial genome of Ips bark beetles is similar and conserved to some extent, especially in the sibling species Ips typographus and Ips nitidus. Genetic differences among Ips species are mainly related to their geographic distribution and different hosts. The evolutionary pattern of aggregation pheromones of Ips species reflects their adaptations to the environment and differences among hosts in their evolutionary process. The evolution of Ips species is closely related to the uplift of the Qinghai-Tibet Plateau and host switching. Our study addresses the evolutionary trend and phylogenetic relationships of Ips bark beetles in China, and also provides a new perspective on the evolution of bark beetles and their relationships with host plants and pheromones.
Collapse
|
25
|
Lu Z, Sun Y, Li Y, Yang Y, Wang G, Liu J. Species delimitation and hybridization history of a hazel species complex. ANNALS OF BOTANY 2021; 127:875-886. [PMID: 33564860 PMCID: PMC8225278 DOI: 10.1093/aob/mcab015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/03/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Hybridization increases species adaptation and biodiversity but also obscures species boundaries. In this study, species delimitation and hybridization history were examined within one Chinese hazel species complex (Corylus chinensis-Corylus fargesii). Two species including four varieties have already been described for this complex, with overlapping distributions. METHODS A total of 322 trees from 44 populations of these four varieties across their ranges were sampled for morphological and molecular analyses. Climatic datasets based on 108 geographical locations were used to evaluate their niche differentiations. Flowering phenology was also observed for two co-occurring species or varieties. KEY RESULTS Four statistically different phenotypic clusters were revealed, but these clusters were highly inconsistent with the traditional taxonomic groups. All the clusters showed statistically distinct niches, with complete or partial geographical isolation. Only two clusters displayed a distributional overlap, but they had distinct flowering phenologies at the site where they co-occurred. Population-level evidence based on the genotypes of ten simple sequence repeat loci supported four phenotypic clusters. In addition, one cluster was shown to have an admixed genetic composition derived from the other three clusters through repeated historical hybridizations. CONCLUSIONS Based on our new evidence, it is better to treat the four clusters identified here as four independent species. One of them was shown to have an admixed genetic composition derived from the other three through repeated historical hybridizations. This study highlights the importance of applying integrative and statistical methods to infer species delimitations and hybridization history. Such a protocol should be adopted widely for future taxonomic studies.
Collapse
Affiliation(s)
- Zhiqiang Lu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Yongshuai Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Ying Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Gaini Wang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Becher H, Brown MR, Powell G, Metherell C, Riddiford NJ, Twyford AD. Maintenance of Species Differences in Closely Related Tetraploid Parasitic Euphrasia (Orobanchaceae) on an Isolated Island. PLANT COMMUNICATIONS 2020; 1:100105. [PMID: 33367265 PMCID: PMC7748025 DOI: 10.1016/j.xplc.2020.100105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 05/02/2023]
Abstract
Polyploidy is pervasive in angiosperm evolution and plays important roles in adaptation and speciation. However, polyploid groups are understudied due to complex sequence homology, challenging genome assembly, and taxonomic complexity. Here, we study adaptive divergence in taxonomically complex eyebrights (Euphrasia), where recent divergence, phenotypic plasticity, and hybridization blur species boundaries. We focus on three closely related tetraploid species with contrasting ecological preferences that are sympatric on Fair Isle, a small isolated island in the British Isles. Using a common garden experiment, we show a genetic component to the morphological differences present between these species. Using whole-genome sequencing and a novel k-mer approach we call "Tetmer", we demonstrate that the species are of allopolyploid origin, with a sub-genome divergence of approximately 5%. Using ∼2 million SNPs, we show sub-genome homology across species, with a very low sequence divergence characteristic of recent speciation. This genetic variation is broadly structured by species, with clear divergence of Fair Isle heathland Euphrasia micrantha, while grassland Euphrasia arctica and coastal Euphrasia foulaensis are more closely related. Overall, we show that tetraploid Euphrasia is a system of allopolyploids of postglacial species divergence, where adaptation to novel environments may be conferred by old variants rearranged into new genetic lineages.
Collapse
Affiliation(s)
- Hannes Becher
- University of Edinburgh, School of Biological Sciences, Institute of Evolutionary Biology, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Corresponding author
| | - Max R. Brown
- University of Edinburgh, School of Biological Sciences, Institute of Evolutionary Biology, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gavin Powell
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Chris Metherell
- Botanical Society of Britain and Ireland, 4 High Firs Crescent, Harpenden, Hertfordshire AL5 1NA, UK
| | | | - Alex D. Twyford
- University of Edinburgh, School of Biological Sciences, Institute of Evolutionary Biology, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
- Corresponding author
| |
Collapse
|
27
|
Sullivan AR, Eldfjell Y, Schiffthaler B, Delhomme N, Asp T, Hebelstrup KH, Keech O, Öberg L, Møller IM, Arvestad L, Street NR, Wang XR. The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants. Genome Biol Evol 2020; 12:3586-3598. [PMID: 31774499 PMCID: PMC6944214 DOI: 10.1093/gbe/evz263] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity.
Collapse
Affiliation(s)
- Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| | - Yrin Eldfjell
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Bastian Schiffthaler
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Lisa Öberg
- Oldtjikko Photo Art & Science, Duved, Sweden
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Lars Arvestad
- Science for Life Laboratory, Department of Mathematics, Swedish e-Science Research Centre, Stockholm University, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Sweden
| |
Collapse
|
28
|
Wang M, Zhang L, Zhang Z, Li M, Wang D, Zhang X, Xi Z, Keefover-Ring K, Smart LB, DiFazio SP, Olson MS, Yin T, Liu J, Ma T. Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. THE NEW PHYTOLOGIST 2020; 225:1370-1382. [PMID: 31550399 DOI: 10.1111/nph.16215] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 09/16/2019] [Indexed: 05/10/2023]
Abstract
Phylogenetic analysis is complicated by interspecific gene flow and the presence of shared ancestral polymorphisms, particularly those maintained by balancing selection. In this study, we aimed to examine the prevalence of these factors during the diversification of Populus, a model tree genus in the Northern Hemisphere. We constructed phylogenetic trees of 29 Populus taxa using 80 individuals based on re-sequenced genomes. Our species tree analyses recovered four main clades in the genus based on consensus nuclear phylogenies, but in conflict with the plastome phylogeny. A few interspecific relationships remained unresolved within the multiple-species clade because of inconsistent gene trees. Our results indicated that gene flow has been widespread within each clade and also occurred among the four clades during their early divergence. We identified 45 candidate genes with ancient polymorphisms maintained by balancing selection. These genes were mainly associated with mating compatibility, growth and stress resistance. Both gene flow and selection-mediated ancient polymorphisms are prevalent in the genus Populus. These are potentially important contributors to adaptive variation. Our results provide a framework for the diversification of model tree genus that will facilitate future comparative studies.
Collapse
Affiliation(s)
- Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 25606, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409-3131, USA
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
29
|
Shen TT, Ran JH, Wang XQ. Phylogenomics disentangles the evolutionary history of spruces (Picea) in the Qinghai-Tibetan Plateau: Implications for the design of population genetic studies and species delimitation of conifers. Mol Phylogenet Evol 2019; 141:106612. [DOI: 10.1016/j.ympev.2019.106612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
|
30
|
Shao CC, Shen TT, Jin WT, Mao HJ, Ran JH, Wang XQ. Phylotranscriptomics resolves interspecific relationships and indicates multiple historical out-of-North America dispersals through the Bering Land Bridge for the genus Picea (Pinaceae). Mol Phylogenet Evol 2019; 141:106610. [DOI: 10.1016/j.ympev.2019.106610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/21/2023]
|