1
|
Khatoon S, Kumari S, Gandhi M, Nagarwal K, Sahoo RN, Iqbal N, Khan MIR. Appraising diverse metrics of nitric oxide in salt stress tolerance of high yielding wheat genotypes. Nitric Oxide 2025; 156:82-93. [PMID: 40139305 DOI: 10.1016/j.niox.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Staple crop vulnerability has been escalating with significant approach due to climatic variations leading to persistent salt accumulation as inimical environmental stressors, and thus endangering food security. To address this global concern, there is a need to elucidate the growth, physiological and yield responses, entailing plant salt tolerance modifications. Recent years have been advocated with studies focusing on the integration of nitric oxide (NO), however there is a need of critical decipherment on NO synthesis is regulated under salt stress conditions. With this focus, the present investigation has assessed the salt-mediated differential impacts on the plant growth, root architecture, photosynthetic pigment, carbon metabolites (carbohydrate and starch), and stomatal frequency, leading to restrained plant metabolisms in the 49 wheat genotypes. Further, the accumulation of secondary metabolites (flavonoids and phenols) was found concomitant with the improved NO biosynthesis in salt-stressed tolerant wheat genotype. To validate the involvement of endogenous NO as salt stress tolerance criterion, use of NO scavenger (cPTIO) suggests the involvement of NO in enhancing salt tolerance and stress defense metabolites mainly lignin biosynthesis, and cellulose to attain plant stress tolerance. These underlying interactions could pave the way to convey wheat tolerance for the future breeding programs.
Collapse
Affiliation(s)
| | - Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Muskan Gandhi
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | | | | | | |
Collapse
|
2
|
Xu S, Wei Y, Zhao P, Sun Y, Gao K, Yin C, Wang C, Fang R, Ye J. A Nitrate Transporter OsNPF6.1 Promotes Nitric Oxide Signaling and Virus Resistance. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40390394 DOI: 10.1111/pce.15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/24/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
Nitric oxide (NO) is a vital immune molecule eliciting resistance to diverse microbial pathogens in humans and animals. However, its functional integration into plant immune networks remains incompletely characterized. In this study, we reveal that both endogenous induction and exogenous supplementation of NO significantly enhance resistance to rice stripe virus (RSV), a Bunyavirus that poses a huge threat to rice production. The nitrate transporter OsNPF6.1 potentiates virus resistance by upregulating the expression of nitrate reductase (OsNR2) and subsequent NO biosynthesis. Functional analyses demonstrate that the disease-specific protein (SP) encoded by RSV interacts with OsNPF6.1 to impair its nitrate transport activity, effectively subverting host immunity to facilitate RSV infection. Notably, this host-pathogen interaction exhibits nitrogen dependency: low nitrate availability attenuates the OsNPF6.1-SP association, preserving transporter functionality and virus resistance. Thus, this study not only provides novel insights into the coordination of growth-defense tradeoffs but also proposes actionable strategies for crop protection via optimized nitrogen management.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wei
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingzhi Zhao
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kaixing Gao
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cece Yin
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Rongxiang Fang
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ye
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Sedlářová M, Jedelská T, Lebeda A, Petřivalský M. Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection. Int J Mol Sci 2025; 26:2087. [PMID: 40076711 PMCID: PMC11899914 DOI: 10.3390/ijms26052087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Nitric oxide (NO) is a gaseous free radical known to modulate plant metabolism through crosstalk with phytohormones (especially ABA, SA, JA, and ethylene) and other signaling molecules (ROS, H2S, melatonin), and to regulate gene expression (by influencing DNA methylation and histone acetylation) as well as protein function through post-translational modifications (cysteine S-nitrosation, metal nitrosation, tyrosine nitration, nitroalkylation). Recently, NO has gained attention as a molecule promoting crop resistance to stress conditions. Herein, we review innovations from the NO field and nanotechnology on an up-to-date phytopathological background.
Collapse
Affiliation(s)
- Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic;
| | - Tereza Jedelská
- Department of Biochemisty, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic; (T.J.); (M.P.)
| | - Aleš Lebeda
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic;
| | - Marek Petřivalský
- Department of Biochemisty, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc-Holice, Czech Republic; (T.J.); (M.P.)
| |
Collapse
|
4
|
Yang T, Mu X, Yu M, Ergashev U, Zhu Y, Shi N, Li N, Luo L, Zhang K, Han Y. Consecutive oxidative stress in CATALASE2-deficient Arabidopsis negatively regulates Glycolate Oxidase1 activity through S-nitrosylation. PHYSIOLOGIA PLANTARUM 2025; 177:e70040. [PMID: 39777728 DOI: 10.1111/ppl.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory H2O2 may entrain negative feedback regulation of GOX in an age-dependent manner. Intriguingly, a loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) rather than in GOX2 and GOX3 attenuated the SA responses of cat2. We found that GOX1 is S-nitrosylated at Cys-343 during consecutive oxidative stress in the cat2 mutant. Subsequently, increased GOX1-SNO formations may contribute to progressively decreased GOX activities and then compromised photorespiratory H2O2 flux, which forms a negative feedback loop limiting the amplified activation of SA-dependent defence responses. Together, the data reveal that GOX S-nitrosylation is involved in the crosstalk between photorespiratory H2O2 and NO signalling in the fine-tuning regulation of oxidative stress responses and further highlight that NO-based S-nitrosylation acts as an on-off switch for ROS homeostasis.
Collapse
Affiliation(s)
- Tianzhao Yang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- School of Urban and Rural Construction, Fuyang Institute of Technology, Fuyang, China
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mei Yu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ulugbek Ergashev
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yihan Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ningning Shi
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kuanchao Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Yu Y, Fotopoulos V, Zhou K, Fernie AR. The role of gasotransmitter hydrogen sulfide in plant cadmium stress responses. TRENDS IN PLANT SCIENCE 2025; 30:35-53. [PMID: 39358104 DOI: 10.1016/j.tplants.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses a significant risk to both plant growth and human health. To mitigate or lessen Cd toxicity, plants have evolved a wide range of sensing and defense strategies. The gasotransmitter hydrogen sulfide (H2S) is involved in plant responses to Cd stress and exhibits a crucial role in modulating Cd tolerance through a well-orchestrated interaction with several signaling pathways. Here, we review potential experimental approaches to manipulate H2S signals, concluding that research on another gasotransmitter, namely nitric oxide (NO), serves as a good model for research on H2S. Additionally, we discuss potential strategies to leverage H2S-reguated Cd tolerance to improve plant performance under Cd stress.
Collapse
Affiliation(s)
- Yan Yu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Kejin Zhou
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
6
|
Ergashev U, Yu M, Luo L, Tang J, Han Y. The Key Targets of NO-Mediated Post-Translation Modification (PTM) Highlighting the Dynamic Metabolism of ROS and RNS in Peroxisomes. Int J Mol Sci 2024; 25:8873. [PMID: 39201563 PMCID: PMC11355049 DOI: 10.3390/ijms25168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO-) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes.
Collapse
Affiliation(s)
- Ulugbek Ergashev
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| | - Mei Yu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| | - Jie Tang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| |
Collapse
|
7
|
Singh P, Jaiswal S, Tripathi DK, Singh VP. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108461. [PMID: 38461754 DOI: 10.1016/j.plaphy.2024.108461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.
Collapse
Affiliation(s)
- Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
8
|
Sharma V, Garg N. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H 2S system and thiol metabolites in mitigating chromium (Cr (VI)) toxicity in pigeonpea genotypes. Biometals 2024; 37:185-209. [PMID: 37792256 DOI: 10.1007/s10534-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.
Collapse
Affiliation(s)
- Vaishali Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Sougrakpam Y, Babuta P, Deswal R. Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2051-2065. [PMID: 38222283 PMCID: PMC10784255 DOI: 10.1007/s12298-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/16/2024]
Abstract
Low temperature (cold) stress is one of the major abiotic stress conditions affecting crop productivity worldwide. Nitric oxide (NO) is a dynamic signaling molecule that interacts with various stress regulators and provides abiotic stress tolerance. Stress enhanced NO contributes to S-nitrosothiol accumulation which causes oxidation of the -SH group in proteins leading to S-nitrosation, a post-translational modification. Cold stress induced in vivo S-nitrosation of > 240 proteins majorly belonging to stress/signaling/redox (myrosinase, SOD, GST, CS, DHAR), photosynthesis (RuBisCO, PRK), metabolism (FBA, GAPDH, TPI, SBPase), and cell wall modification (Beta-xylosidases, alpha-l-arabinogalactan) in different crop plants indicated role of NO in these important cellular and metabolic pathways. NO mediated regulation of a transcription factor CBF (C-repeat Binding Factor, a transcription factor) at transcriptional and post-translational level was shown in Solanum lycopersicum seedlings. NO donor priming enhances seed germination, breaks dormancy and provides tolerance to stress in crops. Its role in averting stress, promoting seed germination, and delaying senescence paved the way for use of NO and NO releasing compounds to prevent crop loss and increase the shelf-life of fruits and vegetables. An alternative to energy consuming and expensive cold storage led to development of a storage device called "shelf-life enhancer" that delays senescence and increases shelf-life at ambient temperature (25-27 °C) using NO donor. The present review summarizes NO research in plants and exploration of NO for its translational potential to improve agricultural yield and post-harvest crop loss. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01371-z.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
10
|
Krasuska U, Wal A, Staszek P, Ciacka K, Gniazdowska A. Do Reactive Oxygen and Nitrogen Species Have a Similar Effect on Digestive Processes in Carnivorous Nepenthes Plants and Humans? BIOLOGY 2023; 12:1356. [PMID: 37887066 PMCID: PMC10604543 DOI: 10.3390/biology12101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Carnivorous plants attract animals, trap and kill them, and absorb nutrients from the digested bodies. This unusual (for autotrophs) type of nutrient acquisition evolved through the conversion of photosynthetically active leaves into specialised organs commonly called traps. The genus Nepenthes (pitcher plants) consists of approximately 169 species belonging to the group of carnivorous plants. Pitcher plants are characterised by specialised passive traps filled with a digestive fluid. The digestion that occurs inside the traps of carnivorous plants depends on the activities of many enzymes. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) also participate in the digestive process, but their action is poorly recognised. ROS and RNS, named together as RONS, exhibit concentration-dependent bimodal functions (toxic or signalling). They act as antimicrobial agents, participate in protein modification, and are components of signal transduction cascades. In the human stomach, ROS are considered as the cause of different diseases. RNS have multifaceted functions in the gastrointestinal tract, with both positive and negative impacts on digestion. This review describes the documented and potential impacts of RONS on the digestion in pitcher plant traps, which may be considered as an external stomach.
Collapse
Affiliation(s)
| | - Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (U.K.); (P.S.); (K.C.); (A.G.)
| | | | | | | |
Collapse
|
11
|
Allagulova CR, Lubyanova AR, Avalbaev AM. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int J Mol Sci 2023; 24:11637. [PMID: 37511393 PMCID: PMC10380521 DOI: 10.3390/ijms241411637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.
Collapse
Affiliation(s)
- Chulpan R Allagulova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Alsu R Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Azamat M Avalbaev
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
12
|
Graska J, Fidler J, Gietler M, Prabucka B, Nykiel M, Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. BIOLOGY 2023; 12:927. [PMID: 37508359 PMCID: PMC10376146 DOI: 10.3390/biology12070927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.
Collapse
Affiliation(s)
- Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.F.); (M.G.); (B.P.); (M.N.)
| |
Collapse
|
13
|
Ciacka K, Staszek P, Sobczynska K, Krasuska U, Gniazdowska A. Nitric Oxide in Seed Biology. Int J Mol Sci 2022; 23:ijms232314951. [PMID: 36499279 PMCID: PMC9736209 DOI: 10.3390/ijms232314951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) has been recognized as a gasotransmitter in the mainstream of plant research since the beginning of the 21st century. It is produced in plant tissue and the environment. It influences plant physiology during every ontogenetic stage from seed germination to plant senescence. In this review, we demonstrate the increased interest in NO as a regulatory molecule in combination with other signalling molecules and phytohormones in the information network of plant cells. This work is a summary of the current knowledge on NO action in seeds, starting from seed pretreatment techniques applied to increase seed quality. We describe mode of action of NO in the regulation of seed dormancy, germination, and aging. During each stage of seed physiology, NO appears to act as a key agent with a predominantly beneficial effect.
Collapse
|
14
|
Focus on Nitric Oxide Homeostasis: Direct and Indirect Enzymatic Regulation of Protein Denitrosation Reactions in Plants. Antioxidants (Basel) 2022; 11:antiox11071411. [PMID: 35883902 PMCID: PMC9311986 DOI: 10.3390/antiox11071411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Protein cysteines (Cys) undergo a multitude of different reactive oxygen species (ROS), reactive sulfur species (RSS), and/or reactive nitrogen species (RNS)-derived modifications. S-nitrosation (also referred to as nitrosylation), the addition of a nitric oxide (NO) group to reactive Cys thiols, can alter protein stability and activity and can result in changes of protein subcellular localization. Although it is clear that this nitrosative posttranslational modification (PTM) regulates multiple signal transduction pathways in plants, the enzymatic systems that catalyze the reverse S-denitrosation reaction are poorly understood. This review provides an overview of the biochemistry and regulation of nitro-oxidative modifications of protein Cys residues with a focus on NO production and S-nitrosation. In addition, the importance and recent advances in defining enzymatic systems proposed to be involved in regulating S-denitrosation are addressed, specifically cytosolic thioredoxins (TRX) and the newly identified aldo-keto reductases (AKR).
Collapse
|
15
|
Truchon AN, Hendrich CG, Bigott AF, Dalsing BL, Allen C. NorA, HmpX, and NorB Cooperate to Reduce NO Toxicity during Denitrification and Plant Pathogenesis in Ralstonia solanacearum. Microbiol Spectr 2022; 10:e0026422. [PMID: 35377234 PMCID: PMC9045102 DOI: 10.1128/spectrum.00264-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt disease of many crops, requires denitrifying respiration to survive in its plant host. In the hypoxic environment of plant xylem vessels, this pathogen confronts toxic oxidative radicals like nitric oxide (NO), which is generated by both bacterial denitrification and host defenses. R. solanacearum has multiple distinct mechanisms that could mitigate this stress, including putative NO-binding protein (NorA), nitric oxide reductase (NorB), and flavohaemoglobin (HmpX). During denitrification and tomato pathogenesis and in response to exogenous NO, R. solanacearum upregulated norA, norB, and hmpX. Single mutants lacking ΔnorB, ΔnorA, or ΔhmpX increased expression of many iron and sulfur metabolism genes, suggesting that the loss of even one NO detoxification system demands metabolic compensation. Single mutants suffered only moderate fitness reductions in host plants, possibly because they upregulated their remaining protective genes. However, ΔnorA/norB, ΔnorB/hmpX, and ΔnorA/hmpX double mutants grew poorly in denitrifying culture and in planta. It is likely that the loss of norA, norB, and hmpX is lethal, since the methods used to construct the double mutants could not generate a triple mutant. Functional aconitase activity assays showed that NorA, HmpX, and especially NorB are important for maintaining iron-sulfur cluster proteins. Additionally, plant defense genes were upregulated in tomatoes infected with the NO-overproducing ΔnorB mutant, suggesting that bacterial detoxification of NO reduces the ability of the plant host to perceive the presence of the pathogen. Thus, R. solanacearum's three NO detoxification systems each contribute to and are collectively essential for overcoming metabolic nitrosative stress during denitrification, for virulence and growth in the tomato, and for evading host plant defenses. IMPORTANCE The soilborne plant pathogen Ralstonia solanacearum (Rs) causes bacterial wilt, a serious and widespread threat to global food security. Rs is metabolically adapted to low-oxygen conditions, using denitrifying respiration to survive in the host and cause disease. However, bacterial denitrification and host defenses generate nitric oxide (NO), which is toxic and also alters signaling pathways in both the pathogen and its plant hosts. Rs mitigates NO with a trio of mechanistically distinct proteins: NO-reductase (NorB), predicted iron-binding (NorA), and oxidoreductase (HmpX). This redundancy, together with analysis of mutants and in-planta dual transcriptomes, indicates that maintaining low NO levels is integral to Rs fitness in tomatoes (because NO damages iron-cluster proteins) and to evading host recognition (because bacterially produced NO can trigger plant defenses).
Collapse
Affiliation(s)
- Alicia N. Truchon
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam F. Bigott
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth L. Dalsing
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Kumari A, Bhatoee M, Singh P, Kaladhar VC, Yadav N, Paul D, Loake GJ, Gupta KJ. Detection of Nitric Oxide from Chickpea Using DAF Fluorescence and Chemiluminescence Methods. Curr Protoc 2022; 2:e420. [PMID: 35441832 DOI: 10.1002/cpz1.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The free radical nitric oxide (NO) has emerged as an important signal molecule in plants, due to its involvement in various plant growth, development, and stress responses. For elucidating the role of NO, it is very important to precisely determine, localize, and quantify NO levels. Due to a relatively short half-life and its rapid, complex reactivity with other radicals, together with its capacity to diffuse from the source of production, the quantification of NO in whole plants, tissues, organelles, and extracts is notoriously difficult. Hence, it is essential to employ sensitive procedures for precise detection of NO. Currently available methods can fulfill many requirements to precisely determine NO, but each method has several advantages and pitfalls. In this article, we describe a detailed procedure for the measurement of NO by diaminofluorescein (DAF) in cell-permeable forms (DAF-FM-DA). In this method, the tissues are immersed in DAF-FM DA, leading to their diffusion from the plasma membrane to the inside of the cell, where intracellular esterases cleave the ester bonds, leading to DAF-FM release. The resulting DAF-FM reacts with intracellularly generated NO and forms highly fluorescent triazolofluorescein (DAF-FMT), which can be localized and monitored by fluorescence or confocal microscopy, and can also be detected via fluorimetry and flow cytometry. DAF dyes are very popular as they are non-invasive, relatively easy to handle, and commercially available. Another precise and very sensitive method is chemiluminescence detection of NO, where NO reacts with ozone (O3 ), leading to emission of a quantum of light from which NO can be calculated. Using chickpea seedlings, we describe in detail the measurement of NO using DAF-FM-DA and chemiluminescence methods. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Measurement of nitric oxide from chickpea seedlings using DAF-FM DA fluorescence with fluorescence and confocal microscopy Basic Protocol 2: Chemiluminescence detection of nitric oxide from chickpea seedlings.
Collapse
Affiliation(s)
- Aprajita Kumari
- National Institute for Plant Genome Research, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Manbir Bhatoee
- National Institute for Plant Genome Research, New Delhi, India
| | - Pooja Singh
- National Institute for Plant Genome Research, New Delhi, India
| | | | - Nidhi Yadav
- National Institute for Plant Genome Research, New Delhi, India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
17
|
Kolupaev YE, Kokorev AI, Dmitriev AP. Polyamines: Involvement in Cellular Signaling and Plant Adaptation to the Effect of Abiotic Stressors. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Chen J, Chen L, Fang Y, Zeng F, Wu S. Refashioning benzothiadiazole dye as an activatable nanoprobe for biomarker detection with NIR-II fluorescence/optoacoustic imaging. CELL REPORTS PHYSICAL SCIENCE 2022; 3:100570. [DOI: 10.1016/j.xcrp.2021.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2024]
|
19
|
Solymosi D, Shevela D, Allahverdiyeva Y. Nitric oxide represses photosystem II and NDH-1 in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148507. [PMID: 34728155 DOI: 10.1016/j.bbabio.2021.148507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron‑sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.
Collapse
Affiliation(s)
- Daniel Solymosi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI 20014, Finland
| | - Dmitry Shevela
- Chemical Biological Centre, Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI 20014, Finland.
| |
Collapse
|
20
|
Treffon P, Rossi J, Gabellini G, Trost P, Zaffagnini M, Vierling E. Quantitative Proteome Profiling of a S-Nitrosoglutathione Reductase (GSNOR) Null Mutant Reveals a New Class of Enzymes Involved in Nitric Oxide Homeostasis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787435. [PMID: 34956283 PMCID: PMC8695856 DOI: 10.3389/fpls.2021.787435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is a short-lived radical gas that acts as a signaling molecule in all higher organisms, and that is involved in multiple plant processes, including germination, root growth, and fertility. Regulation of NO-levels is predominantly achieved by reaction of oxidation products of NO with glutathione to form S-nitrosoglutathione (GSNO), the principal bioactive form of NO. The enzyme S-nitrosoglutathione reductase (GSNOR) is a major route of NADH-dependent GSNO catabolism and is critical to NO homeostasis. Here, we performed a proteomic analysis examining changes in the total leaf proteome of an Arabidopsis thaliana GSNOR null mutant (hot5-2/gsnor1-3). Significant increases or decreases in proteins associated with chlorophyll metabolism and with redox and stress metabolism provide insight into phenotypes observed in hot5-2/gsnor1-3 plants. Importantly, we identified a significant increase in proteins that belong to the aldo-keto reductase (AKR) protein superfamily, AKR4C8 and 9. Because specific AKRs have been linked to NO metabolism in mammals, we expressed and purified A. thaliana AKR4C8 and 9 and close homologs AKR4C10 and 11 and determined that they have NADPH-dependent activity in GSNO and S-nitroso-coenzyme A (SNO-CoA) reduction. Further, we found an increase of NADPH-dependent GSNO reduction activity in hot5-2/gsnor1-3 mutant plants. These data uncover a new, NADPH-dependent component of NO metabolism that may be integrated with NADH-dependent GSNOR activity to control NO homeostasis in plants.
Collapse
Affiliation(s)
- Patrick Treffon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Giuseppe Gabellini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
21
|
Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. TRENDS IN PLANT SCIENCE 2021; 26:1270-1285. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters, which are involved in almost all plant physiological and stress-related processes. With its antioxidant regulatory properties, NO on its own ameliorates plant stress, while H2S, a foul-smelling gas, has differential effects. Recent studies have shown that these signaling molecules are involved in intertwined pathway networks. This is due to the contrasting effects of NO and H2S depending on cell type, subcellular compartment, and redox status, as well as the flux and dosage of NO and H2S in different plant species and cellular contexts. Here, we provide a comprehensive review of the complex networks of these molecules, with particular emphasis on root development, stomatal movement, and plant cell death.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| |
Collapse
|
22
|
Melatonin Confers Plant Cadmium Tolerance: An Update. Int J Mol Sci 2021; 22:ijms222111704. [PMID: 34769134 PMCID: PMC8583868 DOI: 10.3390/ijms222111704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is one of the most injurious heavy metals, affecting plant growth and development. Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, and it is since known to act as a multifunctional molecule to alleviate abiotic and biotic stresses, especially Cd stress. Endogenously triggered or exogenously applied melatonin re-establishes the redox homeostasis by the improvement of the antioxidant defense system. It can also affect the Cd transportation and sequestration by regulating the transcripts of genes related to the major metal transport system, as well as the increase in glutathione (GSH) and phytochelatins (PCs). Melatonin activates several downstream signals, such as nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA), which are required for plant Cd tolerance. Similar to the physiological functions of NO, hydrogen sulfide (H2S) is also involved in the abiotic stress-related processes in plants. Moreover, exogenous melatonin induces H2S generation in plants under salinity or heat stress. However, the involvement of H2S action in melatonin-induced Cd tolerance is still largely unknown. In this review, we summarize the progresses in various physiological and molecular mechanisms regulated by melatonin in plants under Cd stress. The complex interactions between melatonin and H2S in acquisition of Cd stress tolerance are also discussed.
Collapse
|
23
|
Bharadwaj R, Noceda C, Mohanapriya G, Kumar SR, Thiers KLL, Costa JH, Macedo ES, Kumari A, Gupta KJ, Srivastava S, Adholeya A, Oliveira M, Velada I, Sircar D, Sathishkumar R, Arnholdt-Schmitt B. Adaptive Reprogramming During Early Seed Germination Requires Temporarily Enhanced Fermentation-A Critical Role for Alternative Oxidase Regulation That Concerns Also Microbiota Effectiveness. FRONTIERS IN PLANT SCIENCE 2021; 12:686274. [PMID: 34659277 PMCID: PMC8518632 DOI: 10.3389/fpls.2021.686274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/10/2021] [Indexed: 05/05/2023]
Abstract
Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Gunasekharan Mohanapriya
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Sarma Rajeev Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Karine Leitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Aprajita Kumari
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, New Delhi, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gurugram, India
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and Its Applications, Universidade de Évora, Évora, Portugal
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
24
|
Kolbert Z, Lindermayr C. Computational prediction of NO-dependent posttranslational modifications in plants: Current status and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:851-861. [PMID: 34536898 DOI: 10.1016/j.plaphy.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 05/11/2023]
Abstract
The perception and transduction of nitric oxide (NO) signal is achieved by NO-dependent posttranslational modifications (PTMs) among which S-nitrosation and tyrosine nitration has biological significance. In plants, 100-1000 S-nitrosated and tyrosine nitrated proteins have been identified so far by mass spectrometry. The determination of NO-modified protein targets/amino acid residues is often methodologically challenging. In the past decade, the growing demand for the knowledge of S-nitrosated or tyrosine nitrated sites has motivated the introduction of bioinformatics tools. For predicting S-nitrosation seven computational tools have been developed (GPS-SNO, SNOSite, iSNO-PseACC, iSNO-AAPAir, PSNO, PreSNO, RecSNO). Four predictors have been developed for indicating tyrosine nitration sites (GPS-YNO2, iNitro-Tyr, PredNTS, iNitroY-Deep), and one tool (DeepNitro) predicts both NO-dependent PTMs. The advantage of these computational tools is the fast provision of large amount of information. In this review, the available software tools have been tested on plant proteins in which S-nitrosated or tyrosine nitrated sites have been experimentally identified. The predictors showed distinct performance and there were differences from the experimental results partly due to the fact that the three-dimensional protein structure is not taken into account by the computational tools. Nevertheless, the predictors excellently establish experiments, and it is suggested to apply all available tools on target proteins and compare their results. In the future, computational prediction must be developed further to improve the precision with which S-nitrosation/tyrosine nitration-sites are identified.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764, Oberschleißheim, München, Germany.
| |
Collapse
|
25
|
Wong A, Hu N, Tian X, Yang Y, Gehring C. Nitric oxide sensing revisited. TRENDS IN PLANT SCIENCE 2021; 26:885-897. [PMID: 33867269 DOI: 10.1016/j.tplants.2021.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) sensing is an ancient trait enabled by hemoproteins harboring a highly conserved Heme-Nitric oxide/OXygen (H-NOX) domain that operates throughout bacteria, fungi, and animal kingdoms including in humans, but that has long thought to be absent in plants. Recently, H-NOX-containing plant hemoproteins mediating crucial NO-dependent responses such as stomatal closure and pollen tube guidance have been reported. There are indications that the detection method that led to these discoveries will uncover many more heme-based NO sensors that operate as regulatory sites in complex proteins. Their characterizations will in turn offer a much more complete picture of plant NO responses at both the molecular and systems level.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China.
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Yixin Yang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, I-06121 Perugia, Italy
| |
Collapse
|
26
|
Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. FRONTIERS IN PLANT SCIENCE 2021; 12:701681. [PMID: 34421950 PMCID: PMC8377586 DOI: 10.3389/fpls.2021.701681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 06/01/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), and reactive oxygen species (ROS) play essential signaling roles in cells by oxidative post-translational modification within suitable ranges of concentration. All of them contribute to the balance of redox and are involved in the DNA damage and repair pathways. However, the damage and repair pathways of mitochondrial DNA (mtDNA) are complicated, and the interactions among NO, H2S, ROS, and mtDNA damage are also intricate. This article summarized the current knowledge about the metabolism of H2S, NO, and ROS and their roles in maintaining redox balance and regulating the repair pathway of mtDNA damage in plants. The three reactive species may likely influence each other in their generation, elimination, and signaling actions, indicating a crosstalk relationship between them. In addition, NO and H2S are reported to be involved in epigenetic variations by participating in various cell metabolisms, including (nuclear and mitochondrial) DNA damage and repair. Nevertheless, the research on the details of NO and H2S in regulating DNA damage repair of plants is in its infancy, especially in mtDNA.
Collapse
Affiliation(s)
- Dandan Huang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Guangqin Jing
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Changbao Chen
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Shuhua Zhu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
27
|
Arnholdt-Schmitt B, Mohanapriya G, Bharadwaj R, Noceda C, Macedo ES, Sathishkumar R, Gupta KJ, Sircar D, Kumar SR, Srivastava S, Adholeya A, Thiers KL, Aziz S, Velada I, Oliveira M, Quaresma P, Achra A, Gupta N, Kumar A, Costa JH. From Plant Survival Under Severe Stress to Anti-Viral Human Defense - A Perspective That Calls for Common Efforts. Front Immunol 2021; 12:673723. [PMID: 34211468 PMCID: PMC8240590 DOI: 10.3389/fimmu.2021.673723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.
Collapse
Affiliation(s)
- Birgit Arnholdt-Schmitt
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Gunasekaran Mohanapriya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Revuru Bharadwaj
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Carlos Noceda
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Cell and Molecular Biotechnology of Plants (BIOCEMP)/Industrial Biotechnology and Bioproducts, Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Elisete Santos Macedo
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ramalingam Sathishkumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kapuganti Jagadis Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debabrata Sircar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Sarma Rajeev Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Shivani Srivastava
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - Alok Adholeya
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Centre for Mycorrhizal Research, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), TERI Gram, Gual Pahari, Gurugram, India
| | - KarineLeitão Lima Thiers
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Shahid Aziz
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Isabel Velada
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Manuela Oliveira
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Mathematics and CIMA - Center for Research on Mathematics and its Applications, Universidade de Évora, Évora, Portugal
| | - Paulo Quaresma
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- NOVA LINCS – Laboratory for Informatics and Computer Science, University of Évora, Évora, Portugal
| | - Arvind Achra
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Department of Microbiology, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Nidhi Gupta
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Ashwani Kumar
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Hargovind Khorana Chair, Jayoti Vidyapeeth Womens University, Jaipur, India
| | - José Hélio Costa
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), Coordinated from Foros de Vale de Figueira, Alentejo, Portugal
- Functional Genomics and Bioinformatics Group, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
28
|
Kolupaev YE, Kokorev AI, Shkliarevskyi MA, Lugovaya AA, Karpets YV, Ivanchenko OE. Role of NO Synthesis Modification in the Protective Effect of Putrescine in Wheat Seedlings Subjected to Heat Stress. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Singh S, Husain T, Kushwaha BK, Suhel M, Fatima A, Mishra V, Singh SK, Bhatt JA, Rai M, Prasad SM, Dubey NK, Chauhan DK, Tripathi DK, Fotopoulos V, Singh VP. Regulation of ascorbate-glutathione cycle by exogenous nitric oxide and hydrogen peroxide in soybean roots under arsenate stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:123686. [PMID: 33549357 DOI: 10.1016/j.jhazmat.2020.123686] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 05/03/2023]
Abstract
The role of nitric oxide (NO) and hydrogen peroxide (H2O2) is well known for regulating plant abiotic stress responses. However, underlying mechanisms are still poorly understood. Therefore, the present study investigated the involvement of NO and H2O2 signalling in the regulation of arsenate toxicity (AsV) in soybean roots employing a pharmacological approach. Results show that AsV toxicity declined root length and biomass due to greater As accumulation in the cell wall and cellular organelles. Arsenate induced cell death due to enhanced levels of reactive oxygen species, lipid and protein oxidation and down-regulation in ascorbate-glutathione cycle and redox states of ascorbate and glutathione. These results correlate with lower endogenous level of NO. Interestingly, addition of L-NAME increased AsV toxicity. However, addition of SNP reverses effect of L-NAME, suggesting that endogenous NO has a role in mitigating AsV toxicity. Exogenous H2O2 also demonstrated capability of alleviating AsV stress, while NAC reversed the protective effect of H2O2. Furthermore, DPI application further increased AsV toxicity, suggesting that endogenous H2O2 is also implicated in mitigating AsV stress. SNP was not able to mitigate AsV toxicity in the presence of DPI, suggesting that H2O2 might have acted downstream of NO in accomplishing amelioration of AsV toxicity.
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India; CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Tajammul Husain
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Bishwajit Kumar Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Mohd Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Abreeq Fatima
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Sani Kumar Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Javaid Akhtar Bhatt
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Meena Rai
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Nawal Kishore Dubey
- CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313, India.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
30
|
Silveira NM, Ribeiro RV, de Morais SFN, de Souza SCR, da Silva SF, Seabra AB, Hancock JT, Machado EC. Leaf arginine spraying improves leaf gas exchange under water deficit and root antioxidant responses during the recovery period. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:315-326. [PMID: 33714146 DOI: 10.1016/j.plaphy.2021.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Arginine (Arg) metabolism is associated with many cellular and developmental processes in plants and proline, nitric oxide (NO) and polyamines (PAs) have a wide range of physiological functions in plants, including increased tolerance to environmental stresses. This study aimed to test the hypothesis that Arg spraying would stimulate the synthesis of proline, NO and PAs, reducing the oxidative damage caused by water deficit (WD) and increasing drought tolerance of sugarcane plants. Sugarcane plants were sprayed with water or Arg 1 mM, and subjected to WD by gradual addition of polyethylene glycol (PEG-8000) to the nutrient solution. As references, sugarcane plants were grown in nutrient solution without PEG-8000 and sprayed or not with Arg. Our data indicate that exogenous Arg supply improved leaf gas exchange during water deficit and enhanced the root antioxidative protection of sugarcane plants during the recovery period. Arg supply prevented the proline accumulation induced by water deficit and then the main pathway for proline synthesis is likely through glutamate instead of arginine. Although Arg is a substrate for NO and PAs production, supplying Arg had only slight effects in both NO and PAs levels. The spraying of amino acids capable of reducing the harmful effects of drought, such as Arg, can be an alternative to improve crop growth under field conditions.
Collapse
Affiliation(s)
- Neidiquele M Silveira
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil; Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sabrina F N de Morais
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Sarah C R de Souza
- Department of Botany, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Simone F da Silva
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Amedea B Seabra
- Centre of Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - John T Hancock
- Centre for Research in Biosciences, University of the West of England (UWE), Bristol, UK
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, SP, Brazil
| |
Collapse
|
31
|
Castro B, Citterico M, Kimura S, Stevens DM, Wrzaczek M, Coaker G. Stress-induced reactive oxygen species compartmentalization, perception and signalling. NATURE PLANTS 2021; 7:403-412. [PMID: 33846592 PMCID: PMC8751180 DOI: 10.1038/s41477-021-00887-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
Reactive oxygen species (ROS) are essential for life and are involved in the regulation of almost all biological processes. ROS production is critical for plant development, response to abiotic stresses and immune responses. Here, we focus on recent discoveries in ROS biology emphasizing abiotic and biotic stress responses. Recent advancements have resulted in the identification of one of the first sensors for extracellular ROS and highlighted waves of ROS production during stress signalling in Arabidopsis. Enzymes that produce ROS, including NADPH oxidases, exhibit precise regulation through diverse post-translational modifications. Discoveries highlight the importance of both amino- and carboxy-terminal regulation of NADPH oxidases through protein phosphorylation and cysteine oxidation. Here, we discuss advancements in ROS compartmentalization, systemic ROS waves, ROS sensing and post-translational modification of ROS-producing enzymes and identify areas where foundational gaps remain.
Collapse
Affiliation(s)
- Bardo Castro
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
32
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
33
|
Kolbert Z, Szőllősi R, Feigl G, Kónya Z, Rónavári A. Nitric oxide signalling in plant nanobiology: current status and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:928-940. [PMID: 33053152 DOI: 10.1093/jxb/eraa470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/10/2020] [Indexed: 05/25/2023]
Abstract
Plant nanobiology as a novel research field provides a scientific basis for the agricultural use of nanoparticles (NPs). Plants respond to the presence of nanomaterials by synthesizing signal molecules, such as the multifunctional gaseous nitric oxide (NO). Several reports have described the effects of different nanomaterials (primarily chitosan NPs, metal oxide NPs, and carbon nanotubes) on endogenous NO synthesis and signalling in different plant species. Other works have demonstrated the ameliorating effect of exogenous NO donor (primarily sodium nitroprusside) treatments on NP-induced stress. NO-releasing NPs are preferred alternatives to chemical NO donors, and evaluating their effects on plants has recently begun. Previous studies clearly indicate that endogenous NO production in the presence of nanomaterials or NO levels increased by exogenous treatments (NO-releasing NPs or chemical NO donors) exerts growth-promoting and stress-ameliorating effects in plants. Furthermore, an NP-based nanosensor for NO detection in plants has been developed, providing a new and excellent perspective for basic research and also for the evaluation of plants' health status in agriculture.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Réka Szőllősi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Hancock JT, Veal D. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:819-829. [PMID: 32687173 DOI: 10.1093/jxb/eraa331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are key signalling molecules in plants, but they do not work in isolation. NO is produced in cells, often increased in response to stress conditions, but many other reactive compounds used in signalling are generated and accumulate spatially and temporally together. This includes the reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), and hydrogen sulfide (H2S). Here, the interactions with such other reactive molecules is briefly reviewed. Furthermore, along with ROS and H2S, NO will potentially contribute to the overall intracellular redox of the cell. However, RNS will exist in redox couples and therefore the influence of the cellular redox on such couples will be explored. In discussions of the aberrations in intracellular redox it is usually oxidation, so-called oxidative stress, which is discussed. Here, we consider the notion of reductive stress and how this may influence the signalling which may be mediated by NO. By getting a more holistic view of NO biology, the influence on cell activity of NO and other RNS can be more fully understood, and may lead to the elucidation of methods for NO-based manipulation of plant physiology, leading to better stress responses and improved crops in the future.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK
| | - David Veal
- Department of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
35
|
Liu J, Zhu XY, Deng LB, Liu HF, Li J, Zhou XR, Wang HZ, Hua W. Nitric oxide affects seed oil accumulation and fatty acid composition through protein S-nitrosation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:385-397. [PMID: 33045083 DOI: 10.1093/jxb/eraa456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule regulating several plant developmental and stress responses. Here, we report that NO plays an important role in seed oil content and fatty acid composition. RNAi silencing of Arabidopsis S-nitrosoglutathione reductase 1 (GSNOR1) led to reduced seed oil content. In contrast, nitrate reductase double mutant nia1nia2 had increased seed oil content, compared with wild-type plants. Moreover, the concentrations of palmitic acid (C16:0), linoleic acid (C18:2), and linolenic acid (C18:3) were higher, whereas those of stearic acid (C18:0), oleic acid (C18:1), and arachidonic acid (C20:1) were lower, in seeds of GSNOR1 RNAi lines. Similar results were obtained with rapeseed embryos cultured in vitro with the NO donor sodium nitroprusside (SNP), and the NO inhibitor NG-Nitro-L-arginine Methyl Ester (L-NAME). Compared with non-treated embryos, the oil content decreased in SNP-treated embryos, and increased in L-NAME-treated embryos. Relative concentrations of C16:0, C18:2 and C18:3 were higher, whereas C18:1 concentration decreased in rapeseed embryos treated with SNP. Proteomics and transcriptome analysis revealed that three S-nitrosated proteins and some key genes involved in oil synthesis, were differentially regulated in SNP-treated embryos. Therefore, regulating NO content could be a novel approach to increasing seed oil content in cultivated oil crops.
Collapse
Affiliation(s)
- Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Xiao-Yi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Lin-Bin Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Hong-Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Xue-Rong Zhou
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| |
Collapse
|
36
|
Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021; 56:525-538. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a comprehensive regulator of vascular and airway tone. Endogenous NO produced by nitric oxide synthases regulates multiple signaling cascades, including activation of soluble guanylate cyclase to generate cGMP, relaxing smooth muscle cells. Inhaled NO is an established therapy for pulmonary hypertension in neonates, and has been recently proposed for the treatment of hypoxic respiratory failure and acute respiratory distress syndrome due to COVID-19. In this review, we summarize the effects of endogenous and exogenous NO on protein S-nitrosylation, which is the selective and reversible covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine. This posttranslational modification targets specific cysteines based on the acid/base sequence of surrounding residues, with significant impacts on protein interactions and function. S-nitrosothiol (SNO) formation is tightly compartmentalized and enzymatically controlled, but also propagated by nonenzymatic transnitrosylation of downstream protein targets. Redox-based nitrosylation and denitrosylation pathways dynamically regulate the equilibrium of SNO-proteins. We review the physiological roles of SNO proteins, including nitrosohemoglobin and autoregulation of blood flow through hypoxic vasodilation, and pathological effects of nitrosylation including inhibition of critical vasodilator enzymes; and discuss the intersection of NO source and dose with redox environment, in determining the effects of protein nitrosylation.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Lara Elnagary
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Section of Neonatology, Departments of Pediatrics and Physiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
37
|
Monthony AS, Page SR, Hesami M, Jones AMP. The Past, Present and Future of Cannabis sativa Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2021; 10:185. [PMID: 33478171 PMCID: PMC7835777 DOI: 10.3390/plants10010185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
The recent legalization of Cannabis sativa L. in many regions has revealed a need for effective propagation and biotechnologies for the species. Micropropagation affords researchers and producers methods to rapidly propagate insect-/disease-/virus-free clonal plants and store germplasm and forms the basis for other biotechnologies. Despite this need, research in the area is limited due to the long history of prohibitions and restrictions. Existing literature has multiple limitations: many publications use hemp as a proxy for drug-type Cannabis when it is well established that there is significant genotype specificity; studies using drug-type cultivars are predominantly optimized using a single cultivar; most protocols have not been replicated by independent groups, and some attempts demonstrate a lack of reproducibility across genotypes. Due to culture decline and other problems, the multiplication phase of micropropagation (Stage 2) has not been fully developed in many reports. This review will provide a brief background on the history and botany of Cannabis as well as a comprehensive and critical summary of Cannabis tissue culture. Special attention will be paid to current challenges faced by researchers, the limitations of existing Cannabis micropropagation studies, and recent developments and future directions of Cannabis tissue culture technologies.
Collapse
Affiliation(s)
| | | | | | - Andrew Maxwell P. Jones
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.M.); (S.R.P.); (M.H.)
| |
Collapse
|
38
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat ( Triticum aestivum L.) Plants. Antioxidants (Basel) 2021; 10:antiox10010108. [PMID: 33466569 PMCID: PMC7828694 DOI: 10.3390/antiox10010108] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 01/24/2023] Open
Abstract
The involvement of nitric oxide (NO) and hydrogen sulfide (H2S) in countermanding heat-inhibited photosynthetic features were studied in wheat (Triticum aestivum L.). Heat stress (HS) was employed at 40 °C after establishment for 6 h daily, and then plants were allowed to recover at 25 °C and grown for 30 days. Glucose (Glc) content increased under HS and repressed plant photosynthetic ability, but the application of sodium nitroprusside (SNP, as NO donor) either alone or with sodium hydrosulfide (NaHS, as H2S donor) reduced Glc-mediated photosynthetic suppression by enhancing ascorbate-glutathione (AsA-GSH) metabolism and antioxidant system, which reduced oxidative stress with decreased H2O2 and TBARS content. Oxidative stress reduction or inhibiting Glc repression was maximum with combined SNP and NaHS treatment, which was substantiated by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and hypotaurine (HT), scavengers for NO and H2S, respectively. The scavenge of H2S reduced NO-mediated alleviation of HS suggesting of its downstream action in NO-mediated heat-tolerance. However, a simultaneous decrease of both (NO and H2S) led to higher Glc-mediated repression of photosynthesis and oxidative stress in terms of increased H2O2 content that was comparable to HS plants. Thus, NO and H2S cooperate to enhance photosynthesis under HS by reducing H2O2-induced oxidative stress and excess Glc-mediated photosynthetic suppression.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
- Correspondence: (N.I.); (F.J.C.)
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain
- Correspondence: (N.I.); (F.J.C.)
| |
Collapse
|
39
|
Rather BA, Mir IR, Sehar Z, Anjum NA, Masood A, Khan NA. The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:523-534. [PMID: 32836198 DOI: 10.1016/j.plaphy.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 05/24/2023]
Abstract
Phytotoxicity of metals constraints plants health, metabolism and productivity. The sustainable approaches for minimizing major metals-accrued phytotoxicity have been least explored. The gasotransmitters signaling molecules such as nitric oxide (NO) and hydrogen sulfide (H2S) play a significant role in the mitigation of major consequences of metals stress. Versatile gaseous signaling molecules, NO and H2S are involved in the regulation of various physiological processes in plants and their tolerance to abiotic stresses. However, literature available on NO or H2S stand alone, and the major insights into the roles of NO and/or H2S in plant tolerance, particularly to metals, remained unclear. Given above, this paper aimed to (a) briefly overview metals and highlight their major phytotoxicity; (b) appraises literature reporting potential mechanisms underlying the roles of NO and H2S in plant-metal tolerance; (c) crosstalk on NO and H2S in relation to plant metal tolerance. Additionally, major aspects so far unexplored in the current context have also been mentioned.
Collapse
Affiliation(s)
- Bilal A Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naser A Anjum
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
40
|
Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ. Plant catalases as NO and H 2S targets. Redox Biol 2020; 34:101525. [PMID: 32505768 PMCID: PMC7276441 DOI: 10.1016/j.redox.2020.101525] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Catalase is a powerful antioxidant metalloenzyme located in peroxisomes which also plays a central role in signaling processes under physiological and adverse situations. Whereas animals contain a single catalase gene, in plants this enzyme is encoded by a multigene family providing multiple isoenzymes whose number varies depending on the species, and their expression is regulated according to their tissue/organ distribution and the environmental conditions. This enzyme can be modulated by reactive oxygen and nitrogen species (ROS/RNS) as well as by hydrogen sulfide (H2S). Catalase is the major protein undergoing Tyr-nitration [post-translational modification (PTM) promoted by RNS] during fruit ripening, but the enzyme from diverse sources is also susceptible to undergo other activity-modifying PTMs. Data on S-nitrosation and persulfidation of catalase from different plant origins are given and compared here with results from obese children where S-nitrosation of catalase occurs. The cysteine residues prone to be S-nitrosated in catalase from plants and from bovine liver have been identified. These evidences assign to peroxisomes a crucial statement in the signaling crossroads among relevant molecules (NO and H2S), since catalase is allocated in these organelles. This review depicts a scenario where the regulation of catalase through PTMs, especially S-nitrosation and persulfidation, is highlighted.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - Rosa M Mateos
- Imflammation, Nutrition, Metabolism and Oxidative Stress Study Group (INMOX), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain; Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Cádiz, Spain
| | | | - Marta Rodríguez-Ruiz
- Laboratório de Fisiologia do Desenvolvimiento Vegetal; Instituto de Biociências-Universidad de São Paulo; Cidade Universitária-São Paulo-SP, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Alfonso M Lechuga-Sancho
- Imflammation, Nutrition, Metabolism and Oxidative Stress Study Group (INMOX), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain; Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, Cádiz, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
41
|
Kushwaha BK, Ali HM, Siddiqui MH, Singh VP. Nitric oxide-mediated regulation of sub-cellular chromium distribution, ascorbate–glutathione cycle and glutathione biosynthesis in tomato roots under chromium (VI) toxicity. J Biotechnol 2020; 318:68-77. [DOI: 10.1016/j.jbiotec.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022]
|
42
|
Galatro A, Ramos-Artuso F, Luquet M, Buet A, Simontacchi M. An Update on Nitric Oxide Production and Role Under Phosphorus Scarcity in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:413. [PMID: 32351528 PMCID: PMC7174633 DOI: 10.3389/fpls.2020.00413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 05/03/2023]
Abstract
Phosphate (P) is characterized by its low availability and restricted mobility in soils, and also by a high redistribution capacity inside plants. In order to maintain P homeostasis in nutrient restricted conditions, plants have developed mechanisms which enable P acquisition from the soil solution, and an efficient reutilization of P already present in plant cells. Nitric oxide (NO) is a bioactive molecule with a plethora of functions in plants. Its endogenous synthesis depends on internal and environmental factors, and is closely tied with nitrogen (N) metabolism. Furthermore, there is evidence demonstrating that N supply affects P homeostasis and that P deficiency impacts on N assimilation. This review will provide an overview on how NO levels in planta are affected by P deficiency, the interrelationship with N metabolism, and a summary of the current understanding about the influence of this reactive N species over the processes triggered by P starvation, which could modify P use efficiency.
Collapse
Affiliation(s)
- Andrea Galatro
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Melisa Luquet
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
| | - Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
43
|
Stiti N, Podgórska KA, Bartels D. S-Nitrosation impairs activity of stress-inducible aldehyde dehydrogenases from Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110389. [PMID: 32005394 DOI: 10.1016/j.plantsci.2019.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Nitric oxide (NO) is an intracellular messenger that mediates stress responses. Several plant aldehyde dehydrogenase (ALDH) genes are expressed during abiotic stress conditions to reduce the level of cytotoxic aldehydes. We investigated a possible interference between NO and ALDHs, using the isoform ALDH3H1 of Arabidopsis thaliana as model. The physiological NO donor; S-nitrosoglutathione (GSNO), inhibits ALDH3H1 in a time- and concentration-dependent manner. Mutagenesis and ESI-MS/MS analyses show that all Cys residues of ALDH3H1 are targets of GSNO-mediated S-nitrosation. Chemical labelling indicates that the deactivation is due to the conversion of the catalytic thiol into a catalytically non-active nitrosothiol. GSNO has the same effect on the chloroplastic ALDH3I1, suggesting that susceptibility of the catalytic Cys to NO is a common feature of ALDHs. S-Nitrosation and enzymatic inhibition of ALDH were reverted by reducing agents. Our study proves that the function of ALDHs does not exclusively depend on transcriptional regulation, with stress-induced expression, but may be also susceptible to posttranslational regulation through S-nitrosation. We discuss the potential involvement of S-nitrosoglutathione reductase (GSNOR), binding specific cofactors and reducing partners in a protective system of ALDHs in vivo, which will be experimentally corroborated in our forthcoming study.
Collapse
Affiliation(s)
- Naïm Stiti
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Karolina Anna Podgórska
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|