1
|
Deng Y, Wu B, Tang J, Kan H, Liu Y, Li L. Metabolic changes and potential biomarkers in different cultivars of black poplar: aiding in the identification of poplar cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109891. [PMID: 40215732 DOI: 10.1016/j.plaphy.2025.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/21/2025]
Abstract
The black poplar, the predominant poplar cultivars in China, has substantial economic and ecological importance. However, there were differences in phenotypic traits, such as growth, wood properties, resistance, tolerance and so on, between different black poplar cultivars. So, this study examined the effects of genetic background on the metabolite and volatile compound compositions of black poplar via metabolomics and gas chromatography‒mass spectrometry (GC‒MS). In total, 699 metabolites and 146 volatile compounds were identified. Multivariate statistical analysis revealed that 19-Hydroxy-Pge2, Isopropyl Apiosylglucoside, 3-Hydroxyisoheptanoic Acid, Capsianoside V, 3-(3,4-Dihydroxybenzyl)-7-Hydroxy-5-Methoxy-4-Chromanone, Lysope (0:0/20:0), N-(3-Methylbutyl) Acetamide, and 1,4-Benzothiazine-O-Quinonimine serve as biomarkers for differentiating various black poplar cultivars. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that galactose metabolism, alpha-linolenic acid metabolism, sphingolipid metabolism, and alanine, aspartate, and glutamate metabolism were key metabolic pathways impacting the physiological functions of black poplar. Volatile compound analysis indicated significant variability among the black poplar types; however, all shared (+)-cedrol as the primary odor contributor, which has a cedarwood-like aroma that is woody, dry, sweet, and soft. Most of biomarkers and volatile compounds are the physiological or ecological benefits, can be used to predict complex phenotypic traits of black poplar, offering a solid basis for breeding fine varieties of poplar. The screening approach used here may also be applied to the identification and improvement of other tree cultivars.
Collapse
Affiliation(s)
- Yuhang Deng
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650224, China; Yunnan International Joint R&D Center for Intergrated Utilization of Ornamental Grass, Southwest Forestry University, Kunming, 650224, China
| | - Boxiao Wu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, China
| | - Jiandong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yun Liu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, China.
| | - Liping Li
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
2
|
He Y, Zhou J, Lv C, Zhang J, Zhong L, Zhang D, Li P, Xiao L, Quan M, Wang D, Zhang D, Du Q. Binding of PtoRAP2.12 to demethylated and accessible chromatin regions in the PtoGntK promoter stimulates growth of poplar. THE NEW PHYTOLOGIST 2025; 245:232-248. [PMID: 39487606 DOI: 10.1111/nph.20228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
DNA methylation is an essential epigenetic modification for gene regulation in plant growth and development. However, the precise mechanisms of DNA methylation remain poorly understood, especially in woody plants. We employed whole-genome bisulfite sequencing (WGBS), assays for transposase-accessible chromatin using sequencing (ATAC-seq), and RNA-Seq to investigate epigenetic regulatory relationships in Populus tomentosa treated with DNA methylation inhibitor 5-azacitidine. Expression-quantitative trait methylation analysis (eQTM), epigenome-wide association study (EWAS), and joint linkage-linkage disequilibrium mapping were used to explore the epigenetic regulatory genes, and using CRISPR/Cas9 to identify the role of candidate genes. Plant developmental abnormalities occurred when DNA methylation levels were substantially reduced. DNA methylation regulated 112 expressed genes via chromatin accessibility, of which 61 genes were significantly influenced by DNA methylation variation at the population level. One DNA methylation-regulated gene, PtoGntK, was located in a major quantitative trait locus (QTL) for poplar growth. Overexpression and CRISPR/Cas9 of PtoGntK revealed it affected poplar height and stem diameter. The PtoRAP2.12 was found to bind to the demethylated accessible region in the PtoGntK promoter, thereby promoting growth in poplar. This study identified key genes with epigenetic regulation for plant growth and provides insights into epigenetic regulation mechanisms in woody plants.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jinhan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Leishi Zhong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Donghai Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
3
|
Petitpas M, Lapous R, Le Duc M, Lariagon C, Lemoine J, Langrume C, Manzanares-Dauleux MJ, Jubault M. Environmental conditions modulate the effect of epigenetic factors controlling the response of Arabidopsis thaliana to Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2024; 15:1245545. [PMID: 38872892 PMCID: PMC11171141 DOI: 10.3389/fpls.2024.1245545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024]
Abstract
The resistance of Arabidopsis thaliana to clubroot, a major disease of Brassicaceae caused by the obligate protist Plasmodiophora brassicae, is controlled in part by epigenetic factors. The detection of some of these epigenetic quantitative trait loci (QTLepi) has been shown to depend on experimental conditions. The aim of the present study was to assess whether and how temperature and/or soil water availability influenced both the detection and the extent of the effect of response QTLepi. The epigenetic recombinant inbred line (epiRIL) population, derived from the cross between ddm1-2 and Col-0 (partially resistant and susceptible to clubroot, respectively), was phenotyped for response to P. brassicae under four abiotic conditions including standard conditions, a 5°C temperature increase, drought, and flooding. The abiotic constraints tested had a significant impact on both the leaf growth of the epiRIL population and the outcome of the epiRIL-pathogen interaction. Linkage analysis led to the detection of a total of 31 QTLepi, 18 of which were specific to one abiotic condition and 13 common to at least two environments. EpiRIL showed significant plasticity under epigenetic control, which appeared to be specific to the traits evaluated and to the abiotic conditions. These results highlight that the environment can affect the epigenetic architecture of plant growth and immune responses and advance our understanding of the epigenetic factors underlying plasticity in response to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mélanie Jubault
- IGEPP, Institut Agro Rennes-Angers – INRAE – Université de Rennes, Le Rheu, France
| |
Collapse
|
4
|
Mmbando GS. The recent possible strategies for breeding ultraviolet-B-resistant crops. Heliyon 2024; 10:e27806. [PMID: 38509919 PMCID: PMC10950674 DOI: 10.1016/j.heliyon.2024.e27806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The sensitivity of crops to ultraviolet B (UVB, 280-315 nm) radiation varies significantly. Plants' sensitivity to UVB is heavily influenced by the activity of the enzyme cyclobutane pyrimidine dimer (CPD) photolyase, which fixes UVB-induced CPDs. Crops grown in tropical areas with high level of UVB radiation, like O. glaberrima from Africa and O. sativa ssp. indica rice from Bengal, are more sensitive to UVB radiation and could suffer more as a result of rising UVB levels on the earth's surface. Therefore, creating crops that can withstand high UVB is crucial in tropical regions. There is, however, little information on current techniques for breeding UVB-resistant plants. The most recent techniques for producing UVB-resistant crops are presented in this review. The use of DNA methylation, boosting the antioxidant system, regulating the expression of micro-RNA396, and overexpressing CPD photolyase in transgenic plants are some of the methods that are discussed. CPD photolyase overexpression in transgenic plants is the most popular technique for producing UVB-resistant rice. The study also offers several strategies for creating UVB-resistant plants using gene editing techniques. To feed the world's rapidly expanding population, researchers can use the information from this study to improve food production.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma P. O. BOX 259, Dodoma, Tanzania
| |
Collapse
|
5
|
Umesh Kanna S, Parthiban KT, Senthilraja K, Venkatesan S, Udhaya Nandhini D, Mohan Kumar S, Dhasarathan M, Kumaresan P, Sai MJ, Raveendran M, Geethalakshmi V. Genetic Diversity and Structure of Terminalia bellerica (Gaertn. Roxb.) Population in India as Revealed by Genetic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:470. [PMID: 38498452 PMCID: PMC10892032 DOI: 10.3390/plants13040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 03/20/2024]
Abstract
In this study, an extensive exploration survey of wild progeny was conducted which yielded 18 candidate plus trees (CPTs) of Terminalia bellerica. Seeds of these CPTs were collected from diverse locations between 10°54' and 28°07' E longitude, and 76°27' and 95°32' N latitude, covering 18 different locations across 5 states of the Indian subcontinent. The objective of the progeny trial was to assess genetic associations and variability in growth and physio-chemical characteristics. Significant variations (p < 0.05) were observed among the growth traits, encompassing plant height, basal diameter, girth at breast height and volume, as well as physio-chemical characteristics such as leaf length, width, area and chlorophyll content, carotenoids, and protein in the progeny trial. Broad-sense heritability (h2b) estimates were consistently high, exceeding 80% for all growth and physiological related traits under investigation except for plant height, leaf length, and girth at breast height. A correlation study revealed that selecting based on plant height, leaf area, and girth at breast height effectively enhances T. bellerica volume. A moderate genetic advance in percent of the mean (GAM) was observed for most traits, except leaf length, leaf width, girth at breast height, and plant height. Across all 13 traits, phenotypic coefficient of variation (PCV) surpassed genotypic coefficient of variation (GCV). Utilizing principal component analysis (PCA) and dendrogram construction categorized the genotypes into seven distinct groups. In conclusion, the study has demonstrated that targeting girth at breast height and plant height would be a highly effective strategy for the establishment of elite seedling nurseries and clonal seed nurseries for varietal and hybridization programs in the future.
Collapse
Affiliation(s)
- Subramani Umesh Kanna
- Directorate of Planning and Monitoring, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India;
| | - Kalappan Thangamuthu Parthiban
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam 641 301, Tamil Nadu, India; (K.T.P.); (M.J.S.)
| | - Kandasamy Senthilraja
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India; (K.S.); (S.V.); (M.R.)
| | - Subramanian Venkatesan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India; (K.S.); (S.V.); (M.R.)
| | - Dhandayuthapani Udhaya Nandhini
- Centre of Excellence in Sustaining Soil Health, Anbil Dharmalingam Agricultural College and Research Institute, Trichy 620 027, Tamil Nadu, India
| | - Shanmugam Mohan Kumar
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India; (S.M.K.); (M.D.)
| | - Manickam Dhasarathan
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India; (S.M.K.); (M.D.)
| | - Palaniyappan Kumaresan
- Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India;
| | - Makkena Jaswanth Sai
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam 641 301, Tamil Nadu, India; (K.T.P.); (M.J.S.)
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India; (K.S.); (S.V.); (M.R.)
| | - Vellingiri Geethalakshmi
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India; (S.M.K.); (M.D.)
| |
Collapse
|
6
|
Ashwath MN, Lavale SA, Santhoshkumar AV, Mohapatra SR, Bhardwaj A, Dash U, Shiran K, Samantara K, Wani SH. Genome-wide association studies: an intuitive solution for SNP identification and gene mapping in trees. Funct Integr Genomics 2023; 23:297. [PMID: 37700096 DOI: 10.1007/s10142-023-01224-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Analysis of natural diversity in wild/cultivated plants can be used to understand the genetic basis for plant breeding programs. Recent advancements in DNA sequencing have expanded the possibilities for genetically altering essential features. There have been several recently disclosed statistical genetic methods for discovering the genes impacting target qualities. One of these useful methods is the genome-wide association study (GWAS), which effectively identifies candidate genes for a variety of plant properties by examining the relationship between a molecular marker (such as SNP) and a target trait. Conventional QTL mapping with highly structured populations has major limitations. The limited number of recombination events results in poor resolution for quantitative traits. Only two alleles at any given locus can be studied simultaneously. Conventional mapping approach fails to work in perennial plants and vegetatively propagated crops. These limitations are sidestepped by association mapping or GWAS. The flexibility of GWAS comes from the fact that the individuals being examined need not be linked to one another, allowing for the use of all meiotic and recombination events to increase resolution. Phenotyping, genotyping, population structure analysis, kinship analysis, and marker-trait association analysis are the fundamental phases of GWAS. With the rapid development of sequencing technologies and computational methods, GWAS is becoming a potent tool for identifying the natural variations that underlie complex characteristics in crops. The use of high-throughput sequencing technologies along with genotyping approaches like genotyping-by-sequencing (GBS) and restriction site associated DNA (RAD) sequencing may be highly useful in fast-forward mapping approach like GWAS. Breeders may use GWAS to quickly unravel the genomes through QTL and association mapping by taking advantage of natural variances. The drawbacks of conventional linkage mapping can be successfully overcome with the use of high-resolution mapping and the inclusion of multiple alleles in GWAS.
Collapse
Affiliation(s)
- M N Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Shivaji Ajinath Lavale
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - A V Santhoshkumar
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751 003, India.
| | - Ankita Bhardwaj
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Umakanta Dash
- Department of Silviculture and Agroforestry, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - K Shiran
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, 680 656, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Shabir Hussain Wani
- Mountain Research Center for Field crops, Sher-e-Kashmir University of Agricultural Sciences and Technology Srinagar, Khudwani, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Zhou J, Song F, He Y, Zhang W, Xiao L, Lu W, Li P, Quan M, Zhang D, Du Q. LncRNA evolution and DNA methylation variation participate in photosynthesis pathways of distinct lineages of Populus. FORESTRY RESEARCH 2023; 3:3. [PMID: 39526273 PMCID: PMC11524286 DOI: 10.48130/fr-2023-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 11/16/2024]
Abstract
During the independent process of evolution in plants, photosynthesis appears to have been under convergent evolution to adapt to specific selection pressure in their geographical regions. However, it is unclear how lncRNA regulation and DNA methylation are involved in the phenotypic convergence in distinct lineages. Here, we present a large-scale comparative study of lncRNA transcription profile and whole-genome bisulfite sequencing (WGBS) data in two unrelated Populus species, selected from three relatively overlapping geographical regions. The results indicated that 39.75% lncRNAs of Populus tomentosa were shown to have homologous sequences in the 46.99% lncRNA of Populus simonii. Evolutionary analysis revealed that lncRNAs showed a rapid gain rate in the Populus lineage. Furthermore, co-expression networks in two Populus species identified eight lncRNAs that have the potential to simultaneously cis- or trans-regulate eight photosynthetic-related genes. These photosynthetic lncRNAs and genes were predominantly expressed in accessions from the southern region, indicating a conserved spatial expression in photosynthetic pathways in Populus. We also detected that most lncRNA targeted photosynthetic genes hypomethylated in promoter regions of Southern accessions compared with Northern accessions. Geographical DMRs correlated with genetic SNP variations in photosynthetic genes among Populus from the three geographic regions, indicating that DNA methylation coordinated with lncRNAs in convergent evolution of photosynthesis in Populus. Our results shed light on the evolutionary forces acting on patterns of lncRNA and DNA methylation, and provide a better understanding of the genetic and epigenetic mechanism in photosynthetic convergence evolution.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Fangyuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Wenjie Lu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
8
|
Zhou J, Xiao L, Huang R, Song F, Li L, Li P, Fang Y, Lu W, Lv C, Quan M, Zhang D, Du Q. Local diversity of drought resistance and resilience in Populus tomentosa correlates with the variation of DNA methylation. PLANT, CELL & ENVIRONMENT 2023; 46:479-497. [PMID: 36385613 DOI: 10.1111/pce.14490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Little information is known about DNA methylation variation in shaping environment-specific drought resistance and resilience for tree adaptation. In this study, we leveraged RNA sequencing and whole-genome bisulfite sequencing data to dissect the distinction of epigenetic regulation under drought stress and rewater condition of Populus tomentosa accessions from three geographical regions. We demonstrated low resistance and high resilience for accessions from South. Non-CG methylation levels in promoter regions of Southern accessions were lower than accessions from higher latitudes and negatively regulated gene expression. CHH context methylation was more sensitive to drought stress, and the geographical-specific differentially methylated regions were scarcely changed by environmental fluctuation. We identified 60 conserved hub genes within the co-expression networks that correlate with photosynthetic and stomatal morphological traits. Epigenome-wide association studies and genome-wide association studies of these 60 hub genes revealed the interdependency between genetic and epigenetic variation in GATA9 and LECRK-VIII.2, which was associated with stomatal morphology and chlorophyll content. The natural epigenetic variation in GATA9 was also faithfully transmitted to progenies in two family-based F1 populations. This study indicates a functional relationship of DNA methylation diversity with drought resistance and resilience which offers new insights into plants' local adaptation to a stressful environment.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Rui Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
9
|
Zhou M, Zheng S. Multi-Omics Uncover the Mechanism of Wheat under Heavy Metal Stress. Int J Mol Sci 2022; 23:ijms232415968. [PMID: 36555610 PMCID: PMC9785819 DOI: 10.3390/ijms232415968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental pollution of heavy metals has received growing attention in recent years. Heavy metals such as cadmium, lead and mercury can cause physiological and morphological disturbances which adversely affect the growth and quality of crops. Wheat (Triticum aestivum L.) can accumulate high contents of heavy metals in its edible parts. Understanding wheat response to heavy metal stress and its management in decreasing heavy metal uptake and accumulation may help to improve its growth and grain quality. Very recently, emerging advances in heavy metal toxicity and phytoremediation methods to reduce heavy metal pollution have been made in wheat. Especially, the molecular mechanisms of wheat under heavy metal stress are increasingly being recognized. In this review, we focus on the recently described epigenomics, transcriptomics, proteomics, metabolomics, ionomics and multi-omics combination, as well as functional genes uncovering heavy metal stress in wheat. The findings in this review provide some insights into challenges and future recommendations for wheat under heavy metal stress.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
10
|
Lieberman-Lazarovich M, Kaiserli E, Bucher E, Mladenov V. Natural and induced epigenetic variation for crop improvement. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102297. [PMID: 36108411 DOI: 10.1016/j.pbi.2022.102297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Maintaining global food security is a major challenge that requires novel strategies for crop improvement. Epigenetic regulation of plant responses to adverse environmental conditions provides a tunable mechanism to optimize plant growth, adaptation and ultimately yield. Epibreeding employs agricultural practices that rely on key epigenetic features as a means of engineering favorable phenotypic traits in target crops. This review summarizes recent findings on the role of epigenetic marks such as DNA methylation and histone modifications, in controlling phenotypic variation in crop species in response to environmental factors. The potential use of natural and induced epigenetic features as platforms for crop improvement via epibreeding, is discussed.
Collapse
Affiliation(s)
- Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel.
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
11
|
Choudhary P, Muthamilarasan M. Modulating physiological and transcriptional regulatory mechanisms for enhanced climate resilience in cereal crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153815. [PMID: 36150236 DOI: 10.1016/j.jplph.2022.153815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change adversely affects the yield and productivity of cereal crops, which consequently impacts food security. Therefore, studying stress acclimation, particularly transcriptional patterns and morpho-physiological responses of cereal crops to different stresses, will provide insights into the molecular determinants underlying climate resilience. The availability of advanced tools and approaches has enabled the characterization of plants at morphological, physiological, biochemical, and molecular levels, which will lead to the identification of genomic regions regulating the stress responses at these levels. This will further facilitate using transgenic, breeding, or genome editing approaches to manipulate the identified regions (genes, alleles, or QTLs) to enhance stress resilience. Next-generation sequencing approaches have advanced the identification of causal genes and markers in the genomes through forward or reverse genetics. In this context, the review enumerates the progress of dissecting the molecular mechanisms underlying transcriptional and physiological responses of major cereals to climate-induced stresses. The review systematically discusses different tools and approaches available to study the response of plants to various stresses and identify the molecular determinants regulating stress-resilience. Further, the application of genomics-assisted breeding, transgene-, and targeted editing-based approaches for modulating the genetic determinants for enhanced climate resilience has been elaborated.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
12
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
13
|
Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Inácio V, Santos R, Prazeres R, Graça J, Miguel CM, Morais-Cecílio L. Epigenetics at the crossroads of secondary growth regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:970342. [PMID: 35991449 PMCID: PMC9389228 DOI: 10.3389/fpls.2022.970342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 05/20/2023]
Abstract
The development of plant tissues and organs during post-embryonic growth occurs through the activity of both primary and secondary meristems. While primary meristems (root and shoot apical meristems) promote axial plant growth, secondary meristems (vascular and cork cambium or phellogen) promote radial thickening and plant axes strengthening. The vascular cambium forms the secondary xylem and phloem, whereas the cork cambium gives rise to the periderm that envelops stems and roots. Periderm takes on an increasingly important role in plant survival under climate change scenarios, but it is also a forest product with unique features, constituting the basis of a sustainable and profitable cork industry. There is established evidence that epigenetic mechanisms involving histone post-translational modifications, DNA methylation, and small RNAs play important roles in the activity of primary meristem cells, their maintenance, and differentiation of progeny cells. Here, we review the current knowledge on the epigenetic regulation of secondary meristems, particularly focusing on the phellogen activity. We also discuss the possible involvement of DNA methylation in the regulation of periderm contrasting phenotypes, given the potential impact of translating this knowledge into innovative breeding programs.
Collapse
Affiliation(s)
- Vera Inácio
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Vera Inácio,
| | - Raquel Santos
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Rafael Prazeres
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Graça
- Forest Research Centre (CEF), Institute of Agronomy, Universidade de Lisboa, Lisbon, Portugal
| | - Célia M. Miguel
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, Associated Laboratory TERRA, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Singh D, Chaudhary P, Taunk J, Kumar Singh C, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6836-6855. [PMID: 34302734 DOI: 10.1093/jxb/erab337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change has escalated abiotic stresses, leading to adverse effects on plant growth and development, eventually having deleterious consequences on crop productivity. Environmental stresses induce epigenetic changes, namely cytosine DNA methylation and histone post-translational modifications, thus altering chromatin structure and gene expression. Stable epigenetic changes are inheritable across generations and this enables plants to adapt to environmental changes (epipriming). Hence, epigenomes serve as a good source of additional tier of variability for development of climate-smart crops. Epigenetic resources such as epialleles, epigenetic recombinant inbred lines (epiRILs), epigenetic quantitative trait loci (epiQTLs), and epigenetic hybrids (epihybrids) can be utilized in epibreeding for improving stress tolerance of crops. Epigenome engineering is also gaining momentum for developing sustainable epimarks associated with important agronomic traits. Different epigenome editing tools are available for creating, erasing, and reading such epigenetic codes in plant genomes. However, epigenome editing is still understudied in plants due to its complex nature. Epigenetic interventions such as epi-fingerprinting can be exploited in the near future for health and quality assessment of crops under stress conditions. Keeping in view the challenges and opportunities associated with this important technology, the present review intends to enhance understanding of stress-induced epigenetic changes in plants and its prospects for development of climate-ready crops.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
16
|
Noshay JM, Springer NM. Stories that can't be told by SNPs; DNA methylation variation in plant populations. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101989. [PMID: 33445144 DOI: 10.1016/j.pbi.2020.101989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 05/23/2023]
Abstract
Epigenetic variation has been observed in many plant populations. This variation can influence qualitative and quantitative traits. A key question is whether there is novel information in the epigenome that is not captured by SNP-based genetic markers. The answer likely varies depending on the sources and stability of epigenetic variation as well as the type of population being studied. We consider the epigenetic variation in several plant systems and how this relates to potential for hidden information that could increase our understanding of phenotypic variation.
Collapse
Affiliation(s)
- Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
17
|
Liu J, He Z. Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory. FRONTIERS IN PLANT SCIENCE 2020; 11:595603. [PMID: 33362826 PMCID: PMC7758401 DOI: 10.3389/fpls.2020.595603] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 05/12/2023]
Abstract
DNA methylation is a conserved epigenetic mark that plays important roles in maintaining genome stability and regulating gene expression. As sessile organisms, plants have evolved sophisticated regulatory systems to endure or respond to diverse adverse abiotic environmental challenges, i.e., abiotic stresses, such as extreme temperatures (cold and heat), drought and salinity. Plant stress responses are often accompanied by changes in chromatin modifications at diverse responsive loci, such as 5-methylcytosine (5mC) and N 6-methyladenine (6mA) DNA methylation. Some abiotic stress responses are memorized for several hours or days through mitotic cell divisions and quickly reset to baseline levels after normal conditions are restored, which is referred to as somatic memory. In some cases, stress-induced chromatin marks are meiotically heritable and can impart the memory of stress exposure from parent plants to at least the next stress-free offspring generation through the mechanisms of transgenerational epigenetic inheritance, which may offer the descendants the potential to be adaptive for better fitness. In this review, we briefly summarize recent achievements regarding the establishment, maintenance and reset of DNA methylation, and highlight the diverse roles of DNA methylation in plant responses to abiotic stresses. Further, we discuss the potential role of DNA methylation in abiotic stress-induced somatic memory and transgenerational inheritance. Future research directions are proposed to develop stress-tolerant engineered crops to reduce the negative effects of abiotic stresses.
Collapse
Affiliation(s)
- Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Quantitative Epigenetics: A New Avenue for Crop Improvement. EPIGENOMES 2020; 4:epigenomes4040025. [PMID: 34968304 PMCID: PMC8594725 DOI: 10.3390/epigenomes4040025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Plant breeding conventionally depends on genetic variability available in a species to improve a particular trait in the crop. However, epigenetic diversity may provide an additional tier of variation. The recent advent of epigenome technologies has elucidated the role of epigenetic variation in shaping phenotype. Furthermore, the development of epigenetic recombinant inbred lines (epi-RILs) in model species such as Arabidopsis has enabled accurate genetic analysis of epigenetic variation. Subsequently, mapping of epigenetic quantitative trait loci (epiQTL) allowed association between epialleles and phenotypic traits. Likewise, epigenome-wide association study (EWAS) and epi-genotyping by sequencing (epi-GBS) have revolutionized the field of epigenetics research in plants. Thus, quantitative epigenetics provides ample opportunities to dissect the role of epigenetic variation in trait regulation, which can be eventually utilized in crop improvement programs. Moreover, locus-specific manipulation of DNA methylation by epigenome-editing tools such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) can potentially facilitate epigenetic based molecular breeding of important crop plants.
Collapse
|
19
|
Climate sensitivity of Cryptomeria japonica in two contrasting environments: Perspectives from QTL mapping. PLoS One 2020; 15:e0228278. [PMID: 31990959 PMCID: PMC6986750 DOI: 10.1371/journal.pone.0228278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/12/2020] [Indexed: 11/30/2022] Open
Abstract
Long-lived forest tree species experience a wide range of environmental conditions throughout their lifespan. Evaluation of the underlying growth and development mechanisms of these species is essential to predict tree growth under climate change. This study investigated climate sensitivity to temperature, precipitation, dry periods, and the associated genomic regions in Cryptomeria japonica, Japan’s most commercially important tree. We used tree rings and common garden experiments with three clonal replicates planted in two contrasting environments in Kyushu (Kumamoto site) and Honshu (Chiba site), Japan. Tree growth showed a significant negative correlation with the dry period (>4 days) in March of the year of tree-ring formation at the Chiba site. In contrast, temperature and precipitation had little influence on tree growth. Quantitative trait locus (QTL) analysis was performed to investigate climate sensitivity to dry periods at the Chiba site, revealing 13 significant QTLs. One QTL showed a substantially large contribution to the overall climate sensitivity, accounting for 12.4% of the total phenotypic variation. The phenotypic variance explained (PVE) by other QTLs ranged from 0.9% to 2.9%, and the total PVE by all QTLs was 35.6%. These findings indicate that the tree population at the Chiba site could be vulnerable to drought in early spring and that the QTL showing the greatest impact on climate sensitivity may be closely related to genes associated with tolerance or adaptation to drought stress. The QTLs identified in this study could be useful for molecular breeding, forest management, and predicting the growth of C. japonica under a changing climate.
Collapse
|
20
|
Chhetri HB, Furches A, Macaya-Sanz D, Walker AR, Kainer D, Jones P, Harman-Ware AE, Tschaplinski TJ, Jacobson D, Tuskan GA, DiFazio SP. Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2020; 11:545748. [PMID: 33013968 PMCID: PMC7509168 DOI: 10.3389/fpls.2020.545748] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/21/2020] [Indexed: 05/04/2023]
Abstract
To understand the genetic mechanisms underlying wood anatomical and morphological traits in Populus trichocarpa, we used 869 unrelated genotypes from a common garden in Clatskanie, Oregon that were previously collected from across the distribution range in western North America. Using GEMMA mixed model analysis, we tested for the association of 25 phenotypic traits and nine multitrait combinations with 6.741 million SNPs covering the entire genome. Broad-sense trait heritabilities ranged from 0.117 to 0.477. Most traits were significantly correlated with geoclimatic variables suggesting a role of climate and geography in shaping the variation of this species. Fifty-seven SNPs from single trait GWAS and 11 SNPs from multitrait GWAS passed an FDR threshold of 0.05, leading to the identification of eight and seven nearby candidate genes, respectively. The percentage of phenotypic variance explained (PVE) by the significant SNPs for both single and multitrait GWAS ranged from 0.01% to 6.18%. To further evaluate the potential roles of candidate genes, we used a multi-omic network containing five additional data sets, including leaf and wood metabolite GWAS layers and coexpression and comethylation networks. We also performed a functional enrichment analysis on coexpression nearest neighbors for each gene model identified by the wood anatomical and morphological trait GWAS analyses. Genes affecting cell wall composition and transport related genes were enriched in wood anatomy and stomatal density trait networks. Signaling and metabolism related genes were also common in networks for stomatal density. For leaf morphology traits (leaf dry and wet weight) the networks were significantly enriched for GO terms related to photosynthetic processes as well as cellular homeostasis. The identified genes provide further insights into the genetic control of these traits, which are important determinants of the suitability and sustainability of improved genotypes for lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Hari B. Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Anna Furches
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - David Kainer
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Anne E. Harman-Ware
- Biosciences Center, and National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Stephen P. DiFazio,
| |
Collapse
|