1
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
2
|
Yao X, Sui X, Zhang Y. Amino Acid Metabolism and Transporters in Plant-Pathogen Interactions: Mechanisms and Implications. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40304541 DOI: 10.1111/pce.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
In the intricate landscape of plant-pathogen interactions, amino acids and their dedicated transporters emerge as pivotal players underpinning immune signalling and metabolic reprogramming. Amino acid metabolism serves as a linchpin in orchestrating systemic defence responses, with transporter-mediated amino acid homoeostasis intricately intertwined with immune pathways. This review synthesizes the dual roles of amino acids, including glutamate, proline, γ-aminobutyric acid, β-aminobutyric acid and pipecolic acid, as metabolic intermediates and signalling molecules that modulate defence responses. Complementing this metabolic framework, amino acid transporters, including LHT1 and members of the AAP and UMAMIT family, participate in plant defence against pathogens or provide nutrients to pathogens by regulating the transmembrane transport of amino acids. Their disease resistance or susceptibility functions are closely related to plant tissue-specificity and substrate-specificity. Additionally, this review explores the potential coordinated regulation between amino acid and sugar transporters in the context of plant-pathogen interactions. Looking ahead, future research should focus on resolving transporter mechanisms in resistance, dissecting regulatory hubs linking metabolism and transport, mapping nutrient fluxes at the host-pathogen interface and exploring the subcellular localization and transport direction of transporters to inform precision crop protection strategies.
Collapse
Affiliation(s)
- Xuehui Yao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Isidra-Arellano MC, Valdés-López O. Understanding the Crucial Role of Phosphate and Iron Availability in Regulating Root Nodule Symbiosis. PLANT & CELL PHYSIOLOGY 2024; 65:1925-1936. [PMID: 39460549 DOI: 10.1093/pcp/pcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
The symbiosis between legumes and nitrogen-fixing bacteria (rhizobia) is instrumental in sustaining the nitrogen cycle and providing fixed nitrogen to the food chain. Both partners must maintain an efficient nutrient exchange to ensure a successful symbiosis. This mini-review highlights the intricate phosphate and iron uptake and homeostasis processes taking place in legumes during their interactions with rhizobia. The coordination of transport and homeostasis of these nutrients in host plants and rhizobia ensures an efficient nitrogen fixation process and nutrient use. We discuss the genetic machinery controlling the uptake and homeostasis of these nutrients in the absence of rhizobia and under symbiotic conditions with this soil bacterium. We also highlight the genetic impact of the availability of phosphate and iron to coordinate the activation of the genetic programs that allow legumes to engage in symbiosis with rhizobia. Finally, we discuss how the transcription factor phosphate starvation response might be a crucial genetic element to integrate the plant's needs of nitrogen, iron and phosphate while interacting with rhizobia. Understanding the coordination of the iron and phosphate uptake and homeostasis can lead us to better harness the ecological benefits of the legume-rhizobia symbiosis, even under adverse environmental conditions.
Collapse
Affiliation(s)
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Department of Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México
| |
Collapse
|
4
|
Ramandi A, Jaghargh MB, Nourashrafeddin SM, Seifi A. Cupriavidus metallidurans: a species-non-specific and multifaceted plant growth-promoting bacteria. BMC PLANT BIOLOGY 2024; 24:1197. [PMID: 39702048 DOI: 10.1186/s12870-024-05927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Here we report growth promoting effects of Cupriavidus metallidurans on plants, and provide evidence for the underlying mechanisms of the growth promoting effects. In a series of greenhouse experiments on tomato, maize, and wheat, complemented with genetic analysis of Arabidopsis mutants, we tested the effects of the bacteria on seed germination, root and shoot growth, metal uptake, gas exchange parameters, and stomatal and xylem traits in maize, wheat, and tomato plants. Results showed that the bacteria substantially accelerate seed germination, increase shoot and root biomass, enhance photosynthetic performance, acidify the rhizosphere, increase metal uptake, and modulate stomatal and xylem traits. Analysis of Arabidopsis mutants impaired in auxin or ethylene perception and signaling revealed that the growth promoting effects of the bacteria and accelerating seed germination is independent of auxin and ethylene. We conclude that the bacteria acidify the rhizosphere and thereby increase metal uptake. It increases stomatal density and xylem area leading to increased stomatal conductance and hydraulic conductivity, leading to increased photosynthesis. Altogether, our data suggest C. metallidurans as a plant growth-promoting bacteria with striking abilities to manipulate different plant traits including stomatal density and xylem structure.
Collapse
Affiliation(s)
- Alireza Ramandi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehnoosh Baghdar Jaghargh
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
5
|
Lin J, Bjørk PK, Kolte MV, Poulsen E, Dedic E, Drace T, Andersen SU, Nadzieja M, Liu H, Castillo-Michel H, Escudero V, González-Guerrero M, Boesen T, Pedersen JS, Stougaard J, Andersen KR, Reid D. Zinc mediates control of nitrogen fixation via transcription factor filamentation. Nature 2024; 631:164-169. [PMID: 38926580 PMCID: PMC11222152 DOI: 10.1038/s41586-024-07607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Peter K Bjørk
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marie V Kolte
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Emil Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Taner Drace
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. Universidad Politécnica de Madrid, Madrid, Spain
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Dugald Reid
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), La Trobe University, Melbourne, Victoria, Australia.
- Department of Animal, Plant and Soil Sciences, School of Agriculture Bioscience and Environment, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Li Y, Liu Q, Zhang DX, Zhang ZY, Xu A, Jiang YL, Chen ZC. Metal nutrition and transport in the process of symbiotic nitrogen fixation. PLANT COMMUNICATIONS 2024; 5:100829. [PMID: 38303509 PMCID: PMC11009365 DOI: 10.1016/j.xplc.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Symbiotic nitrogen fixation (SNF) facilitated by the interaction between legumes and rhizobia is a well-documented and eco-friendly alternative to chemical nitrogen fertilizers. Host plants obtain fixed nitrogen from rhizobia by providing carbon and mineral nutrients. These mineral nutrients, which are mostly in the form of metal ions, are implicated in various stages of the SNF process. This review describes the functional roles played by metal ions in nodule formation and nitrogen fixation and specifically addresses their transport mechanisms and associated transporters within root nodules. Future research directions and potential strategies for enhancing SNF efficiency are also discussed.
Collapse
Affiliation(s)
- Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuo-Yan Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Long Jiang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
González DA, de la Torre VSG, Fernández RR, Barreau L, Merlot S. Divergent roles of IREG/Ferroportin transporters from the nickel hyperaccumulator Leucocroton havanensis. PHYSIOLOGIA PLANTARUM 2024; 176:e14261. [PMID: 38527955 DOI: 10.1111/ppl.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
In response to our ever-increasing demand for metals, phytotechnologies are being developed to limit the environmental impact of conventional metal mining. However, the development of these technologies, which rely on plant species able to tolerate and accumulate metals, is partly limited by our lack of knowledge of the underlying molecular mechanisms. In this work, we aimed to better understand the role of metal transporters of the IRON REGULATED 1/FERROPORTIN (IREG/FPN) family from the nickel hyperaccumulator Leucocroton havanensis from the Euphorbiaceae family. Using transcriptomic data, we identified two homologous genes, LhavIREG1 and LhavIREG2, encoding divalent metal transporters of the IREG/FPN family. Both genes are expressed at similar levels in shoots, but LhavIREG1 shows higher expression in roots. The heterologous expression of these transporters in A. thaliana revealed that LhavIREG1 is localized to the plasma membrane, whereas LhavIREG2 is located on the vacuole. In addition, the expression of each gene induced a significant increase in nickel tolerance. Taken together, our data suggest that LhavIREG2 is involved in nickel sequestration in vacuoles of leaf cells, whereas LhavIREG1 is mainly involved in nickel translocation from roots to shoots, but could also be involved in metal sequestration in cell walls. Our results suggest that paralogous IREG/FPN transporters may play complementary roles in nickel hyperaccumulation in plants.
Collapse
Affiliation(s)
- Dubiel Alfonso González
- Jardín Botánico Nacional, Universidad de La Habana, La Habana, Cuba
- Universidad Agraria de La Habana, Facultad de Agronomía, San José de las Lajas, Mayabeque, Cuba
| | | | - Rolando Reyes Fernández
- Universidad Agraria de La Habana, Facultad de Agronomía, San José de las Lajas, Mayabeque, Cuba
| | - Louise Barreau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sylvain Merlot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Laboratoire de Recherche en Sciences Végétales (LRSV), UMR5546 CNRS/UPS/INPT, France
| |
Collapse
|
8
|
Cai J, Longo A, Dickstein R. Expression and mutagenesis studies in the Medicago truncatula iron transporter MtVTL8 confirm its role in symbiotic nitrogen fixation and reveal amino acids essential for transport. FRONTIERS IN PLANT SCIENCE 2024; 14:1306491. [PMID: 38239208 PMCID: PMC10794610 DOI: 10.3389/fpls.2023.1306491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
The model legume Medicago truncatula establishes a symbiosis with soil bacteria (rhizobia) that carry out symbiotic nitrogen fixation (SNF) in plant root nodules. SNF requires the exchange of nutrients between the plant and rhizobia in the nodule that occurs across a plant-derived symbiosome membrane. One iron transporter, belonging to the Vacuolar iron Transporter-Like (VTL) family, MtVTL8, has been identified as essential for bacteria survival and therefore SNF. In this work we investigated the spatial expression of MtVTL8 in nodules and addressed whether it could be functionally interchangeable with a similar nodule-expressed iron transporter, MtVTL4. Using a structural model for MtVTL8 and the previously hypothesized mechanism for iron transport in a phylogenetically-related Vacuolar Iron Transporter (VIT), EgVIT1 with known crystal structure, we identified critical amino acids and obtained their mutants. Mutants were tested in planta for complementation of an SNF defective line and in an iron sensitive mutant yeast strain. An extended phylogenetic assessment of VTLs and VITs showed that amino acids critical for function are conserved differently in VTLs vs. VITs. Our studies showed that some amino acids are essential for iron transport leading us to suggest a model for MtVTL8 function, one that is different for other iron transporters (VITs) studied so far. This study extends the understanding of iron transport mechanisms in VTLs as well as those used in SNF.
Collapse
|
9
|
Navarro-Gómez C, León-Mediavilla J, Küpper H, Rodríguez-Simón M, Paganelli-López A, Wen J, Burén S, Mysore KS, Bokhari SNH, Imperial J, Escudero V, González-Guerrero M. Nodule-specific Cu + -chaperone NCC1 is required for symbiotic nitrogen fixation in Medicago truncatula root nodules. THE NEW PHYTOLOGIST 2024; 241:793-810. [PMID: 37915139 DOI: 10.1111/nph.19360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Hendrik Küpper
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Department of Experimental Plant Biology, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Mario Rodríguez-Simón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Alba Paganelli-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Syed Nadeem Hussain Bokhari
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
10
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
11
|
Liu Y, Xiong Z, Wu W, Ling HQ, Kong D. Iron in the Symbiosis of Plants and Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1958. [PMID: 37653875 PMCID: PMC10223382 DOI: 10.3390/plants12101958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron is an essential element for most organisms. Both plants and microorganisms have developed different mechanisms for iron uptake, transport and storage. In the symbiosis systems, such as rhizobia-legume symbiosis and arbuscular mycorrhizal (AM) symbiosis, maintaining iron homeostasis to meet the requirements for the interaction between the host plants and the symbiotic microbes is a new challenge. This intriguing topic has drawn the attention of many botanists and microbiologists, and many discoveries have been achieved so far. In this review, we discuss the current progress on iron uptake and transport in the nodules and iron homeostasis in rhizobia-legume symbiosis. The discoveries with regard to iron uptake in AM fungi, iron uptake regulation in AM plants and interactions between iron and other nutrient elements during AM symbiosis are also summarized. At the end of this review, we propose prospects for future studies in this fascinating research area.
Collapse
Affiliation(s)
- Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Zimo Xiong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Weifeng Wu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Hong-Qing Ling
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China;
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| |
Collapse
|
12
|
Wang L, Yang J, Tan W, Guo Y, Li J, Duan C, Wei G, Chou M. Macrophage migration inhibitory factor MtMIF3 prevents the premature aging of Medicago truncatula nodules. PLANT, CELL & ENVIRONMENT 2023; 46:1004-1017. [PMID: 36515398 DOI: 10.1111/pce.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in immune response in animals. However, the role of MIFs in plants such as Medicago truncatula, particularly in symbiotic nitrogen fixation, remains unclear. An investigation of M. truncatula-Sinorhizobium meliloti symbiosis revealed that MtMIF3 was mainly expressed in the nitrogen-fixing zone of the nodules. Silencing MtMIF3 using RNA interference (Ri) technology resulted in increased nodule numbers but higher levels of bacteroid degradation in the infected cells of the nitrogen-fixing zone, suggesting that premature aging was induced in MtMIF3-Ri nodules. In agreement with this conclusion, the activities of nitrogenase, superoxide dismutase and catalase were lower than those in controls, but cysteine proteinase activity was increased in nodulated roots at 28 days postinoculation. In contrast, the overexpression of MtMIF3 inhibited nodule senescence. MtMIF3 is localized in the plasma membrane, nucleus, and cytoplasm, where it interacts with methionine sulfoxide reductase B (MsrB), which is also localized in the chloroplasts of tobacco leaf cells. Taken together, these results suggest that MtMIF3 prevents premature nodule aging and protects against oxidation by interacting with MtMsrB.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wenjun Tan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yile Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiaqi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuntao Duan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle. Int J Mol Sci 2023; 24:ijms24054647. [PMID: 36902077 PMCID: PMC10002930 DOI: 10.3390/ijms24054647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Symbiosis between leguminous plants and soil bacteria rhizobia is a refined type of plant-microbial interaction that has a great importance to the global balance of nitrogen. The reduction of atmospheric nitrogen takes place in infected cells of a root nodule that serves as a temporary shelter for thousands of living bacteria, which, per se, is an unusual state of a eukaryotic cell. One of the most striking features of an infected cell is the drastic changes in the endomembrane system that occur after the entrance of bacteria to the host cell symplast. Mechanisms for maintaining intracellular bacterial colony represent an important part of symbiosis that have still not been sufficiently clarified. This review focuses on the changes that occur in an endomembrane system of infected cells and on the putative mechanisms of infected cell adaptation to its unusual lifestyle.
Collapse
|
14
|
Garcia K, Cloghessy K, Cooney DR, Shelley B, Chakraborty S, Kafle A, Busidan A, Sonawala U, Collier R, Jayaraman D, Ané JM, Pilot G. The putative transporter MtUMAMIT14 participates in nodule formation in Medicago truncatula. Sci Rep 2023; 13:804. [PMID: 36646812 PMCID: PMC9842706 DOI: 10.1038/s41598-023-28160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Transport systems are crucial in many plant processes, including plant-microbe interactions. Nodule formation and function in legumes involve the expression and regulation of multiple transport proteins, and many are still uncharacterized, particularly for nitrogen transport. Amino acids originating from the nitrogen-fixing process are an essential form of nitrogen for legumes. This work evaluates the role of MtN21 (henceforth MtUMAMIT14), a putative transport system from the MtN21/EamA-like/UMAMIT family, in nodule formation and nitrogen fixation in Medicago truncatula. To dissect this transporter's role, we assessed the expression of MtUMAMIT14 using GUS staining, localized the corresponding protein in M. truncatula root and tobacco leaf cells, and investigated two independent MtUMAMIT14 mutant lines. Our results indicate that MtUMAMIT14 is localized in endosomal structures and is expressed in both the infection zone and interzone of nodules. Comparison of mutant and wild-type M. truncatula indicates MtUMAMIT14, the expression of which is dependent on the presence of NIN, DNF1, and DNF2, plays a role in nodule formation and nitrogen-fixation. While the function of the transporter is still unclear, our results connect root nodule nitrogen fixation in legumes with the UMAMIT family.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA.
| | - Kaylee Cloghessy
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Danielle R Cooney
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA
| | - Brett Shelley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA
| | - Aymeric Busidan
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Unnati Sonawala
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Ray Collier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Molecular Technologies Department, Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Madison, WI, 53562, USA
| | | | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
15
|
Wu X, Wang Y, Ni Q, Li H, Wu X, Yuan Z, Xiao R, Ren Z, Lu J, Yun J, Wang Z, Li X. GmYSL7 controls iron uptake, allocation, and cellular response of nodules in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:167-187. [PMID: 36107150 DOI: 10.1111/jipb.13364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) is essential for DNA synthesis, photosynthesis and respiration of plants. The demand for Fe substantially increases during legumes-rhizobia symbiotic nitrogen fixation because of the synthesis of leghemoglobin in the host and Fe-containing proteins in bacteroids. However, the mechanism by which plant controls iron transport to nodules remains largely unknown. Here we demonstrate that GmYSL7 serves as a key regulator controlling Fe uptake from root to nodule and distribution in soybean nodules. GmYSL7 is Fe responsive and GmYSL7 transports iron across the membrane and into the infected cells of nodules. Alterations of GmYSL7 substantially affect iron distribution between root and nodule, resulting in defective growth of nodules and reduced nitrogenase activity. GmYSL7 knockout increases the expression of GmbHLH300, a transcription factor required for Fe response of nodules. Overexpression of GmbHLH300 decreases nodule number, nitrogenase activity and Fe content in nodules. Remarkably, GmbHLH300 directly binds to the promoters of ENOD93 and GmLbs, which regulate nodule number and nitrogenase activity, and represses their transcription. Our data reveal a new role of GmYSL7 in controlling Fe transport from host root to nodule and Fe distribution in nodule cells, and uncover a molecular mechanism by which Fe affects nodule number and nitrogenase activity.
Collapse
Affiliation(s)
- Xinying Wu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongliang Wang
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaohan Ni
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haizhen Li
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuesong Wu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanxin Yuan
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyin Ren
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Lu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxia Yun
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
16
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
17
|
Thiébaut N, Hanikenne M. Zinc deficiency responses: bridging the gap between Arabidopsis and dicotyledonous crops. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1699-1716. [PMID: 34791143 DOI: 10.1093/jxb/erab491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) deficiency is a widespread phenomenon in agricultural soils worldwide and has a major impact on crop yield and quality, and hence on human nutrition and health. Although dicotyledonous crops represent >30% of human plant-based nutrition, relatively few efforts have been dedicated to the investigation of Zn deficiency response mechanisms in dicotyledonous, in contrast to monocotyledonous crops, such as rice or barley. Here, we describe the Zn requirement and impact of Zn deficiency in several economically important dicotyledonous crops, Phaseolus vulgaris, Glycine max, Brassica oleracea, and Solanum lycopersicum. We briefly review our current knowledge of the Zn deficiency response in Arabidopsis and outline how this knowledge is translated in dicotyledonous crops. We highlight commonalities and differences between dicotyledonous species (and with monocotyledonous species) regarding the function and regulation of Zn transporters and chelators, as well as the Zn-sensing mechanisms and the role of hormones in the Zn deficiency response. Moreover, we show how the Zn homeostatic network intimately interacts with other nutrients, such as iron or phosphate. Finally, we outline how variation in Zn deficiency tolerance and Zn use efficiency among cultivars of dicotyledonous species can be leveraged for the design of Zn biofortification strategies.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS - PhytoSystems, Translational Plant Biology, University of Liège, 4000 Liège, Belgium
| | - Marc Hanikenne
- InBioS - PhytoSystems, Translational Plant Biology, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
18
|
Assunção AGL, Cakmak I, Clemens S, González-Guerrero M, Nawrocki A, Thomine S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1789-1799. [PMID: 35134869 PMCID: PMC8921004 DOI: 10.1093/jxb/erac014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440 Bayreuth, Germany
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | | | | |
Collapse
|
19
|
Banasiak J, Jamruszka T, Murray JD, Jasiński M. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses. PLANT PHYSIOLOGY 2021; 187:2071-2091. [PMID: 34618047 PMCID: PMC8644718 DOI: 10.1093/plphys/kiab280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 05/20/2023]
Abstract
Most land plants live in close contact with beneficial soil microbes: the majority of land plant species establish symbiosis with arbuscular mycorrhizal fungi, while most legumes, the third largest plant family, can form a symbiosis with nitrogen-fixing rhizobia. These microbes contribute to plant nutrition via endosymbiotic processes that require modulating the expression and function of plant transporter systems. The efficient contribution of these symbionts involves precisely controlled integration of transport, which is enabled by the adaptability and plasticity of their transporters. Advances in our understanding of these systems, driven by functional genomics research, are rapidly filling the gap in knowledge about plant membrane transport involved in these plant-microbe interactions. In this review, we synthesize recent findings associated with different stages of these symbioses, from the pre-symbiotic stage to nutrient exchange, and describe the role of host transport systems in both mycorrhizal and legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań 60-632, Poland
| |
Collapse
|
20
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
21
|
Hanikenne M, Esteves SM, Fanara S, Rouached H. Coordinated homeostasis of essential mineral nutrients: a focus on iron. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2136-2153. [PMID: 33175167 DOI: 10.1093/jxb/eraa483] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered. Although these interactions have profound consequences for our understanding of Fe homeostasis and its regulation, their molecular bases and biological significance remain poorly understood. Here, we review recent knowledge gained on how Fe interacts with micronutrient (e.g. zinc, manganese) and macronutrient (e.g. sulfur, phosphate) homeostasis, and on how these interactions affect Fe uptake and trafficking. Finally, we highlight the importance of developing an improved model of how Fe signaling pathways are integrated into functional networks to control plant growth and development in response to fluctuating environments.
Collapse
Affiliation(s)
- Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Sara M Esteves
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Steven Fanara
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Hatem Rouached
- BPMP, Univ. Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Day DA, Smith PMC. Iron Transport across Symbiotic Membranes of Nitrogen-Fixing Legumes. Int J Mol Sci 2021; 22:E432. [PMID: 33406726 PMCID: PMC7794740 DOI: 10.3390/ijms22010432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential nutrient for the legume-rhizobia symbiosis and nitrogen-fixing bacteroids within root nodules of legumes have a very high demand for the metal. Within the infected cells of nodules, the bacteroids are surrounded by a plant membrane to form an organelle-like structure called the symbiosome. In this review, we focus on how iron is transported across the symbiosome membrane and accessed by the bacteroids.
Collapse
Affiliation(s)
- David A. Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | | |
Collapse
|
23
|
Castro-Rodríguez R, Abreu I, Reguera M, Novoa-Aponte L, Mijovilovich A, Escudero V, Jiménez-Pastor FJ, Abadía J, Wen J, Mysore KS, Álvarez-Fernández A, Küpper H, Imperial J, González-Guerrero M. The Medicago truncatula Yellow Stripe1-Like3 gene is involved in vascular delivery of transition metals to root nodules. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7257-7269. [PMID: 32841350 DOI: 10.1093/jxb/eraa390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Česke Budějovice, Czech Republic
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Francisco J Jiménez-Pastor
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | - Javier Abadía
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | | | | | - Ana Álvarez-Fernández
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Česke Budějovice, Czech Republic
- University of South Bohemia, Department of Experimental Plant Biology, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Serrano, 115 bis, 28006 Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|