1
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025; 245:1846-1863. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
2
|
Herschberger JE, Ciesla L, Stieha CR, Kersch-Becker MF. Impacts of ramet density and herbivory on floral volatile emissions and seed production in Solidago altissima. AMERICAN JOURNAL OF BOTANY 2024; 111:e16414. [PMID: 39376035 DOI: 10.1002/ajb2.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 10/09/2024]
Abstract
PREMISE Plants produce an array of floral olfactory and visual cues to attract pollinators, including volatile organic compounds (VOC), which mediate plant-pollinator interactions and may be influenced by herbivory and neighboring plants. Consequently, these factors may affect plant fitness by disrupting pollination. However, most evidence comes from controlled experiments, limiting our understanding of how VOCs function in natural populations. This study investigated how herbivory and conspecific ramet density influence floral VOC profile, pollination, and seed production in a naturally occurring population of Solidago altissima. METHODS We recorded leaf herbivory and ramet density surrounding one focal ramet in 1-m2 plots. We collected VOCs from the floral headspace and measured ovary fertilization as a proxy for pollination success and the number of seeds produced by the focal ramet. RESULTS Our findings revealed interactive effects between ramet density and herbivory on floral VOC emission, richness, and diversity. Specifically, at lower ramet densities, herbivory did not affect floral volatile emissions. However, in highly dense stands, herbivory suppressed floral volatile emissions. Despite these changes, floral volatiles did not affect pollination and the number of seeds in S. altissima. CONCLUSIONS Our field-based findings underscore the importance of understanding the complex responses of floral VOCs to environmental stressors and their contributions to plant reproduction within natural communities. Our results suggest that while herbivory and ramet density influence floral scent, these changes do not affect reproduction in our study. Ultimately, generalist-pollinated plants like S. altissima might not rely heavily on chemical signaling during pollination.
Collapse
Affiliation(s)
- Jacob E Herschberger
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Lukasz Ciesla
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Christopher R Stieha
- Department of Biological Sciences, Millersville University, Millersville, PA, USA
| | - Mônica F Kersch-Becker
- Department of Entomology, Center for Chemical Ecology, and Ecology Institute, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Rigby LC, Hall MD, Monro K, Uesugi A. Evolution of "invasion syndrome" in invasive goldenrod is not constrained by genetic trade-offs. Evol Appl 2024; 17:e13734. [PMID: 38948541 PMCID: PMC11211922 DOI: 10.1111/eva.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
A suite of plant traits is thought to make weed populations highly invasive, including vigorous growth and reproduction, superior competitive ability, and high dispersal ability. Using a breeding design and a common garden experiment, we tested whether such an "invasion syndrome" has evolved in an invasive range of Solidago altissima, and whether the evolution is likely to be genetically constrained. We found an overall shift in invasive phenotypes between native North American and invasive Japanese populations. The invasive populations were taller and produced more leaves, suggesting a superior ability to exploit limited resources. The populations also produced more allelopathic compounds that can suppress competitor growth. Finally, invasive populations produced more seeds, which are smaller and are released from a greater height, indicating a potential for superior dispersal ability than the native populations. Quantitative genetics analyses found a large amount of additive genetic variation in most focal traits across native and invasive populations, with no systematic differences in its magnitude between the ranges. Genetic covariances among three traits representing invasion strategies (leaf mass, polyacetylene concentration and seed size) were small. The R metric, which measures the effect of genetic covariances on the rate of adaptation, indicated that the covariance neither constrains nor accelerates concerted evolution of these traits. The results suggest that the invasion syndrome in S. altissima has evolved in the novel range due to ample additive genetic variation, and relatively free from genetic trade-offs.
Collapse
Affiliation(s)
- Laura C. Rigby
- Biosciences and Food TechnologyRMIT UniversityBundooraVictoriaAustralia
| | - Matthew D. Hall
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Keyne Monro
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Akane Uesugi
- Biosciences and Food TechnologyRMIT UniversityBundooraVictoriaAustralia
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
Clark KM, Gallagher MJ, Canam T, Meiners SJ. Genetic relatedness can alter the strength of plant-soil interactions. AMERICAN JOURNAL OF BOTANY 2024; 111:e16289. [PMID: 38374713 DOI: 10.1002/ajb2.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
PREMISE Intraspecific variation may play a key role in shaping the relationships between plants and their interactions with soil microbial communities. The soil microbes of individual plants can generate intraspecific variation in the responsiveness of the plant offspring, yet have been much less studied. To address this need, we explored how the relatedness of seedlings from established clones of Solidago altissima altered the plant-soil interactions of the seedlings. METHODS Seedlings of known parentage were generated from a series of 24 clones grown in a common garden. Seedlings from these crosses were inoculated with soils from maternal, paternal, or unrelated clones and their performance compared to sterilized control inocula. RESULTS We found that soil inocula influenced by S. altissima clones had an overall negative effect on seedling biomass. Furthermore, seedlings inoculated with maternal or paternal soils tended to experience larger negative effects than seedlings inoculated with unrelated soils. However, there was much variation among individual crosses, with not all responding to relatedness. CONCLUSIONS Our data argue that genetic relatedness to the plant from which the soil microbial inoculum was obtained may cause differential impacts on establishing seedlings, encouraging the regeneration of non-kin adjacent to established clones. Such intraspecific variation represents a potentially important source of heterogeneity in plant-soil microbe interactions with implications for maintaining population genetic diversity.
Collapse
Affiliation(s)
- Kelly M Clark
- Department of Life Sciences, Ivy Tech Community College, Evansville, IN, 47710, USA
| | - Marci J Gallagher
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Thomas Canam
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| |
Collapse
|
5
|
Jalali T, Rosinger HS, Hodgins KA, Fournier‐Level AJ. Pollen competition in hybridizing Cakile species: How does a latecomer win the race? AMERICAN JOURNAL OF BOTANY 2022; 109:1290-1304. [PMID: 35844035 PMCID: PMC9544311 DOI: 10.1002/ajb2.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Hybridization between cross-compatible species depends on the extent of competition between alternative mates. Even if stigmatic compatibility allows for hybridization, hybridization requires the heterospecific pollen to be competitive. Here, we determined whether conspecific pollen has an advantage in the race to fertilize ovules and the potential handicap to be overcome by heterospecific pollen in invasive Cakile species. METHODS We used fluorescence microscopy to measure pollen tube growth after conspecific and heterospecific hand-pollination treatments. We then determined siring success in the progeny relative to the timing of heterospecific pollen arrival on the stigma using CAPS markers. RESULTS In the absence of pollen competition, pollination time and pollen recipient species had a significant effect on the ratio of pollen tube growth. In long-styled C. maritima (outcrosser), pollen tubes grew similarly in both directions. In short-styled C. edentula (selfer), conspecific and heterospecific pollen tubes grew differently. Cakile edentula pollen produced more pollen tubes, revealing the potential for a mating asymmetry whereby C. edentula pollen had an advantage relative to C. maritima. In the presence of pollen competition, siring success was equivalent when pollen deposition was synchronous. However, a moderate 1-h advantage in the timing of conspecific pollination resulted in almost complete assortative mating, while an equivalent delay in conspecific pollination resulted in substantial hybrid formation. CONCLUSIONS Hybridization can aid the establishment of invasive species through the transfer of adaptive alleles from cross-compatible species, but also lead to extinction through demographic or genetic swamping. Time of pollen arrival on the stigma substantially affected hybridization rate, pointing to the importance of pollination timing in driving introgression and genetic swamping.
Collapse
Affiliation(s)
- Tara Jalali
- School of BiosciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Hanna S. Rosinger
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | | |
Collapse
|
6
|
Sofi IA, Rashid I, Lone JY, Tyagi S, Reshi ZA, Mir RR. Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya. Sci Rep 2021; 11:19595. [PMID: 34599214 PMCID: PMC8486807 DOI: 10.1038/s41598-021-98648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Habitat loss due to climate change may cause the extinction of the clonal species with a limited distribution range. Thus, determining the genetic diversity required for adaptability by these species in sensitive ecosystems can help infer the chances of their survival and spread in changing climate. We studied the genetic diversity and population structure of Sambucus wightiana-a clonal endemic plant species of the Himalayan region for understanding its possible survival chances in anticipated climate change. Eight polymorphic microsatellite markers were used to study the allelic/genetic diversity and population structure. In addition, ITS1-ITS4 Sanger sequencing was used for phylogeny and SNP detection. A total number of 73 alleles were scored for 37 genotypes at 17 loci for 8 SSRs markers. The population structural analysis using the SSR marker data led to identifying two sub-populations in our collection of 37 S. wightiana genotypes, with 11 genotypes having mixed ancestry. The ITS sequence data show a specific allele in higher frequency in a particular sub-population, indicating variation in different S. wightiana accessions at the sequence level. The genotypic data of SSR markers and trait data of 11 traits of S. wightiana, when analyzed together, revealed five significant Marker-Trait Associations (MTAs) through Single Marker Analysis (SMA) or regression analysis. Most of the SSR markers were found to be associated with more than one trait, indicating the usefulness of these markers for working out marker-trait associations. Moderate to high genetic diversity observed in the present study may provide insurance against climate change to S. wightiana and help its further spread.
Collapse
Affiliation(s)
- Irshad Ahmad Sofi
- grid.412997.00000 0001 2294 5433Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Irfan Rashid
- grid.412997.00000 0001 2294 5433Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Javaid Yousuf Lone
- grid.412997.00000 0001 2294 5433Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Sandhya Tyagi
- grid.418196.30000 0001 2172 0814Department of Plant Physiology, Indian Agricultural Research Institute, New Delhi, Delhi 110012 India
| | - Zafar A. Reshi
- grid.412997.00000 0001 2294 5433Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Reyazul Rouf Mir
- grid.444725.40000 0004 0500 6225Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura Campus, Sopore, Jammu and Kashmir 193201 India
| |
Collapse
|
7
|
Rosinger HS, Geraldes A, Nurkowski KA, Battlay P, Cousens RD, Rieseberg LH, Hodgins KA. The tip of the iceberg: Genome wide marker analysis reveals hidden hybridization during invasion. Mol Ecol 2021; 30:810-825. [PMID: 33296112 DOI: 10.1111/mec.15768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Biological invasions are accelerating, and invasive species can have large economic impacts as well as severe consequences for biodiversity. During invasions, species can interact, potentially resulting in hybridization. Here, we examined two Cakile species, C. edentula and C. maritima (Brassicaceae), that co-occur and may hybridize during range expansion in separate regions of the globe. Cakile edentula invaded each location first, while C. maritima established later, apparently replacing the former. We assessed the evidence for hybridization in western North America and Australia, where both species have been introduced, and identified source populations with 4561 SNPs using Genotype-by-Sequencing. Our results indicate that C. edentula in Australia originated from one region of eastern North America while in western North America it is probably from multiple sources. Cakile maritima in Australia is derived from at least two different parts of Europe while the introduction in western North America is from one. Although morphological evidence of hybridization is generally limited to mixed species populations in Australia and virtually absent elsewhere, our genetic analysis revealed relatively high levels of hybridization in Australia (58% hybrids using Admixture) and supported the presence of hybrids in western North America (16% hybrids using Admixture) and New Zealand. Hybrids might be commonly overlooked in invaders, as identification based solely on morphological traits may represent only the tip of the iceberg. Our study reveals a repeated pattern of invasion, hybridization and apparent replacement of one species by another, which offers an opportunity to investigate the role of hybridization and introgression during invasion.
Collapse
Affiliation(s)
- Hanna S Rosinger
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Armando Geraldes
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kristin A Nurkowski
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Roger D Cousens
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|