1
|
Villar E, Zweig N, Vincens P, Cruz de Carvalho H, Duchene C, Liu S, Monteil R, Dorrell RG, Fabris M, Vandepoele K, Bowler C, Falciatore A. DiatOmicBase: a versatile gene-centered platform for mining functional omics data in diatom research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70061. [PMID: 40089834 PMCID: PMC11910669 DOI: 10.1111/tpj.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025]
Abstract
Diatoms are prominent microalgae found in all aquatic environments. Over the last 20 years, thanks to the availability of genomic and genetic resources, diatom species such as Phaeodactylum tricornutum and Thalassiosira pseudonana have emerged as valuable experimental model systems for exploring topics ranging from evolution to cell biology, (eco)physiology, and biotechnology. Since the first genome sequencing projects initiated more than 20 years ago, numerous genome-enabled datasets have been generated, based on RNA-Seq and proteomics experiments, epigenomes, and ecotype variant analysis. Unfortunately, these resources, generated by various laboratories, are often in disparate formats and challenging to access and analyze. Here we present DiatOmicBase, a genome portal gathering comprehensive omics resources from P. tricornutum and T. pseudonana to facilitate the exploration of dispersed public datasets and the design of new experiments based on the prior-art. DiatOmicBase provides gene annotations, transcriptomic profiles and a genome browser with ecotype variants, histone and methylation marks, transposable elements, non-coding RNAs, and read densities from RNA-Seq experiments. We developed a semi-automatically updated transcriptomic module to explore both publicly available RNA-Seq experiments and users' private datasets. Using gene-level expression data, users can perform exploratory data analysis, differential expression, pathway analysis, biclustering, and co-expression network analysis. Users can create heatmaps to visualize pre-computed comparisons for selected gene subsets. Automatic access to other bioinformatic resources and tools for diatom comparative and functional genomics is also provided. Focusing on the resources currently centralized for P. tricornutum, we showcase several examples of how DiatOmicBase strengthens molecular research on diatoms, making these organisms accessible to a broad research community.
Collapse
Affiliation(s)
- Emilie Villar
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
- EV Consulting, Marseille, France
| | - Nathanaël Zweig
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Pierre Vincens
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Helena Cruz de Carvalho
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
- Faculté des Sciences et Technologie, Université Paris Est-Créteil (UPEC), Créteil, 94000, France
| | - Carole Duchene
- Institut de Biologie Physico-Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, 75005, France
| | - Shun Liu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Raphael Monteil
- Institut de Biologie Physico-Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, 75005, France
| | - Richard G Dorrell
- CNRS, IBPS, CQSB- Department of Computational, Quantitative and Synthetic Biology, UMR7238, Sorbonne Université, 4 place Jussieu, Paris, 75005, France
| | - Michele Fabris
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense M, 5230, Denmark
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for AI & Computational Biology, VIB, Ghent, Belgium
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Angela Falciatore
- Institut de Biologie Physico-Chimique, Laboratoire de Photobiologie et Physiologie des Plastes et des Microalgues, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, 75005, France
| |
Collapse
|
2
|
Dorrell RG, Zhang Y, Liang Y, Gueguen N, Nonoyama T, Croteau D, Penot-Raquin M, Adiba S, Bailleul B, Gros V, Pierella Karlusich JJ, Zweig N, Fernie AR, Jouhet J, Maréchal E, Bowler C. Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid. THE PLANT CELL 2024; 36:3584-3610. [PMID: 38842420 PMCID: PMC11371179 DOI: 10.1093/plcell/koae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.
Collapse
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Youjun Zhang
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Liang
- Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nolwenn Gueguen
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Tomomi Nonoyama
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Dany Croteau
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Mathias Penot-Raquin
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France
| | - Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France
| | - Valérie Gros
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Juan José Pierella Karlusich
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Nathanaël Zweig
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Alisdair R Fernie
- Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| |
Collapse
|
3
|
Russo MT, Rogato A, Jaubert M, Karas BJ, Falciatore A. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology. JOURNAL OF PHYCOLOGY 2023; 59:1114-1122. [PMID: 37975560 DOI: 10.1111/jpy.13400] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Diatoms are prominent and highly diverse microalgae in aquatic environments. Compared with other diatom species, Phaeodactylum tricornutum is an "atypical diatom" displaying three different morphotypes and lacking the usual silica shell. Despite being of limited ecological relevance, its ease of growth in the laboratory and well-known physiology, alongside the steady increase in genome-enabled information coupled with effective tools for manipulating gene expression, have meant it has gained increased recognition as a powerful experimental model for molecular research on diatoms. We here present a brief overview of how over the last 25 years P. tricornutum has contributed to the unveiling of fundamental aspects of diatom biology, while also emerging as a new tool for algal process engineering and synthetic biology.
Collapse
Affiliation(s)
- Monia T Russo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, National Research Council, IBBR-CNR, Naples, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marianne Jaubert
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Angela Falciatore
- UMR7141 Laboratoire de Biologie du chloroplaste et perception de la lumière chez les micro-algues, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
4
|
Murison V, Hérault J, Côme M, Guinio S, Lebon A, Chamot C, Bénard M, Galas L, Schoefs B, Marchand J, Bardor M, Ulmann L. Comparison of two Phaeodactylum tricornutum ecotypes under nitrogen starvation and resupply reveals distinct lipid accumulation strategies but a common degradation process. FRONTIERS IN PLANT SCIENCE 2023; 14:1257500. [PMID: 37810403 PMCID: PMC10556672 DOI: 10.3389/fpls.2023.1257500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Introduction Phaeodactylum tricornutum is a model species frequently used to study lipid metabolism in diatoms. When exposed to a nutrient limitation or starvation, diatoms are known to accumulate neutral lipids in cytoplasmic lipid droplets (LDs). Those lipids are produced partly de novo and partly from the recycle of plastid membrane lipids. Under a nitrogen resupply, the accumulated lipids are catabolized, a phenomenon about which only a few data are available. Various strains of P. tricornutum have been isolated around the world that may differ in lipid accumulation patterns. Methods To get further information on this topic, two genetically distant ecotypes of P. tricornutum (Pt1 and Pt4) have been cultivated under nitrogen deprivation during 11 days followed by a resupply period of 3 days. The importance of cytoplasmic LDs relative to the plastid was assessed by a combination of confocal laser scanning microscopy and cell volume estimation using bright field microscopy pictures. Results and discussion We observed that in addition to a basal population of small LDs (0.005 μm3 to 0.7 μm3) present in both strains all along the experiment, Pt4 cells immediately produced two large LDs (up to 12 μm3 after 11 days) while Pt1 cells progressively produced a higher number of smaller LDs (up to 7 μm3 after 11 days). In this work we showed that, in addition to intracellular available space, lipid accumulation may be limited by the pre-starvation size of the plastid as a source of membrane lipids to be recycled. After resupplying nitrogen and for both ecotypes, a fragmentation of the largest LDs was observed as well as a possible migration of LDs to the vacuoles that would suggest an autophagic degradation. Altogether, our results deepen the understanding of LDs dynamics and open research avenues for a better knowledge of lipid degradation in diatoms.
Collapse
Affiliation(s)
- Victor Murison
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Josiane Hérault
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Martine Côme
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Sabrina Guinio
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| | - Alexis Lebon
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Christophe Chamot
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Magalie Bénard
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Ludovic Galas
- Université de Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, PRIMACEN, Rouen, France
| | - Benoît Schoefs
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Biology of Organisms, Stress, Health and Environment, UFR Sciences et Techniques, Le Mans Université, IUML-FR 3473 CNRS, Le Mans, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen, France
| | - Lionel Ulmann
- Biology of Organisms, Stress, Health and Environment, IUT Département Génie Biologique, Le Mans Université, IUML-FR 3473 CNRS, Laval, France
| |
Collapse
|
5
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
6
|
Broddrick JT, Ware MA, Jallet D, Palsson BO, Peers G. Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:603-621. [PMID: 36053127 PMCID: PMC9826171 DOI: 10.1111/tpj.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/01/2023]
Abstract
Characterizing photosynthetic productivity is necessary to understand the ecological contributions and biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these investigations typically do not consider the metabolic network downstream of light harvesting. By contrast, genome-scale metabolic models capture species-specific metabolic capabilities but have yet to incorporate the rapid regulation of the light harvesting apparatus. Here, we combine chlorophyll fluorescence parameters defining photosynthetic and non-photosynthetic yield of absorbed light energy with a metabolic model of the pennate diatom Phaeodactylum tricornutum. This integration increases the model predictive accuracy regarding growth rate, intracellular oxygen production and consumption, and metabolic pathway usage. Through the quantification of excess electron transport, we uncover the sequential activation of non-radiative energy dissipation processes, cross-compartment electron shuttling, and non-photochemical quenching as the rapid photoacclimation strategy in P. tricornutum. Interestingly, the photon absorption thresholds that trigger the transition between these mechanisms were consistent at low and high incident photon fluxes. We use this understanding to explore engineering strategies for rerouting cellular resources and excess light energy towards bioproducts in silico. Overall, we present a methodology for incorporating a common, informative data type into computational models of light-driven metabolism and show its utilization within the design-build-test-learn cycle for engineering of photosynthetic organisms.
Collapse
Affiliation(s)
- Jared T. Broddrick
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA92093USA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Space Biosciences Research BranchNASA Ames Research CenterMoffett FieldCA94035USA
| | - Maxwell A. Ware
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| | - Denis Jallet
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| | - Bernhard O. Palsson
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Graham Peers
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| |
Collapse
|
7
|
Liu S, Storti M, Finazzi G, Bowler C, Dorrell RG. A metabolic, phylogenomic and environmental atlas of diatom plastid transporters from the model species Phaeodactylum. FRONTIERS IN PLANT SCIENCE 2022; 13:950467. [PMID: 36212359 PMCID: PMC9546453 DOI: 10.3389/fpls.2022.950467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Diatoms are an important group of algae, contributing nearly 40% of total marine photosynthetic activity. However, the specific molecular agents and transporters underpinning the metabolic efficiency of the diatom plastid remain to be revealed. We performed in silico analyses of 70 predicted plastid transporters identified by genome-wide searches of Phaeodactylum tricornutum. We considered similarity with Arabidopsis thaliana plastid transporters, transcriptional co-regulation with genes encoding core plastid metabolic pathways and with genes encoded in the mitochondrial genomes, inferred evolutionary histories using single-gene phylogeny, and environmental expression trends using Tara Oceans meta-transcriptomics and meta-genomes data. Our data reveal diatoms conserve some of the ion, nucleotide and sugar plastid transporters associated with plants, such as non-specific triose phosphate transporters implicated in the transport of phosphorylated sugars, NTP/NDP and cation exchange transporters. However, our data also highlight the presence of diatom-specific transporter functions, such as carbon and amino acid transporters implicated in intricate plastid-mitochondria crosstalk events. These confirm previous observations that substrate non-specific triose phosphate transporters (TPT) may exist as principal transporters of phosphorylated sugars into and out of the diatom plastid, alongside suggesting probable agents of NTP exchange. Carbon and amino acid transport may be related to intricate metabolic plastid-mitochondria crosstalk. We additionally provide evidence from environmental meta-transcriptomic/meta- genomic data that plastid transporters may underpin diatom sensitivity to ocean warming, and identify a diatom plastid transporter (J43171) whose expression may be positively correlated with temperature.
Collapse
Affiliation(s)
- Shun Liu
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Mattia Storti
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique Energies Alternatives (CEA), Institut National Recherche Agriculture Alimentation Environnement (INRAE), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National De La Recherche Scientifique (CNRS), Institut National De La Santé Et De La Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, France
| |
Collapse
|
8
|
Chen J, Huang Y, Shu Y, Hu X, Wu D, Jiang H, Wang K, Liu W, Fu W. Recent Progress on Systems and Synthetic Biology of Diatoms for Improving Algal Productivity. Front Bioeng Biotechnol 2022; 10:908804. [PMID: 35646842 PMCID: PMC9136054 DOI: 10.3389/fbioe.2022.908804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae have drawn much attention for their potential applications as a sustainable source for developing bioactive compounds, functional foods, feeds, and biofuels. Diatoms, as one major group of microalgae with high yields and strong adaptability to the environment, have shown advantages in developing photosynthetic cell factories to produce value-added compounds, including heterologous bioactive products. However, the commercialization of diatoms has encountered several obstacles that limit the potential mass production, such as the limitation of algal productivity and low photosynthetic efficiency. In recent years, systems and synthetic biology have dramatically improved the efficiency of diatom cell factories. In this review, we discussed first the genome sequencing and genome-scale metabolic models (GEMs) of diatoms. Then, approaches to optimizing photosynthetic efficiency are introduced with a focus on the enhancement of biomass productivity in diatoms. We also reviewed genome engineering technologies, including CRISPR (clustered regularly interspaced short palindromic repeats) gene-editing to produce bioactive compounds in diatoms. Finally, we summarized the recent progress on the diatom cell factory for producing heterologous compounds through genome engineering to introduce foreign genes into host diatoms. This review also pinpointed the bottlenecks in algal engineering development and provided critical insights into the future direction of algal production.
Collapse
Affiliation(s)
- Jiwei Chen
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yifan Huang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Yuexuan Shu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Xiaoyue Hu
- Center for Data Science, Zhejiang University, Hangzhou, China
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Di Wu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Kui Wang
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
| | - Weihua Liu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Weiqi Fu
- Department of Marine Science, Ocean College, Zhejiang University, Hangzhou, China
- Center for Systems Biology and Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
- *Correspondence: Weiqi Fu,
| |
Collapse
|
9
|
Régimbeau A, Budinich M, Larhlimi A, Pierella Karlusich JJ, Aumont O, Memery L, Bowler C, Eveillard D. Contribution of genome-scale metabolic modelling to niche theory. Ecol Lett 2022; 25:1352-1364. [PMID: 35384214 PMCID: PMC9324083 DOI: 10.1111/ele.13954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022]
Abstract
Standard niche modelling is based on probabilistic inference from organismal occurrence data but does not benefit yet from genome‐scale descriptions of these organisms. This study overcomes this shortcoming by proposing a new conceptual niche that resumes the whole metabolic capabilities of an organism. The so‐called metabolic niche resumes well‐known traits such as nutrient needs and their dependencies for survival. Despite the computational challenge, its implementation allows the detection of traits and the formal comparison of niches of different organisms, emphasising that the presence–absence of functional genes is not enough to approximate the phenotype. Further statistical exploration of an organism's niche sheds light on genes essential for the metabolic niche and their role in understanding various biological experiments, such as transcriptomics, paving the way for incorporating better genome‐scale description in ecological studies.
Collapse
Affiliation(s)
| | | | | | - Juan José Pierella Karlusich
- Département de Biologie, Institut de Biologie de l'ENS, École Normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Olivier Aumont
- Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), IRD-IPSL, Paris, France
| | - Laurent Memery
- Université de Brest (UBO), CNRS, IRD, Ifremer, Laboratoire des Sciences de l'Environnement Marin, Plouzané, France
| | - Chris Bowler
- Département de Biologie, Institut de Biologie de l'ENS, École Normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GO-SEE, Paris, France
| | - Damien Eveillard
- Université de Nantes, CNRS, LS2N, Nantes, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GO-SEE, Paris, France
| |
Collapse
|
10
|
Hammond M, Dorrell RG, Speijer D, Lukeš J. Eukaryotic cellular intricacies shape mitochondrial proteomic complexity. Bioessays 2022; 44:e2100258. [PMID: 35318703 DOI: 10.1002/bies.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
Mitochondria have been fundamental to the eco-physiological success of eukaryotes since the last eukaryotic common ancestor (LECA). They contribute essential functions to eukaryotic cells, above and beyond classical respiration. Mitochondria interact with, and complement, metabolic pathways occurring in other organelles, notably diversifying the chloroplast metabolism of photosynthetic organisms. Here, we integrate existing literature to investigate how mitochondrial metabolism varies across the landscape of eukaryotic evolution. We illustrate the mitochondrial remodelling and proteomic changes undergone in conjunction with major evolutionary transitions. We explore how the mitochondrial complexity of the LECA has been remodelled in specific groups to support subsequent evolutionary transitions, such as the acquisition of chloroplasts in photosynthetic species and the emergence of multicellularity. We highlight the versatile and crucial roles played by mitochondria during eukaryotic evolution, extending from its huge contribution to the development of the LECA itself to the dynamic evolution of individual eukaryote groups, reflecting both their current ecologies and evolutionary histories.
Collapse
Affiliation(s)
- Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Dave Speijer
- Medical Biochemistry, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
11
|
Hippmann AA, Schuback N, Moon K, McCrow JP, Allen AE, Foster LF, Green BR, Maldonado MT. Proteomic analysis of metabolic pathways supports chloroplast-mitochondria cross-talk in a Cu-limited diatom. PLANT DIRECT 2022; 6:e376. [PMID: 35079683 PMCID: PMC8777261 DOI: 10.1002/pld3.376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 05/19/2023]
Abstract
Diatoms are one of the most successful phytoplankton groups in our oceans, being responsible for over 20% of the Earth's photosynthetic productivity. Their chimeric genomes have genes derived from red algae, green algae, bacteria, and heterotrophs, resulting in multiple isoenzymes targeted to different cellular compartments with the potential for differential regulation under nutrient limitation. The resulting interactions between metabolic pathways are not yet fully understood. We previously showed how acclimation to Cu limitation enhanced susceptibility to overreduction of the photosynthetic electron transport chain and its reorganization to favor photoprotection over light harvesting in the oceanic diatom Thalassiosira oceanica (Hippmann et al., 2017, 10.1371/journal.pone.0181753). In order to gain a better understanding of the overall metabolic changes that help alleviate the stress of Cu limitation, we have further analyzed the comprehensive proteomic datasets generated in that study to identify differentially expressed proteins involved in carbon, nitrogen, and oxidative stress-related metabolic pathways. Metabolic pathway analysis showed integrated responses to Cu limitation. The upregulation of ferredoxin (Fdx) was correlated with upregulation of plastidial Fdx-dependent isoenzymes involved in nitrogen assimilation as well as enzymes involved in glutathione synthesis, thus suggesting an integration of nitrogen uptake and metabolism with photosynthesis and oxidative stress resistance. The differential expression of glycolytic isoenzymes located in the chloroplast and mitochondria may enable them to channel both excess electrons and/or ATP between these compartments. An additional support for chloroplast-mitochondrial cross-talk is the increased expression of chloroplast and mitochondrial proteins involved in the proposed malate shunt under Cu limitation.
Collapse
Affiliation(s)
- Anna A. Hippmann
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nina Schuback
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kyung‐Mee Moon
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - John P. McCrow
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
| | - Andrew E. Allen
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCAUSA
| | - Leonard F. Foster
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - Beverley R. Green
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Maria T. Maldonado
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
12
|
Passi A, Tibocha-Bonilla JD, Kumar M, Tec-Campos D, Zengler K, Zuniga C. Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites 2021; 12:14. [PMID: 35050136 PMCID: PMC8778254 DOI: 10.3390/metabo12010014] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Genome-scale metabolic models (GEMs) enable the mathematical simulation of the metabolism of archaea, bacteria, and eukaryotic organisms. GEMs quantitatively define a relationship between genotype and phenotype by contextualizing different types of Big Data (e.g., genomics, metabolomics, and transcriptomics). In this review, we analyze the available Big Data useful for metabolic modeling and compile the available GEM reconstruction tools that integrate Big Data. We also discuss recent applications in industry and research that include predicting phenotypes, elucidating metabolic pathways, producing industry-relevant chemicals, identifying drug targets, and generating knowledge to better understand host-associated diseases. In addition to the up-to-date review of GEMs currently available, we assessed a plethora of tools for developing new GEMs that include macromolecular expression and dynamic resolution. Finally, we provide a perspective in emerging areas, such as annotation, data managing, and machine learning, in which GEMs will play a key role in the further utilization of Big Data.
Collapse
Affiliation(s)
- Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA;
| | - Manish Kumar
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Diego Tec-Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Merida 97203, Yucatan, Mexico
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0403, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| |
Collapse
|
13
|
Hupp J, McCoy JI, Millgan AJ, Peers G. Simultaneously measuring carbon uptake capacity and chlorophyll a fluorescence dynamics in algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Seif Y, Palsson BØ. Path to improving the life cycle and quality of genome-scale models of metabolism. Cell Syst 2021; 12:842-859. [PMID: 34555324 PMCID: PMC8480436 DOI: 10.1016/j.cels.2021.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Genome-scale models of metabolism (GEMs) are key computational tools for the systems-level study of metabolic networks. Here, we describe the "GEM life cycle," which we subdivide into four stages: inception, maturation, specialization, and amalgamation. We show how different types of GEM reconstruction workflows fit in each stage and proceed to highlight two fundamental bottlenecks for GEM quality improvement: GEM maturation and content removal. We identify common characteristics contributing to increasing quality of maturing GEMs drawing from past independent GEM maturation efforts. We then shed some much-needed light on the latent and unrecognized but pervasive issue of content removal, demonstrating the substantial effects of model pruning on its solution space. Finally, we propose a novel framework for content removal and associated confidence-level assignment which will help guide future GEM development efforts, reduce duplication of effort across groups, potentially aid automated reconstruction platforms, and boost the reproducibility of model development.
Collapse
Affiliation(s)
- Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Bernhard Ørn Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
15
|
Behrenfeld MJ, Halsey KH, Boss E, Karp‐Boss L, Milligan AJ, Peers G. Thoughts on the evolution and ecological niche of diatoms. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1457] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michael J. Behrenfeld
- Department of Botany and Plant Pathology Oregon State University 4575 SW Research Way Corvallis Oregon 97333 USA
| | - Kimberly H. Halsey
- Department of Microbiology Oregon State University Nash Hall 226 Corvallis Oregon 97331 USA
| | - Emmanuel Boss
- School of Marine Sciences University of Maine 5706 Aubert Hall Orono Maine 04469‐5706 USA
| | - Lee Karp‐Boss
- School of Marine Sciences University of Maine 5706 Aubert Hall Orono Maine 04469‐5706 USA
| | - Allen J. Milligan
- Department of Botany and Plant Pathology Oregon State University 4575 SW Research Way Corvallis Oregon 97333 USA
| | - Graham Peers
- Department of Biology Colorado State University Biology Building, Room 111, 1878 Campus Delivery Fort Collins Colorado 80523‐1878 USA
| |
Collapse
|
16
|
Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS One 2021; 16:e0241960. [PMID: 33760840 PMCID: PMC7990286 DOI: 10.1371/journal.pone.0241960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Diatoms are unicellular photosynthetic algae known to secrete organic matter that fuels secondary production in the ocean, though our knowledge of how their physiology impacts the composition of dissolved organic matter remains limited. Like all photosynthetic organisms, their use of light for energy and reducing power creates the challenge of avoiding cellular damage. To better understand the interplay between redox balance and organic matter secretion, we reconstructed a genome-scale metabolic model of Thalassiosira pseudonana strain CCMP 1335, a model for diatom molecular biology and physiology, with a 60-year history of studies. The model simulates the metabolic activities of 1,432 genes via a network of 2,792 metabolites produced through 6,079 reactions distributed across six subcellular compartments. Growth was simulated under different steady-state light conditions (5–200 μmol photons m-2 s-1) and in a batch culture progressing from exponential growth to nitrate-limitation and nitrogen-starvation. We used the model to examine the dissipation of reductants generated through light-dependent processes and found that when available, nitrate assimilation is an important means of dissipating reductants in the plastid; under nitrate-limiting conditions, sulfate assimilation plays a similar role. The use of either nitrate or sulfate uptake to balance redox reactions leads to the secretion of distinct organic nitrogen and sulfur compounds. Such compounds can be accessed by bacteria in the surface ocean. The model of the diatom Thalassiosira pseudonana provides a mechanistic explanation for the production of ecologically and climatologically relevant compounds that may serve as the basis for intricate, cross-kingdom microbial networks. Diatom metabolism has an important influence on global biogeochemistry; metabolic models of marine microorganisms link genes to ecosystems and may be key to integrating molecular data with models of ocean biogeochemistry.
Collapse
|
17
|
Jallet D, Xing D, Hughes A, Moosburner M, Simmons MP, Allen AE, Peers G. Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom. THE NEW PHYTOLOGIST 2020; 228:946-958. [PMID: 32535932 DOI: 10.1111/nph.16744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Photoautotrophic growth in nature requires the accumulation of energy-containing molecules via photosynthesis during daylight to fuel nighttime catabolism. Many diatoms store photosynthate as the neutral lipid triacylglycerol (TAG). While the pathways of diatom fatty acid and TAG synthesis appear to be well conserved with plants, the pathways of TAG catabolism and downstream fatty acid β-oxidation have not been characterised in diatoms. We identified a putative mitochondria-targeted, bacterial-type acyl-CoA dehydrogenase (PtMACAD1) that is present in Stramenopile and Hacrobian eukaryotes, but not found in plants, animals or fungi. Gene knockout, protein-YFP tags and physiological assays were used to determine PtMACAD1's role in the diatom Phaeodactylum tricornutum. PtMACAD1 is located in the mitochondria. Absence of PtMACAD1 led to no consumption of TAG at night and slower growth in light : dark cycles compared with wild-type. Accumulation of transcripts encoding peroxisomal-based β-oxidation did not change in response to day : night cycles or to PtMACAD1 knockout. Mutants also hyperaccumulated TAG after the amelioration of N limitation. We conclude that diatoms utilise mitochondrial β-oxidation; this is in stark contrast to the peroxisomal-based pathways observed in plants and green algae. We infer that this pattern is caused by retention of catabolic pathways from the host during plastid secondary endosymbiosis.
Collapse
Affiliation(s)
- Denis Jallet
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
- Toulouse Biotechnology Institute, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, 31077, France
| | - Denghui Xing
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Alexander Hughes
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Mark Moosburner
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Mark P Simmons
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Graham Peers
- Department of Biology, Colorado State University, 1878 Campus Delivery, 200 West Lake Street, Fort Collins, CO, 80523, USA
| |
Collapse
|
18
|
Ware MA, Hunstiger D, Cantrell M, Peers G. A Chlorophyte Alga Utilizes Alternative Electron Transport for Primary Photoprotection. PLANT PHYSIOLOGY 2020; 183:1735-1748. [PMID: 32457091 PMCID: PMC7401117 DOI: 10.1104/pp.20.00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 05/28/2023]
Abstract
The green alga Desmodesmus armatus is an emerging biofuel platform that produces high amounts of lipids and biomass in mass culture. We observed D. armatus in light-limiting, excess-light, and sinusoidal-light environments to investigate its photoacclimation behaviors and the mechanisms by which it dissipates excess energy. Chlorophyll a/b ratios and the functional absorption cross section of PSII suggested a constitutively small light-harvesting antenna size relative to other green algae. In situ and ex situ measurements of photo-physiology revealed that nonphotochemical quenching is not a significant contributor to photoprotection; however, cells do not suffer substantial photoinhibition despite its near absence. We performed membrane inlet mass spectrometry analysis to show that D. armatus has a very high capacity for alternative electron transport (AET) measured as light-dependent oxygen consumption. Up to 90% of electrons generated at PSII can be dissipated by AET in a water-water cycle during growth in rapidly fluctuating light environments, like those found in industrial-scale photobioreactors. This work highlights the diversity of photoprotective mechanisms present in algal systems, indicating that nonphotochemical quenching is not necessarily required for effective photoprotection in some algae, and suggests that engineering AET may be an attractive target for increasing the biomass productivity of some strains.
Collapse
Affiliation(s)
- Maxwell A Ware
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Darcy Hunstiger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
19
|
Falciatore A, Jaubert M, Bouly JP, Bailleul B, Mock T. Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity. THE PLANT CELL 2020; 32:547-572. [PMID: 31852772 PMCID: PMC7054031 DOI: 10.1105/tpc.19.00158] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 05/08/2023]
Abstract
Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.
Collapse
Affiliation(s)
- Angela Falciatore
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Marianne Jaubert
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Jean-Pierre Bouly
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
20
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
21
|
Lavoie M, Saint-Béat B, Strauss J, Guérin S, Allard A, V. Hardy S, Falciatore A, Lavaud J. Genome-Scale Metabolic Reconstruction and in Silico Perturbation Analysis of the Polar Diatom Fragilariopsis cylindrus Predicts High Metabolic Robustness. BIOLOGY 2020; 9:biology9020030. [PMID: 32079178 PMCID: PMC7168318 DOI: 10.3390/biology9020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
Diatoms are major primary producers in polar environments where they can actively grow under extremely variable conditions. Integrative modeling using a genome-scale model (GSM) is a powerful approach to decipher the complex interactions between components of diatom metabolism and can provide insights into metabolic mechanisms underlying their evolutionary success in polar ecosystems. We developed the first GSM for a polar diatom, Fragilariopsis cylindrus, which enabled us to study its metabolic robustness using sensitivity analysis. We find that the predicted growth rate was robust to changes in all model parameters (i.e., cell biochemical composition) except the carbon uptake rate. Constraints on total cellular carbon buffer the effect of changes in the input parameters on reaction fluxes and growth rate. We also show that single reaction deletion of 20% to 32% of active (nonzero flux) reactions and single gene deletion of 44% to 55% of genes associated with active reactions affected the growth rate, as well as the production fluxes of total protein, lipid, carbohydrate, DNA, RNA, and pigments by less than 1%, which was due to the activation of compensatory reactions (e.g., analogous enzymes and alternative pathways) with more highly connected metabolites involved in the reactions that were robust to deletion. Interestingly, including highly divergent alleles unique for F. cylindrus increased its metabolic robustness to cellular perturbations even more. Overall, our results underscore the high robustness of metabolism in F. cylindrus, a feature that likely helps to maintain cell homeostasis under polar conditions.
Collapse
Affiliation(s)
- Michel Lavoie
- Unité Mixte Internationale 3376 Takuvik, CNRS-ULaval, Département de Biologie and Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada; (B.S.-B.); (S.G.); (J.L.)
- Correspondence:
| | - Blanche Saint-Béat
- Unité Mixte Internationale 3376 Takuvik, CNRS-ULaval, Département de Biologie and Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada; (B.S.-B.); (S.G.); (J.L.)
| | - Jan Strauss
- Department of Biology, University of Hamburg, D-22607 Hamburg, Germany;
- CSSB Centre for Structural Systems Biology, c/o Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Sébastien Guérin
- Unité Mixte Internationale 3376 Takuvik, CNRS-ULaval, Département de Biologie and Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada; (B.S.-B.); (S.G.); (J.L.)
| | - Antoine Allard
- Département de physique, de génie physique et d’optique, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre interdisciplinaire de modélisation mathématique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Simon V. Hardy
- Département d’informatique et génie logiciel, Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada;
- Unité des Neurosciences cellulaires et moléculaires, Centre de recherche CERVO, Québec, QC G1V 0A6, Canada
| | - Angela Falciatore
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France;
| | - Johann Lavaud
- Unité Mixte Internationale 3376 Takuvik, CNRS-ULaval, Département de Biologie and Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada; (B.S.-B.); (S.G.); (J.L.)
| |
Collapse
|
22
|
Ait-Mohamed O, Novák Vanclová AMG, Joli N, Liang Y, Zhao X, Genovesio A, Tirichine L, Bowler C, Dorrell RG. PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2020; 11:590949. [PMID: 33178253 PMCID: PMC7596299 DOI: 10.3389/fpls.2020.590949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
Transcriptional coordination is a fundamental component of prokaryotic and eukaryotic cell biology, underpinning the cell cycle, physiological transitions, and facilitating holistic responses to environmental stress, but its overall dynamics in eukaryotic algae remain poorly understood. Better understanding of transcriptional partitioning may provide key insights into the primary metabolism pathways of eukaryotic algae, which frequently depend on intricate metabolic associations between the chloroplasts and mitochondria that are not found in plants. Here, we exploit 187 publically available RNAseq datasets generated under varying nitrogen, iron and phosphate growth conditions to understand the co-regulatory principles underpinning transcription in the model diatom Phaeodactylum tricornutum. Using WGCNA (Weighted Gene Correlation Network Analysis), we identify 28 merged modules of co-expressed genes in the P. tricornutum genome, which show high connectivity and correlate well with previous microarray-based surveys of gene co-regulation in this species. We use combined functional, subcellular localization and evolutionary annotations to reveal the fundamental principles underpinning the transcriptional co-regulation of genes implicated in P. tricornutum chloroplast and mitochondrial metabolism, as well as the functions of diverse transcription factors underpinning this co-regulation. The resource is publically available as PhaeoNet, an advanced tool to understand diatom gene co-regulation.
Collapse
Affiliation(s)
- Ouardia Ait-Mohamed
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anna M. G. Novák Vanclová
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nathalie Joli
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Yue Liang
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Xue Zhao
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
| | - Auguste Genovesio
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Leila Tirichine
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
- *Correspondence: Leila Tirichine,
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Chris Bowler,
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
23
|
Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, Füssy Z, Cihlář J, Kleessen S, Zheng H, McCrow JP, Hixson KK, Araújo WL, Nunes-Nesi A, Fernie A, Nikoloski Z, Palsson BO, Allen AE. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun 2019; 10:4552. [PMID: 31591397 PMCID: PMC6779911 DOI: 10.1038/s41467-019-12407-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/03/2019] [Indexed: 01/15/2023] Open
Abstract
Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.
Collapse
Affiliation(s)
- Sarah R Smith
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Chris L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - James K McCarthy
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Jared T Broddrick
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jaromír Cihlář
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Sabrina Kleessen
- Targenomix, GmbH, Wissenschaftspark Potsdam-Golm, 14476, Potsdam, Germany
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Kim K Hixson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair Fernie
- Max Planck Institut of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA.
- Scripps Institution of Oceanography, Integrative Oceanography Division, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
24
|
Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast. Biomolecules 2019; 9:biom9080322. [PMID: 31366180 PMCID: PMC6723447 DOI: 10.3390/biom9080322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Of all the eukaryotic algal groups, diatoms make the most substantial contributions to photosynthesis in the contemporary ocean. Understanding the biological innovations that have occurred in the diatom chloroplast may provide us with explanations to the ecological success of this lineage and clues as to how best to exploit the biology of these organisms for biotechnology. In this paper, we use multi-species transcriptome datasets to compare chloroplast metabolism pathways in diatoms to other algal lineages. We identify possible diatom-specific innovations in chloroplast metabolism, including the completion of tocopherol synthesis via a chloroplast-targeted tocopherol cyclase, a complete chloroplast ornithine cycle, and chloroplast-targeted proteins involved in iron acquisition and CO2 concentration not shared between diatoms and their closest relatives in the stramenopiles. We additionally present a detailed investigation of the chloroplast metabolism of the oil-producing diatom Fistulifera solaris, which is of industrial interest for biofuel production. These include modified amino acid and pyruvate hub metabolism that might enhance acetyl-coA production for chloroplast lipid biosynthesis and the presence of a chloroplast-localised squalene synthesis pathway unknown in other diatoms. Our data provides valuable insights into the biological adaptations underpinning an ecologically critical lineage, and how chloroplast metabolism can change even at a species level in extant algae.
Collapse
|