1
|
Lu WX, Tu WQ, Chen D, Wang ZZ, Guo YP. Niche shifts and localized competitive dynamics influence the persistence and distribution of polyploids in the genus Achillea (Asteraceae). ANNALS OF BOTANY 2025; 135:963-976. [PMID: 39850996 PMCID: PMC12064431 DOI: 10.1093/aob/mcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/22/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND AND AIMS Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favourable environments probably have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors have relatively low habitat suitability. METHODS This study investigated two sibling allopolyploid species, Achillea alpina and A. wilsoniana of the daisy family, which originated independently from the same two parental species. We explored the patterns of niche shifts between the polyploids and their progenitors by using several ecoinformatics analyses in environmental and geographical spaces, and performed ecological niche modelling to estimate the historical distribution of these species as well as the potential regions for persistence of allopolyploids. KEY RESULTS The niche shift patterns of the two polyploids were not completely consistent: A. alpina showed niche expansion, while A. wilsoniana exhibited a trend towards niche novelty. Their potential suitable areas were both more likely to overlap with regions where the habitat suitability values of their parental species became low. CONCLUSIONS The present results support our hypothesis that populations of polyploids tend to persist in areas that are less suitable for their diploid progenitors. Meanwhile, niche shifts may promote the success of polyploids. These findings contribute to our understanding of the ecological processes involved in the maintenance and persistence of polyploids.
Collapse
Affiliation(s)
- Wen-Xun Lu
- Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wen-Qin Tu
- Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Duo Chen
- Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zi-Zhao Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Yan-Ping Guo
- Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
López-Jurado J, Balao F, Mateos-Naranjo E. Impacts of elevated temperature and CO 2 concentration on carbon metabolism in an endangered carnation: Consequences for biomass allocation and flowering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109617. [PMID: 39946909 DOI: 10.1016/j.plaphy.2025.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/11/2025]
Abstract
One of the greatest threats to plant function and fitness is global warming, characterised by a combination of increased atmospheric CO2 concentrations and temperatures. However, their effects on plant physiology, growth, and reproduction remain unclear, particularly for rare species that support vulnerable ecosystem functions. Here, we investigated these effects on leaf and whole-plant functional traits of the rare endangered C3 species Dianthus inoxianus. Mature plants were grown for 18 weeks in controlled-environment chambers under four environmental scenarios that combined day/night air temperatures (ambient: 25/20 °C or elevated: 29/24 °C) with CO2 concentrations (400 ppm or 700 ppm). Under elevated temperature, D. inoxianus exhibited impaired photosynthetic capacity but also employed an avoidance strategy by prioritising accelerated reproduction (earlier flowering) and biomass allocation to roots for future resprouting. Elevated CO2 induced photosynthesis acclimation and biochemical constraints, preventing growth enhancement, but also mitigated the loss of stomatal functionality and carboxylation capacity loss caused by elevated temperature. Although plants sustained gas exchange under combined elevated CO2 and temperature, assimilation rates decreased. Such a decline, linked to reduced photoprotection capacity and photosystem performance, was accompanied by an advanced onset of flowering and reduced flower production. These changes suggest that the vulnerability of D. inoxianus might increase under climate change, with additional stressors potentially exacerbating photoinhibition. Our findings offer critical insights into the complex relationships between threatened species and their environment, underscoring the need for preventive conservation measures for D. inoxianus to address the challenges posed by more extreme or prolonged environmental stresses.
Collapse
Affiliation(s)
- Javier López-Jurado
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| | - Francisco Balao
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| |
Collapse
|
3
|
Fernández-Mazuecos M, Glover BJ. Climatic and edaphic niche shifts during plant radiation in the Mediterranean biodiversity hotspot. ANNALS OF BOTANY 2025; 135:717-734. [PMID: 39673382 PMCID: PMC11904899 DOI: 10.1093/aob/mcae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS Ecological speciation is frequently invoked as a driver of plant radiation, but the behaviour of environmental niches during radiation is contentious, with patterns ranging from niche conservatism to niche divergence. Here, we investigated climatic and edaphic niche shifts during radiation in a western Mediterranean lineage of the genus Linaria (Plantaginaceae). METHODS Detailed distributional, phylogenomic and environmental data were integrated to analyse changes in climatic and edaphic niches in a spatiotemporal context, including calculation of niche overlap, niche equivalency and similarity tests, maximum entropy modelling, phylogenetic comparative methods and biogeographical analyses. KEY RESULTS Active divergence of climatic and edaphic niches within a limited subset of available conditions was detected among the eight study species and particularly between sister species. Speciation and niche divergence are estimated to have happened in the southern Iberian Peninsula in Mediterranean conditions, followed by waxing and waning of distribution ranges resulting from the Quaternary climatic cycles. CONCLUSIONS The results support the idea that the prevalence of niche conservatism or niche divergence patterns is a matter of phylogenetic scale. Habitat isolation pertaining to both climatic and soil conditions appears to have played a role in plant speciation in the western Mediterranean biodiversity hotspot, most probably in combination with pollinator isolation and some degree of geographical isolation. These findings are in agreement with an adaptive radiation scenario incorporating certain non-adaptive features.
Collapse
Affiliation(s)
- Mario Fernández-Mazuecos
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB), CSIC, 28014 Madrid, Spain
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
4
|
Nge FJ, Hammer TA, Vasconcelos T, Biffin E, Kellermann J, Waycott M. Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae). ANNALS OF BOTANY 2025; 135:531-548. [PMID: 39441970 PMCID: PMC11920800 DOI: 10.1093/aob/mcae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations between ploidy and plant radiations could be the result of polyploid lineages exploiting broader niche space and novel niches due to their enhanced adaptability. The evolution of ploidy and its link to plant diversification across the Australian continent is not well understood. Here, we focus on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae. METHODS We generated a densely sampled phylogeny (90 %, 215/240 species) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using treePL. Ploidy estimates for each sequenced species were obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling and WorldClim data. KEY RESULTS Polyploidy is extensive across the tribe, with almost half (45 %) of species and the majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e. species richness), but a non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae; however, polyploidy did allow transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of south-west Western Australia. CONCLUSIONS The relationship between polyploidy and diversification is complex. Ancient polyploidization events likely played an important role in the diversification of species-rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Mount Annan, NSW 2567, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
- IRD – Institut de Recherche pour le Développement, Montpellier, BP 64501, France
| | - Timothy A Hammer
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Jürgen Kellermann
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Rhizopoulou S, Pouris J. Retrospective Approach to the Endemic Dianthus fruticosus L. ssp. fruticosus on Serifos Island (Cyclades, Greece). PLANTS (BASEL, SWITZERLAND) 2024; 13:3002. [PMID: 39519921 PMCID: PMC11548135 DOI: 10.3390/plants13213002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The carnation Dianthus fruticosus L. ssp. fruticosus (Caryophyllaceae) is a range-restricted perennial, endemic plant that grows on cliffs, rocks, ravines, terraces, and boulders on Serifos Island in the Cyclades in the Aegean archipelago (Greece), possessing an impressive, aesthetic blossoming during the dry season. This indigenous carnation of Serifos has attracted the interest of naturalists and scientists. Specimens of this subspecific taxon from the island of Serifos (Greece) were collected during botanical explorations in preindustrial times by the French naturalist Joseph Pitton de Tournefort (1702) and in the late eighteenth century by the English Professor of Botany at the University of Oxford John Sibthorp (1787). Those specimens, documented in relevant publications and labelled with different names (i.e., Caryophyllus Graecus arboreus and Caryophyllus arboreus Seriphius in the early eighteenth century and Dianthus fruticosus in the early nineteenth century), are related to aspects of vegetation history, linking the past to the present and (most probably) to the future. Today, a thorough understanding of the in situ development and functionality of this endemic carnation is still required, as is a framework of its sustainability and management in small-scale insular habitats. The timeless perception of the emblematic wild carnation Dianthus fruticosus ssp. fruticosus, which is still growing on inland and coastal sites of Serifos and neighboring islands in the Cyclades (Greece), is also a reminder that a native plant is often a repository to which local communities may look when crafting their identity.
Collapse
Affiliation(s)
- Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | | |
Collapse
|
6
|
Pungaršek Š, Frajman B. Influence of polyploidy on morphology and distribution of the Cypress Spurge (Euphorbia cyparissias, Euphorbiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:998-1007. [PMID: 38979801 DOI: 10.1111/plb.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/26/2024] [Indexed: 07/10/2024]
Abstract
Polyploidy can cause differences in phenotypic and physiological traits among different cytotypes of the same species. Polyploids may have larger organs or occupy different ecological niches than their diploid counterparts, therefore they are hypothesized to have larger distributions or prosper in stressful environments, such as higher elevations. The Cypress spurge (Euphorbia cyparissias L.; Euphorbiaceae) is a widespread European heteroploid species including di- (2x), tetra- (4x) and hexaploid (6x) cytotypes. We tested the hypotheses that polyploids are more widespread and more abundant at higher elevations and have larger organs than their diploid ancestors in the case of E. cyparissias. We also analysed whether genome downsizing had occurred after polyploidisation. We conducted a comprehensive geographic sampling of 617 populations of E. cyparissias throughout Europe. We estimated their relative genome size using flow cytometry and inferred ploidy level of each population. We scored 13 morphological traits of vegetative and seed characters and performed statistical analyses. The study indicates that polyploidisation facilitated colonisation of new areas in E. cyparissias, where the tetraploids are most widespread, whereas the diploids are limited to putative Pleistocene refugia, mostly in southern Europe. On the other hand, the three ploidies do not differ in their elevational distribution. Although some quantitative morphological traits exhibited an increasing trend with increasing ploidy, most traits did not differ significantly among the three ploidies, and there was no overall phenotypic differentiation among them. Given that individuals of different ploidies thrive in similar habitats across the same elevations, we suggest that ecological segregation following polyploidisation is a more important trigger for morphological differentiation than polyploidisation itself in autopolyploid plants. The study demonstrates that polyploidisation can be crucial for the colonisation of new areas and for range expansion, but it does not necessarily influence elevational distribution nor confer a different phenotype.
Collapse
Affiliation(s)
- Š Pungaršek
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - B Frajman
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Gerstner BP, Laport RG, Rudgers JA, Whitney KD. Plant-soil microbe feedbacks depend on distance and ploidy in a mixed cytotype population of Larrea tridentata. AMERICAN JOURNAL OF BOTANY 2024; 111:e16298. [PMID: 38433501 DOI: 10.1002/ajb2.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/05/2024]
Abstract
PREMISE Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes. METHODS We used a plant-soil feedback (PSF) experiment to test whether host-specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host-specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. RESULTS Seedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. CONCLUSIONS This is the first evidence, to our knowledge, that is consistent with plant-soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.
Collapse
Affiliation(s)
- Benjamin P Gerstner
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert G Laport
- Department of Biology, The College of Idaho, Caldwell, ID, 83605, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
Liu Y, Zhou Y, Cheng F, Zhou R, Yang Y, Wang Y, Zhang X, Soltis DE, Xiao N, Quan Z, Li J. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:73-89. [PMID: 38112590 DOI: 10.1111/tpj.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Yi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Yanchang Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Zhanjun Quan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| |
Collapse
|
9
|
Wefferling KM, Castro M, Castro S, Holmlund H, Loureiro J, Rothfels CJ, Schuettpelz E. Polyploid goldback and silverback ferns (Pentagramma) occupy a wider, colder, and wetter bioclimatic niche than diploid counterparts. AMERICAN JOURNAL OF BOTANY 2024; 111:e16305. [PMID: 38517199 DOI: 10.1002/ajb2.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/23/2024]
Abstract
PREMISE The western North American fern genus Pentagramma (Pteridaceae) is characterized by complex patterns of ploidy variation, an understanding of which is critical to comprehending both the evolutionary processes within the genus and its current diversity. METHODS We undertook a cytogeographic study across the range of the genus, using a combination of chromosome counts and flow cytometry to infer ploidy level. Bioclimatic variables and elevation were used to compare niches. RESULTS We found that diploids and tetraploids are common and widespread, and triploids are rare and sporadic; in contrast with genome size inferences in earlier studies, no hexaploids were found. Diploids and tetraploids show different geographic ranges: only tetraploids were found in the northernmost portion of the range (Washington, Oregon, and British Columbia) and only diploids were found in the Sierra Nevada of California. Diploid, triploid, and tetraploid cytotypes were found to co-occur in relatively few localities: in the southern (San Diego County, California) and desert Southwest (Arizona) parts of the range, and along the Pacific Coast of California. CONCLUSIONS Tetraploids occupy a wider bioclimatic niche than diploids both within P. triangularis and at the genus-wide scale. It is unknown whether the wider niche of tetraploids is due to their expansion upon the diploid niche, if diploids have contracted their niche due to competition or changing abiotic conditions, or if this wider niche occupancy is due to multiple origins of tetraploids.
Collapse
Affiliation(s)
- Keir M Wefferling
- Department of Biology, Gary A. Fewless Herbarium, Cofrin Center for Biodiversity, University of Wisconsin-Green Bay, Green Bay, 54311, Wisconsin, USA
| | - Mariana Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Helen Holmlund
- Natural Science Division, Pepperdine University, Malibu, 90263, California, USA
| | - João Loureiro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Carl J Rothfels
- Department of Biology, Ecology Center, and Intermountain Herbarium, Utah State University, Logan, 84322, Utah, USA
| | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, 20560, DC, USA
| |
Collapse
|
10
|
López-Jurado J, Picazo-Aragonés J, Alonso C, Balao F, Mateos-Naranjo E. Physiology, gene expression, and epiphenotype of two Dianthus broteri polyploid cytotypes under temperature stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1601-1614. [PMID: 37988617 PMCID: PMC10901207 DOI: 10.1093/jxb/erad462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Increasing evidence supports a major role for abiotic stress response in the success of plant polyploids, which usually thrive in harsh environments. However, understanding the ecophysiology of polyploids is challenging due to interactions between genome doubling and natural selection. Here, we investigated physiological responses, gene expression, and the epiphenotype of two related Dianthus broteri cytotypes-with different genome duplications (4× and 12×) and evolutionary trajectories-to short extreme temperature events (42/28 °C and 9/5 °C). The 12× cytotype showed higher expression of stress-responsive genes (SWEET1, PP2C16, AI5L3, and ATHB7) and enhanced gas exchange compared with 4×. Under heat stress, both ploidies had greatly impaired physiological performance and altered gene expression, with reduced cytosine methylation. However, the 12× cytotype exhibited remarkable physiological tolerance (maintaining gas exchange and water status via greater photochemical integrity and probably enhanced water storage) while down-regulating PP2C16 expression. Conversely, 4× D. broteri was susceptible to thermal stress despite prioritizing water conservation, showing signs of non-stomatal photosynthetic limitations and irreversible photochemical damage. This cytotype also presented gene-specific expression patterns under heat, up-regulating ATHB7. These findings provide insights into divergent stress response strategies and physiological resistance resulting from polyploidy, highlighting its widespread influence on plant function.
Collapse
Affiliation(s)
- Javier López-Jurado
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Jesús Picazo-Aragonés
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 26, E-41092 Sevilla, Spain
| | - Francisco Balao
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, E-41080 Sevilla, Spain
| |
Collapse
|
11
|
Wolfe TM, Balao F, Trucchi E, Bachmann G, Gu W, Baar J, Hedrén M, Weckwerth W, Leitch AR, Paun O. Recurrent allopolyploidizations diversify ecophysiological traits in marsh orchids (Dactylorhiza majalis s.l.). Mol Ecol 2023; 32:4777-4790. [PMID: 37452724 PMCID: PMC10947288 DOI: 10.1111/mec.17070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups.
Collapse
Affiliation(s)
- Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Francisco Balao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biologia Vegetal y EcologiaUniversity of SevilleSevillaSpain
| | - Emiliano Trucchi
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Marche Polytechnic UniversityAnconaItaly
| | - Gert Bachmann
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS)University of ViennaViennaAustria
| | - Wenjia Gu
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS)University of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
12
|
Šemberová K, Svitok M, Marhold K, Suda J, Schmickl RE. Morphological and environmental differentiation as prezygotic reproductive barriers between parapatric and allopatric Campanula rotundifolia agg. cytotypes. ANNALS OF BOTANY 2023; 131:71-86. [PMID: 34559179 PMCID: PMC9904352 DOI: 10.1093/aob/mcab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Reproductive isolation and local establishment are necessary for plant speciation. Polyploidy, the possession of more than two complete chromosome sets, creates a strong postzygotic reproductive barrier between diploid and tetraploid cytotypes. However, this barrier weakens between polyploids (e.g. tetraploids and hexaploids). Reproductive isolation may be enhanced by cytotype morphological and environmental differentiation. Moreover, morphological adaptations to local conditions contribute to plant establishment. However, the relative contributions of ploidy level and the environment to morphology have generally been neglected. Thus, the extent of morphological variation driven by ploidy level and the environment was modelled for diploid, tetraploid and hexaploid cytotypes of Campanula rotundifolia agg. Cytotype distribution was updated, and morphological and environmental differentiation was tested in the presence and absence of natural contact zones. METHODS Cytotype distribution was assessed from 231 localities in Central Europe, including 48 localities with known chromosome counts, using flow cytometry. Differentiation in environmental niche and morphology was tested for cytotype pairs using discriminant analyses. A structural equation model was used to explore the synergies between cytotype, environment and morphology. KEY RESULTS Tremendous discrepancies were revealed between the reported and detected cytotype distribution. Neither mixed-ploidy populations nor interploidy hybrids were detected in the contact zones. Diploids had the broadest environmental niche, while hexaploids had the smallest and specialized niche. Hexaploids and spatially isolated cytotype pairs differed morphologically, including allopatric tetraploids. While leaf and shoot morphology were influenced by environmental conditions and polyploidy, flower morphology depended exclusively on the cytotype. CONCLUSIONS Reproductive isolation mechanisms vary between cytotypes. While diploids and polyploids are isolated postzygotically, the environmental niche shift is essential between higher polyploids. The impact of polyploidy and the environment on plant morphology implies the adaptive potential of polyploids, while the exclusive relationship between flower morphology and cytotype highlights the role of polyploidy in reproductive isolation.
Collapse
Affiliation(s)
| | - Marek Svitok
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, T. G. Masaryka, Zvolen, Slovakia
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | - Karol Marhold
- Faculty of Science, Department of Botany, Charles University, Benátská, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta, Bratislava, Slovakia
| | | | - Roswitha E Schmickl
- Faculty of Science, Department of Botany, Charles University, Benátská, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Department of Evolutionary Plant Biology, Zámek, Průhonice, Czech Republic
| |
Collapse
|
13
|
Parshuram ZA, Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME. Nonsymbiotic legumes are more invasive, but only if polyploid. THE NEW PHYTOLOGIST 2023; 237:758-765. [PMID: 36305214 DOI: 10.1111/nph.18579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Both mutualism and polyploidy are thought to influence invasion success in plants, but few studies have tested their joint effects. Mutualism can limit range expansion when plants cannot find a compatible partner in a novel habitat, or facilitate range expansion when mutualism increases a plant's niche breadth. Polyploids are also expected to have greater niche breadth because of greater self-compatibility and phenotypic plasticity, increasing invasion success. For 847 legume species, we compiled data from published sources to estimate ploidy, symbiotic status with rhizobia, specificity on rhizobia, and the number of introduced ranges. We found that diploid species have had limited spread around the globe regardless of whether they are symbiotic or how many rhizobia partners they can host. Polyploids, by contrast, have been successfully introduced to many new ranges, but interactions with rhizobia constrain their range expansion. In a hidden state model of trait evolution, we also found evidence of a high rate of re-diploidization in symbiotic legume lineages, suggesting that symbiosis and ploidy may interact at macroevolutionary scales. Overall, our results suggest that symbiosis with rhizobia limits range expansion when legumes are polyploid but not diploid.
Collapse
Affiliation(s)
- Zoe A Parshuram
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Tia L Harrison
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Anna K Simonsen
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
14
|
Vasconcelos T. A trait-based approach to determining principles of plant biogeography. AMERICAN JOURNAL OF BOTANY 2023; 110:e16127. [PMID: 36648370 DOI: 10.1002/ajb2.16127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lineage-specific traits determine how plants interact with their surrounding environment. Unrelated species may evolve similar phenotypic characteristics to tolerate, persist in, and invade environments with certain characteristics, resulting in some traits becoming relatively more common in certain types of habitats. Analyses of these general patterns of geographical trait distribution have led to the proposal of general principles to explain how plants diversify in space over time. Trait-environment correlation analyses quantify to what extent unrelated lineages have similar evolutionary responses to a given type of habitat. In this synthesis, I give a short historical overview on trait-environment correlation analyses, from some key observations from classic naturalists to modern approaches using trait evolution models, large phylogenies, and massive data sets of traits and distributions. I discuss some limitations of modern approaches, including the need for more realistic models, the lack of data from tropical areas, and the necessary focus on trait scoring that goes beyond macromorphology. Overcoming these limitations will allow the field to explore new questions related to trait lability and niche evolution and to better identify generalities and exceptions in how plants diversify in space over time.
Collapse
Affiliation(s)
- Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
15
|
Afonso A, Castro S, Loureiro J, Arroyo J, Figueiredo A, Lopes S, Castro M. Ecological niches in the polyploid complex Linum suffruticosum s.l.. FRONTIERS IN PLANT SCIENCE 2023; 14:1148828. [PMID: 37152130 PMCID: PMC10154603 DOI: 10.3389/fpls.2023.1148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
Introduction The high frequency of polyploidy in the evolutionary history of many plant groups occurring in the Mediterranean region is likely a consequence of its dynamic paleogeographic and climatic history. Polyploids frequently have distinct characteristics that allow them to overcome the minority cytotype exclusion. Such traits may enable polyploid individuals to grow in habitats different from their parentals and/or expand to new areas, leading to spatial segregation. Therefore, the successful establishment of polyploid lineages has long been associated with niche divergence or niche partitioning and the ability of polyploids to cope with different, often more stressful, conditions. In this study, we aimed to explore the role of environmental variables associated with the current distribution patterns of cytotypes within the polyploid complex Linum suffruticosum s.l.. Methods The distribution and environmental niches of the five main cytotypes of Linum suffruticosum s.l. (diploids, tetraploids, hexaploids, octoploids and decaploids) were studied across its distribution range. Realized environmental niche of each cytotype was determined using niche modelling tools, such as maximum entropy modelling and niche equivalency and similarity tests. Results Differences in the environmental conditions of L. suffruticosum s.l. cytotypes were observed, with polyploids being associated with habitats of increased drought and soil pH, narrower temperature ranges and decreased soil water and cation exchange capacities. Diploids present the widest environmental niche, and polyploids occupy part of the diploid niche. Although some polyploids have equivalent potential ecological niches, cytotypes do not co-occur in nature. Additionally, the ecological niche of this polyploid complex is different between continents, with North African habitats being characterised by differences in soil texture, higher pH, and low cation exchange capacity, precipitation and soil water capacity and higher temperatures than habitats in southwest Europe. Discussion The different ecological conditions played a role in the distribution of cytotypes, but the mosaic distribution could not be entirely explained by the environmental variables included in this study. Other factors, such as reproductive isolation and competitive interactions among cytotypes, could further explain the current diversity and distribution patterns in white flax. This study provides relevant data on the niche requirements of each cytotype for further competition and reciprocal transplant experiments. further competition and reciprocal transplant experiments.
Collapse
Affiliation(s)
- Ana Afonso
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: Ana Afonso,
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Albano Figueiredo
- Centre of Studies in Geography and Spatial Planning (CEGOT), Department of Geography and Tourism, University of Coimbra, Coimbra, Portugal
| | - Sara Lopes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Fujiwara T, Egashira T, Gutiérrez-Ortega JS, Hori K, Ebihara A, Watano Y. Establishment of an allotetraploid fern species, Lepisorus yamaokae Seriz., between two highly niche-differentiated parental species. AMERICAN JOURNAL OF BOTANY 2022; 109:1456-1471. [PMID: 35938973 DOI: 10.1002/ajb2.16043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The successful establishment of polyploid species is hypothesized to be promoted by niche differentiation from the parental species or by range shifts during climate oscillations. However, few studies have considered both of these factors simultaneously. We resolved the origin of a tetraploid fern, Lepisorus yamaokae, and explored a pattern of niche differentiation among the allotetraploid and parental species in past and current climates. METHODS We reconstructed phylogenetic trees based on plastid marker and single-copy nuclear genes to resolve the allopolyploid origin of L. yamaokae. We also evaluated climatic niche differentiation among L. yamaokae and its two parental species using species distribution models in geographic space and principal component analysis. RESULTS We infer that L. yamaokae had a single allotetraploid origin from L. annuifrons and L. uchiyamae. Climatic niche analyses show that the parental species currently occupy different niche spaces. The predicted distribution of the parental species at the Last Glacial Maximum (LGM) suggests more opportunities for hybridization during the LGM or during other recent temporary range shifts. Lepisorus yamaokae has a narrower niche than the additive niche of the parental species. We also observed niche conservatism in L. yamaokae. CONCLUSIONS Range shifts of the parental species during climatic oscillations in the Quaternary likely facilitated the formation and establishment of L. yamaokae. Further, the genetic intermediacy of L. yamaokae may have enabled a niche shift in its microenvironment, resulting in its successful establishment without a macroclimatic niche shift in L. yamaokae.
Collapse
Affiliation(s)
- Tao Fujiwara
- Makino Herbarium, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Tsubasa Egashira
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage, Chiba, 263-8522, Japan
| | | | - Kiyotaka Hori
- The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 781-8125, Japan
| | - Atsushi Ebihara
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage, Chiba, 263-8522, Japan
| |
Collapse
|
17
|
Terlević A, Bogdanović S, Frajman B, Rešetnik I. Genome Size Variation in Dianthus sylvestris Wulfen sensu lato (Caryophyllaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:1481. [PMID: 35684254 PMCID: PMC9183063 DOI: 10.3390/plants11111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Genome size (GS) is an important characteristic that may be helpful in delimitation of taxa, and multiple studies have shown correlations between intraspecific GS variation and morphological or environmental factors, as well as its geographical segregation. We estimated a relative GS (RGS) of 707 individuals from 162 populations of Dianthus sylvestris with a geographic focus on the Balkan Peninsula, but also including several populations from the European Alps. Dianthus sylvestris is morphologically variable species thriving in various habitats and six subspecies have been recognized from the Balkan Peninsula. Our RGS data backed-up with chromosome counts revealed that the majority of populations were diploid (2n = 30), but ten tetraploid populations have been recorded in D. sylvestris subsp. sylvestris from Istria (Croatia, Italy). Their monoploid RGS is significantly lower than that of the diploids, indicating genome downsizing. In addition, the tetraploids significantly differ from their diploid counterparts in an array of morphological and environmental characteristics. Within the diploid populations, the RGS is geographically and only partly taxonomically correlated, with the highest RGS inferred in the southern Balkan Peninsula and the Alps. We demonstrate greater RGS variation among the Balkan populations compared to the Alps, which is likely a result of more pronounced evolutionary differentiation within the Balkan Peninsula. In addition, a deep RGS divergence within the Alps likely points to persistence of the alpine populations in different Pleistocene refugia.
Collapse
Affiliation(s)
- Ana Terlević
- Department of Biology, Faculty of Science, University of Zagreb, Trg Marka Marulića 20/II, 10000 Zagreb, Croatia;
| | - Sandro Bogdanović
- Department of Agricultural Botany, Faculty of Agriculture, University of Zagreb Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Božo Frajman
- Department of Botany, Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria;
| | - Ivana Rešetnik
- Department of Biology, Faculty of Science, University of Zagreb, Trg Marka Marulića 20/II, 10000 Zagreb, Croatia;
| |
Collapse
|
18
|
Fassou G, Korotkova N, Nersesyan A, Koch MA, Dimopoulos P, Borsch T. Taxonomy of Dianthus (Caryophyllaceae) - overall phylogenetic relationships and assessment of species diversity based on a first comprehensive checklist of the genus. PHYTOKEYS 2022; 196:91-214. [PMID: 36762028 PMCID: PMC9849041 DOI: 10.3897/phytokeys.196.77940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/18/2022] [Indexed: 06/12/2023]
Abstract
In this study, we present an overall phylogenetic framework for Dianthus using four plastid regions (matK-trnK-psbA, rpl32-trnL, trnQ-rps16) and nuclear ITS and a species-level checklist for the genus developed by using all available databases and the literature. The trees from the plastid dataset depict a clade of Dianthus that also includes Velezia and a few taxa of Petrorhagia. New combinations in Dianthus are provided for these species. The checklist of Dianthus in this new delimitation covers 1781 names, with 384 accepted species, 150 subspecies, 12 heterotypic varieties and two forms (not counting autonyms), 1050 synonyms, 22 hybrid names and 172 unresolved names, 3 names were excluded. Implications for the evolution of flower characters, life forms, biogeography, as well as sectional classification are discussed based on the phylogenetic framework.
Collapse
Affiliation(s)
- Georgia Fassou
- University of Patras, School of Natural Sciences, Department of Biology, Division of Plant Biology, Laboratory of Botany, Patras, Achaia GR-26504, GreeceUniversity of PatrasPatrasGreece
| | - Nadja Korotkova
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Strasse 6–8, 14195 Berlin, GermanyFreie Universität BerlinBerlinGermany
| | - Anush Nersesyan
- A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, National Academy of Sciences of the Republic of Armenia, Acharyan st. 1, 0040 Yerevan, ArmeniaA. Takhtajyan Institute of Botany, Armenian National Academy of SciencesYerevanArmenia
| | - Marcus A. Koch
- Centre for Organismal Studies (COS) Heidelberg, Department of Biodiversity and Plant Systematics/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg Im Neuenheimer Feld 345, 69120 Heidelberg, GermanyUniversity of HeidelbergHeidelbergGermany
| | - Panayotis Dimopoulos
- University of Patras, School of Natural Sciences, Department of Biology, Division of Plant Biology, Laboratory of Botany, Patras, Achaia GR-26504, GreeceUniversity of PatrasPatrasGreece
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Strasse 6–8, 14195 Berlin, GermanyFreie Universität BerlinBerlinGermany
| |
Collapse
|
19
|
Wang Z, Hu G, Li Z, Zhong C, Yao X. Characterizing Tetraploid Populations of Actinidia chinensis for Kiwifruit Genetic Improvement. PLANTS 2022; 11:plants11091154. [PMID: 35567155 PMCID: PMC9102457 DOI: 10.3390/plants11091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
Understanding genetic diversity and structure in natural populations and their suitable habitat response to environmental changes is critical for the protection and utilization of germplasm resources. We evaluated the genetic diversity and structure of 24 A. chinensis populations using simple sequence repeat (SSR) molecular markers. The potential suitable distribution of tetraploid A. chinensis estimated under the current climate and predicted for the future climate was generated with ecological niche modeling (ENM). The results indicated that the polyploid populations of A.chinensis have high levels of genetic diversity and that there are distinct eastern and western genetic clusters. The population structure of A. chinensis can be explained by an isolation-by-distance model. The results also revealed that potentially suitable areas of tetraploids will likely be gradually lost and the habitat will likely be increasingly fragmented in the future. This study provides an extensive overview of tetraploid A. chinensis across its distribution range, contributing to a better understanding of its germplasm resources. These results can also provide the scientific basis for the protection and sustainable utilization of kiwifruit wild resources.
Collapse
Affiliation(s)
- Zhi Wang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
| | - Guangming Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuozhou Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
| | - Caihong Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
- Correspondence: (C.Z.); (X.Y.); Tel.: +86-27-8770884 (C.Z. & X.Y.); Fax: +86-27-87510567 (C.Z. & X.Y.)
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China; (G.H.); (Z.L.)
- Correspondence: (C.Z.); (X.Y.); Tel.: +86-27-8770884 (C.Z. & X.Y.); Fax: +86-27-87510567 (C.Z. & X.Y.)
| |
Collapse
|
20
|
Rodríguez-Parra A, Picazo-Aragonés J, Balao F. Evaluation of Reference Genes in the Polyploid Complex Dianthus broteri (Caryophyllaceae) Using qPCR. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040518. [PMID: 35214851 PMCID: PMC8878694 DOI: 10.3390/plants11040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 05/14/2023]
Abstract
Dianthus broteri is an endemic complex which is considered the largest polyploid series within the Dianthus genus. This polyploid species involves four cytotypes (2×, 4×, 6× and 12×) with spatial and ecological segregation. The study of gene expression in polyploid species must be very rigorous because of the effects of duplications on gene regulation. In these cases, real-time polymerase chain reaction (qPCR) is the most appropriate technique for determining the gene expression profile because of its high sensitivity. The relative quantification strategy using qPCR requires genes with stable expression, known as reference genes, for normalization. In this work, we evaluated the stability of 13 candidate genes to be considered reference genes in leaf and petal tissues in Dianthus broteri. Several statistical analyses were used to determine the most stable candidate genes: Bayesian analysis, network analysis based on equivalence tests, geNorm and BestKeeper algorithms. In the leaf tissue, the most stable candidate genes were TIP41, TIF5A, PP2A and SAMDC. Similarly, the most adequate reference genes were H3.1, TIP41, TIF5A and ACT7 in the petal tissue. Therefore, we suggest that the best reference genes to compare different ploidy levels for both tissues in D. broteri are TIP41 and TIF5A.
Collapse
|
21
|
Serra ADC, Rodrigues CM, Marinho RC, Balao F, Oliveira PE. Interploidy hybridization in Eriotheca gracilipes and E. pubescens (Malvaceae): experimental evidence, genome and stomatal size. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract Hybridization and changes in ploidy have been associated with shifts from sexuality to apomixis, and may explain isolation among populations and species. Hybrids resulting from interploidy crosses may contribute to a broader understanding of how these populations and species have originated and evolved. Stomatal morphometrics and flow cytometry analyses were carried out for seedlings from different populations of Eriotheca estevesiae, E. gracilipes and E. pubescens, a group of closely related tree species in the Central Brazilian Cerrados. Controlled cross-pollinations between individuals of different cytotypes of E. gracilipes (2n = 2x = 92 and 2n = 6x = 276) and between sexual cytotypes of E. gracilipes (2n = 2x = 92) and E. pubescens (2n = 4x = 184) were performed. Only one viable seed was obtained from interploidy crosses of E. gracilipes. The hybridization between sexual cytotypes did not produce fruits. Genome size analyses indicated that there were apparently no natural hybrids or mixed ploidy populations among the seedlings analyzed. Seedlings stomatal size was consistent with previously reported cytotypes and ploidy levels; and when compared with the stomata of the viable interploidy hybrid of E. gracilipes, indicated a tetraploid, intermediate ploidy level. Although the data suggest the possibility of interploidy hybridization, cytotypes appeared relatively stable and natural interploidy hybridization seems to be uncommon among Eriotheca trees.
Collapse
|
22
|
Liu H, Sun H, Bao L, Han S, Hui T, Zhang R, Zhang M, Su C, Qian Y, Jiao F. Secondary Metabolism and Hormone Response Reveal the Molecular Mechanism of Triploid Mulberry ( Morus Alba L.) Trees Against Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:720452. [PMID: 34691101 PMCID: PMC8528201 DOI: 10.3389/fpls.2021.720452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The improvement of a plant's tolerance to drought is a major endeavor in agriculture. Polyploid plants often exhibit enhanced stress tolerance relative to their diploid progenitor, but the matching stress tolerance is still little understood. Own-rooted stem cuttings of mulberry (Morus alba L.) cultivar Shinichinose (2n = 2x = 28) and Shaansang-305 (2n = 3x = 42) were used in this study, of which the latter (triploid) has more production and application purposes. The responses of triploid Shaansang-305 and diploid progenitor ShinIchinose under drought stress were compared through an investigation of their physiological traits, RNA-seq, and secondary metabolome analysis. The results showed that the triploid exhibited an augmented abscisic acid (ABA) content and a better stress tolerance phenotype under severe drought stress. Further, in the triploid plant some genes (TSPO, NCED3, and LOC21398866) and ATG gene related to ABA signaling showed significantly upregulated expression. Interestingly, the triploid accumulated higher levels of RWC and SOD activity, as well as more wax on the leaf surface, but with less reductive flavonoid than in diploid. Our results suggest triploid plants may better adapt to with drought events. Furthermore, the flavonoid metabolism involved in drought resistance identified here may be of great value to medicinal usage of mulberry. The findings presented here could have substantial implications for future studies of crop breeding.
Collapse
Affiliation(s)
- Hui Liu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hongmei Sun
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Shuhua Han
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
23
|
Domínguez-Delgado JJ, López-Jurado J, Mateos-Naranjo E, Balao F. Phenotypic diploidization in plant functional traits uncovered by synthetic neopolyploids in Dianthus broteri. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5522-5533. [PMID: 33909906 PMCID: PMC8760854 DOI: 10.1093/jxb/erab179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/26/2021] [Indexed: 05/27/2023]
Abstract
Whole-genome duplication and post-polyploidization genome downsizing play key roles in the evolution of land plants; however, the impact of genomic diploidization on functional traits still remains poorly understood. Using Dianthus broteri as a model, we compared the ecophysiological behaviour of colchicine-induced neotetraploids (4xNeo) to diploids (2x) and naturally occurring tetraploids (4xNat). Leaf gas-exchange and chlorophyll fluorescence analyses were performed in order to asses to what extent post-polyploidization evolutionary processes have affected 4xNat. Genomic diploidization and phenotypic novelty were evident. Distinct patterns of variation revealed that post-polyploidization processes altered the phenotypic shifts directly mediated by genome doubling. The photosynthetic phenotype was affected in several ways but the main effect was phenotypic diploidization (i.e. 2x and 4xNat were closer to each other than to 4xNeo). Overall, our results show the potential benefits of considering experimentally synthetized versus naturally established polyploids when exploring the role of polyploidization in promoting functional divergence.
Collapse
Affiliation(s)
| | - Javier López-Jurado
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain
| | - Francisco Balao
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain
| |
Collapse
|
24
|
Wang Z, Zhong C, Li D, Yan C, Yao X, Li Z. Cytotype distribution and chloroplast phylogeography of the Actinidia chinensis complex. BMC PLANT BIOLOGY 2021; 21:325. [PMID: 34229602 PMCID: PMC8259359 DOI: 10.1186/s12870-021-03099-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant phylogeographic studies of species in subtropical China have mainly focused on rare and endangered species, whereas few studies have been conducted on taxa with relatively wide distribution, especially polyploid species. We investigated the cytotype and haplotype distribution pattern of the Actinidia chinensis complex, a widespread geographically woody liana with variable ploidy in subtropical China comprising two varieties, with three chloroplast fragments DNA (ndhF-rpl132, rps16-trnQ and trnE-trnT). Macroevolutionary, microevolutionary and niche modeling tools were also combined to disentangle the origin and the demographic history of the species or cytotypes. RESULTS The ploidy levels of 3338 individuals from 128 populations sampled throughout the species distribution range were estimated with flow cytometry. The widespread cytotypes were diploids followed by tetraploids and hexaploids, whereas triploids and octoploids occurred in a few populations. Thirty-one chloroplast haplotypes were detected. The genetic diversity and genetic structure were found to be high between varieties (or ploidy races) chinensis and deliciosa. Our results revealed that these two varieties inhabit significantly different climatic niche spaces. Ecological niche models (ENMs) indicate that all varieties' ranges contracted during the Last Inter Glacial (LIG), and expanded eastward or northward during the Last Glacial Maximum (LGM). CONCLUSIONS Pliocene and Plio-Pleistocene climatic fluctuations and vicariance appear to have played key roles in shaping current population structure and historical demography in the A. chinensis complex. The polyploidization process also appears to have played an important role in the historical demography of the complex through improving their adaptability to environmental changes.
Collapse
Affiliation(s)
- Zhi Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caihong Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Dawei Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Chunlin Yan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Zuozhou Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
25
|
Meirmans PG. Niche divergence contributes to geographical parthenogenesis in two dandelion taxa. J Evol Biol 2021; 34:1071-1086. [PMID: 33955626 PMCID: PMC8362108 DOI: 10.1111/jeb.13794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/29/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
Many sexual-asexual complexes show a distinct pattern where the asexuals have larger and more northerly ranges than closely related sexuals. A prime candidate to explain this so-called "geographical parthenogenesis" is ecological niche divergence between the sexuals and asexuals. Modern niche modelling techniques allow testing niche divergence by directly comparing the niches of sexuals and asexuals. In this study, I use such techniques to perform range-wide tests of whether nine bioclimatic variables, including annual mean temperature and annual precipitation, contribute to geographical parthenogenesis in two dandelion taxa: Taraxacum section Ruderalia and Taraxacum section Erythrosperma, which are both comprised of sexual diploids and asexual triploids. For both sections, I found evidence of niche divergence, though the exact nature of this divergence was different for the two sections. In section Ruderalia, the sexuals preferred warmer and wetter conditions, whereas in section Erythrosperma, the sexuals preferred dryer conditions. Using Species Distribution Modelling, consistent differences between the sexuals and asexuals were found when looking at the niche determinants: the variables that are most important for modelling the distribution. Furthermore, and in contrast with theoretical expectations that predict that the sexuals should have a wider niche, in section Erythrosperma the asexuals were found to have a wider niche than the sexuals. In conclusion, differences in niche optima, niche determinants, and niche width all contribute to the pattern of geographical parthenogenesis of these two dandelion taxa. However, the results also indicate that the exact causation of geographical parthenogenesis is not uniform across taxa.
Collapse
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Schmickl R, Yant L. Adaptive introgression: how polyploidy reshapes gene flow landscapes. THE NEW PHYTOLOGIST 2021; 230:457-461. [PMID: 33454987 DOI: 10.1111/nph.17204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Rare yet accumulating evidence in both plants and animals shows that whole genome duplication (WGD, leading to polyploidy) can break down reproductive barriers, facilitating gene flow between otherwise isolated species. Recent population genomic studies in wild, outcrossing Arabidopsis arenosa and Arabidopsis lyrata indicate that this WGD-potentiated gene flow can be adaptive and highly specific in response to particular environmental and intracellular challenges. The mechanistic basis of WGD-mediated easing of species barrier strength seems to primarily lie in the relative dosage of each parental genome in the endosperm. While generalisations about polyploids can be fraught, this evidence indicates that the breakdown of these barriers, combined with diploid to polyploid gene flow and gene flow between polyploids, allows some polyploids to act as adaptable 'allelic sponges', enjoying increased potential to respond to challenging environments.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, 128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Levi Yant
- Future Food Beacon and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
27
|
Cetlová V, Zozomová-Lihová J, Melichárková A, Mártonfiová L, Španiel S. Multiple Drivers of High Species Diversity and Endemism Among Alyssum Annuals in the Mediterranean: The Evolutionary Significance of the Aegean Hotspot. FRONTIERS IN PLANT SCIENCE 2021; 12:627909. [PMID: 33986760 PMCID: PMC8112278 DOI: 10.3389/fpls.2021.627909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 05/10/2023]
Abstract
The Mediterranean Basin is a significant hotspot of species diversity and endemism, with various distribution patterns and speciation mechanisms observed in its flora. High species diversity in the Mediterranean is also manifested in the monophyletic lineage of Alyssum annuals (Brassicaceae), but little is known about its origin. These species include both diploids and polyploids that grow mainly in open and disturbed sites across a wide elevational span and show contrasting distribution patterns, ranging from broadly distributed Eurasian species to narrow island endemics. Here, we investigated the evolution of European representatives of this lineage, and aimed to reconstruct their phylogeny, polyploid and genome size evolution using flow cytometric analyses, chloroplast and nuclear high- and low-copy DNA markers. The origin and early diversification of the studied Alyssum lineage could be dated back to the Late Miocene/Pliocene and were likely promoted by the onset of the Mediterranean climate, whereas most of the extant species originated during the Pleistocene. The Aegean region represents a significant diversity center, as it hosts 12 out of 16 recognized European species and comprises several (sub)endemics placed in distinct phylogenetic clades. Because several species, including the closest relatives, occur here sympatrically without apparent niche differences, we can reject simple allopatric speciation via vicariance as well as ecological speciation for most cases. Instead, we suggest scenarios of more complex speciation processes that involved repeated range shifts in response to sea-level changes and recurrent land connections and disconnections since the Pliocene. In addition, multiple polyploidization events significantly contributed to species diversity across the entire distribution range. All seven polyploids, representing both widespread species and endemics to the western or eastern Mediterranean, were inferred to be allopolyploids. Finally, the current distribution patterns have likely been affected also by the human factor (farming and grazing). This study illustrates the complexity of evolutionary and speciation processes in the Mediterranean flora.
Collapse
Affiliation(s)
- Veronika Cetlová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Melichárková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lenka Mártonfiová
- Botanical Garden of P. J. Šafárik University in Košice, Košice, Slovakia
| | - Stanislav Španiel
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Stanislav Španiel,
| |
Collapse
|
28
|
Duchoslav M, Jandová M, Kobrlová L, Šafářová L, Brus J, Vojtěchová K. Intricate Distribution Patterns of Six Cytotypes of Allium oleraceum at a Continental Scale: Niche Expansion and Innovation Followed by Niche Contraction With Increasing Ploidy Level. FRONTIERS IN PLANT SCIENCE 2020; 11:591137. [PMID: 33362819 PMCID: PMC7755979 DOI: 10.3389/fpls.2020.591137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/06/2020] [Indexed: 05/23/2023]
Abstract
The establishment and success of polyploids are thought to often be facilitated by ecological niche differentiation from diploids. Unfortunately, most studies compared diploids and polyploids, ignoring variation in ploidy level in polyploids. To fill this gap, we performed a large-scale study of 11,163 samples from 1,283 populations of the polyploid perennial geophyte Allium oleraceum with reported mixed-ploidy populations, revealed distribution ranges of cytotypes, assessed their niches and explored the pattern of niche change with increasing ploidy level. Altogether, six ploidy levels (3x-8x) were identified. The most common were pentaploids (53.6%) followed by hexaploids (22.7%) and tetraploids (21.6%). Higher cytotype diversity was found at lower latitudes than at higher latitudes (>52° N), where only tetraploids and pentaploids occurred. We detected 17.4% of mixed-ploidy populations, usually as a combination of two, rarely of three, cytotypes. The majority of mixed-ploidy populations were found in zones of sympatry of the participating cytotypes, suggesting they have arisen through migration (secondary contact zone). Using coarse-grained variables (climate, soil), we found evidence of both niche expansion and innovation in tetraploids related to triploids, whereas higher ploidy levels showed almost zero niche expansion, but a trend of increased niche unfilling of tetraploids. Niche unfilling in higher ploidy levels was caused by a contraction of niche envelopes toward lower continentality of the climate and resulted in a gradual decrease of niche breadth and a gradual shift in niche optima. Field-recorded data indicated wide habitat breadth of tetraploids and pentaploids, but also a pattern of increasing synanthropy in higher ploidy levels. Wide niche breadth of tetra- and pentaploids might be related to their multiple origins from different environmental conditions, higher "age", and retained sexuality, which likely preserve their adaptive potential. In contrast, other cytotypes with narrower niches are mostly asexual, probably originating from a limited range of contrasting environments. Persistence of local ploidy mixtures could be enabled by the perenniality of A. oleraceum and its prevalence of vegetative reproduction, facilitating the establishment and decreasing exclusion of minority cytotype due to its reproductive costs. Vegetative reproduction might also significantly accelerate colonization of new areas, including recolonization of previously glaciated areas.
Collapse
Affiliation(s)
- Martin Duchoslav
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michaela Jandová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
- Institute of Botany, Czech Academy of Sciences, Pruhonice, Czechia
| | - Lucie Kobrlová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lenka Šafářová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan Brus
- Department of Geoinformatics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Kateřina Vojtěchová
- Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
29
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
30
|
López-González N, Bobo-Pinilla J, Padilla-García N, Loureiro J, Castro S, Rojas-Andrés BM, Martínez-Ortega MM. Genetic similarities versus morphological resemblance: Unraveling a polyploid complex in a Mediterranean biodiversity hotspot. Mol Phylogenet Evol 2020; 155:107006. [PMID: 33160038 DOI: 10.1016/j.ympev.2020.107006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
The Balkan Peninsula is recognized as one of the hotspots of biodiversity in Europe. This area has shown since the Last Glacial Maximum appropriate conditions for species diversification and hybridization, which has led to the existence of numerous taxonomically unresolved entities. Here, we focus on the Western Balkans and explore the genetic structure and relationships among species belonging to the V. austriaca - V. orbiculata diploid-polyploid complex, including populations showing intermediate morphologies. A combination of nuclear markers (microsatellites), plastid DNA regions (trnH-psbA, ycf6-psbM) and ploidy level estimations using flow cytometry are employed to assess the genetic structure and evolutionary dynamics of this polyploid complex. To reconstruct the evolutionary history, an approximate Bayesian computation approach is combined with projections of the species distribution models onto the climatic scenarios of the Mid-Holocene (6 ka BP) and Last Glacial Maximum (22 ka BP). Four main groups were found: one well-established entity within the diploid level, V. dalmatica, a second diploid-tetraploid group which corresponds to V. orbiculata, a hexaploid cluster harboring V. austriaca subsp. jacquinii individuals, and an enigmatic tetraploid group. According to the molecular data obtained, this latter cluster represents an allopolyploid cryptic lineage −with V. orbiculata and V. dalmatica as putative parents− morphologically similar to V. orbiculata, but genetically more related to V. austriaca subsp. jacquinii. Veronica dalmatica and this “uncertain tetraploid” group are involved in the formation of the hexaploid taxon V. austriaca subsp. jacquinii, with the possibility of recent gene flow among different cytotypes. The present study supports a scenario of diversification from a diploid common ancestor leading to two different but interrelated lineages. The first one would correspond with the diploid V. orbiculata plus tetraploid individuals of this species arising through allo- and autopolyploidization, and the second one would involve all ploidy levels with allopolyploidization being prevalent.
Collapse
Affiliation(s)
- Noemí López-González
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain.
| | - Javier Bobo-Pinilla
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain
| | - Nélida Padilla-García
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Silvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Blanca M Rojas-Andrés
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - M Montserrat Martínez-Ortega
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain
| |
Collapse
|
31
|
Morgan EJ, Čertner M, Lučanová M, Kubíková K, Marhold K, Kolář F. Niche similarity in diploid-autotetraploid contact zones of Arabidopsis arenosa across spatial scales. AMERICAN JOURNAL OF BOTANY 2020; 107:1375-1388. [PMID: 32974906 DOI: 10.1002/ajb2.1534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Whole genome duplication is a major evolutionary event, but its role in ecological divergence remains equivocal. When populations of different ploidy (cytotypes) overlap in space, "contact zones" are formed, allowing the study of evolutionary mechanisms contributing toward ploidy divergence. Multiple contact zones per species' range are often described but rarely leveraged as natural replicates. We explored whether the strength of niche differentiation of diploid and autotetraploid Arabidopsis arenosa varies over distinct contact zones and if the frequency of triploids decreases from seedling to adult stage. METHODS We characterized ploidy composition and habitat preferences in 264 populations across three contact zones using climatic niche modeling. Ecological differences of cytotypes were also assessed using local vegetation surveys at 110 populations within two contact zones, and at the finer scale within five mixed-ploidy sites. This was complemented by flow cytometry of seedlings. RESULTS We found no niche differences between diploid and tetraploid populations within contact zones for either climatic or local environmental variables. Comparisons of cytotypes within mixed-ploidy sites found weak niche differences that were inconsistent in direction. Triploid individuals were virtually absent (0.14%) in the field, and they were at a similarly low frequency (0.2%) in ex situ germinated seedlings. CONCLUSIONS This study demonstrates the strength in investigating different spatial scales across several contact zones when addressing ecological niche differentiation between ploidies. The lack of consistent habitat differentiation of ploidies across the scales and locations supports the recently emerging picture that processes other than ecological differentiation may underlie ploidy coexistence in diploid-autopolyploid systems.
Collapse
Affiliation(s)
- Emma J Morgan
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic
| | - Kateřina Kubíková
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Karol Marhold
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovak Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, AT-6020, Innsbruck, Austria
| |
Collapse
|
32
|
Behroozian M, Ejtehadi H, Peterson AT, Memariani F, Mesdaghi M. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS One 2020; 15:e0237527. [PMID: 32810170 PMCID: PMC7437464 DOI: 10.1371/journal.pone.0237527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
Endemic and restricted-range species are considered to be particularly vulnerable to the effects of environmental change, which makes assessing likely climate change effects on geographic distributions of such species important to the development of integrated conservation strategies. Here, we determined distributional patterns for an endemic species of Dianthus (Dianthus polylepis) in the Irano-Turanian region using a maximum-entropy algorithm. In total, 70 occurrence points and 19 climatic variables were used to estimate the potential distributional area under current conditions and two future representative concentration pathway (RCP2.6 and RCP8.5) scenarios under seven general circulation models for 2050. Mean diurnal range, iso-thermality, minimum temperature of coldest quarter, and annual precipitation were major factors that appeared to structure the distribution of the species. Most current potential suitable areas were located in montane regions. Model transfers to future-climate scenarios displayed upward shifts in elevation and northward shifts geographically for the species. Our results can be used to define high-priority areas in the Irano-Turanian region for conservation management plans for this species and can offer a template for analyses of other endangered and threatened species in the region.
Collapse
Affiliation(s)
- Maryam Behroozian
- Quantitative Plant Ecology and Biodiversity Research Lab., Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Ejtehadi
- Quantitative Plant Ecology and Biodiversity Research Lab., Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- * E-mail:
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Farshid Memariani
- Department of Botany, Research Center for Plant Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Mesdaghi
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
33
|
Castro M, Loureiro J, Figueiredo A, Serrano M, Husband BC, Castro S. Different Patterns of Ecological Divergence Between Two Tetraploids and Their Diploid Counterpart in a Parapatric Linear Coastal Distribution Polyploid Complex. FRONTIERS IN PLANT SCIENCE 2020; 11:315. [PMID: 32265966 PMCID: PMC7098452 DOI: 10.3389/fpls.2020.00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/03/2020] [Indexed: 05/24/2023]
Abstract
Polyploidization is a widespread mechanism of evolutionary divergence in flowering plants. Ecological divergence of polyploid lineages has been proposed as a key process shaping the distribution of cytotypes in nature (niche shift hypothesis); however, evidence for the role of niche separation in replicated diploid-polyploid species pairs is still needed. This study aimed to assess the role of abiotic factors shaping current cytotype distributions. For that, we examined the distribution and environmental niches of two varieties recognized in diploid-tetraploid Jasione maritima across the species range and within a putative contact zone on the Iberian Peninsula. We counted chromosomes, screened for ploidy across Iberian Peninsula and characterized environmental requirements using niche modeling tools. We found that J. maritima var. maritima is composed by diploids with disjunct distribution in the west coast of France and northwest Iberian Peninsula, and by tetraploids in Iberian Peninsula, while var. sabularia is tetraploid. In the Iberian Peninsula, two parapatric contact zones along a linear coastal distribution were detected, one between diploid and tetraploid var. maritima, and the other between tetraploids of the two varieties. Environmental variables of diploid populations from France are distinct from those of southern diploid populations, which are more similar to tetraploids. In general, niche modeling results are congruent with the observed distribution patterns, although the results suggest a wider contact zone between varieties and cytotypes. Tetraploids of both varieties revealed different degrees of environmental divergence in comparison with their diploid counterpart. Tetraploid var. sabularia differed environmentally from diploids suggesting niche divergence. In contrast, tetraploid var. maritima overlapped with diploid environmental niche and currently occupies its entire predicted range, whereas diploids are restricted to northern areas of their suitable environment. Differences in ecological envelopes facilitate the recognition of functional units of biodiversity within polyploid groups, allowing the study of factors related to post-polyploidization divergence. Thus, whereas changes in environmental requirements may have allowed tetraploid var. sabularia to spread in habitats not favorable to diploids, other factors are involved with the distribution of diploid and tetraploid var. maritima.
Collapse
Affiliation(s)
- Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Albano Figueiredo
- Centre for Studies in Geography and Spatial Planning, Department of Geography and Tourism, Faculty of Arts and Humanities, University of Coimbra, Coimbra, Portugal
| | - Miguel Serrano
- Department of Botany, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Brian C. Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|