1
|
Mai MH, Gao C, Bork PAR, Holbrook NM, Schulz A, Bohr T. Relieving the transfusion tissue traffic jam: a network model of radial transport in conifer needles. THE NEW PHYTOLOGIST 2024; 244:2183-2196. [PMID: 39425496 PMCID: PMC11579439 DOI: 10.1111/nph.20189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Characteristic of all conifer needles, the transfusion tissue mediates the radial transport of water and sugar between the endodermis and axial vasculature. Physical constraints imposed by the needle's linear geometry introduce two potential extravascular bottlenecks where the opposition of sugar and water flows may frustrate sugar export: one at the vascular access point and the other at the endodermis. We developed a network model of the transfusion tissue to explore how its structure and composition affect the delivery of sugars to the axial phloem. To describe extravascular transport with cellular resolution, we construct networks from images of Pinus pinea needles obtained through tomographic microscopy, as well as fluorescence and electron microscopy. The transfusion tissue provides physically distinct pathways for sugar and water, reducing resistance between the vasculature and endodermis and mitigating flow constriction at the vascular flank. Dissipation of flow velocities through the transfusion tissue's branched structure allows for bidirectional transport of an inbound diffusive sugar flux against an outbound advective water flux across the endodermis. Our results clarify the structure-function relationships of the transfusion tissue under conditions free of physiological stress. The presented model framework is also applicable to different transfusion tissue morphologies in other gymnosperms.
Collapse
Affiliation(s)
- Melissa H. Mai
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| | - Chen Gao
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Peter A. R. Bork
- Department of PhysicsTechnical University of Denmark2800Kongens LyngbyDenmark
| | - N. Michele Holbrook
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| | - Alexander Schulz
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Tomas Bohr
- Department of PhysicsTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
2
|
Harrison Day BL, Brodersen CR, Brodribb TJ. Weak link or strong foundation? Vulnerability of fine root networks and stems to xylem embolism. THE NEW PHYTOLOGIST 2024; 244:1288-1302. [PMID: 39267263 DOI: 10.1111/nph.20115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.
Collapse
Affiliation(s)
- Beatrice L Harrison Day
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Craig R Brodersen
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
3
|
Mekarni L, Cochard H, Lehmann MM, Turberg P, Grossiord C. In vivo X-ray microtomography locally affects stem radial growth with no immediate physiological impact. PLANT PHYSIOLOGY 2024; 196:153-163. [PMID: 38757896 PMCID: PMC11491841 DOI: 10.1093/plphys/kiae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.
Collapse
Affiliation(s)
- Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Pascal Turberg
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| |
Collapse
|
4
|
Bouda M, Huggett BA, Prats KA, Wason JW, Wilson JP, Brodersen CR. Hydraulic failure as a primary driver of xylem network evolution in early vascular plants. Science 2022; 378:642-646. [DOI: 10.1126/science.add2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The earliest vascular plants had stems with a central cylindrical strand of water-conducting xylem, which rapidly diversified into more complex shapes. This diversification is understood to coincide with increases in plant body size and branching; however, no selection pressure favoring xylem strand-shape complexity is known. We show that incremental changes in xylem network organization that diverge from the cylindrical ancestral form lead to progressively greater drought resistance by reducing the risk of hydraulic failure. As xylem strand complexity increases, independent pathways for embolism spread become fewer and increasingly concentrated in more centrally located conduits, thus limiting the systemic spread of embolism during drought. Selection by drought may thus explain observed trajectories of xylem strand evolution in the fossil record and the diversity of extant forms.
Collapse
Affiliation(s)
- Martin Bouda
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | | | - Kyra A. Prats
- Yale School of the Environment, New Haven, CT, USA
- New York Botanical Garden, Bronx, NY, USA
| | - Jay W. Wason
- School of Forest Resources, University of Maine, Orono, ME, USA
| | - Jonathan P. Wilson
- Department of Environmental Studies, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
5
|
Cardoso AA, Kane CN, Rimer IM, McAdam SAM. Seeing is believing: what visualising bubbles in the xylem has revealed about plant hydraulic function. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:759-772. [PMID: 35718950 DOI: 10.1071/fp21326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K ) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Ian M Rimer
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Zhang Q, Tang W, Peng S, Li Y. Limiting factors for panicle photosynthesis at the anthesis and grain filling stages in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:77-91. [PMID: 34704647 DOI: 10.1111/tpj.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Panicle photosynthesis is crucial for grain yield in cereal crops; however, the limiting factors for panicle photosynthesis are poorly understood, greatly impeding improvement in this trait. In the present study, pot experiments were conducted to investigate the limiting factors for panicle photosynthesis at the anthesis stage in seven rice genotypes and to examine the temporal variations in photosynthesis during the grain filling stage in the Liangyou 287 genotype. At the anthesis stage, leaf and panicle photosynthesis was positively correlated with stomatal conductance and maximum carboxylation rate, which were in turn associated with hydraulic conductance and nitrogen content, respectively. Panicle hydraulic conductance was positively correlated with the area of bundle sheaths in the panicle neck. During grain filling, leaf and panicle photosynthesis remained constant at the early stage but dramatically decreased from 8 to 9 days after anthesis. The trends of variations in panicle photosynthesis were consistent with those in stomatal conductance but not with those in maximum carboxylation rate. At first, the maximum carboxylation rate and respiration rate in the panicle increased, through elevated panicle nitrogen content, but then drastically decreased, as a result of dehydration. The present study systematically investigated the limiting factors for panicle photosynthesis, which are vital for improving photosynthesis and crop yield.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
7
|
Prats KA, Brodersen CR. Desiccation and rehydration dynamics in the epiphytic resurrection fern Pleopeltis polypodioides. PLANT PHYSIOLOGY 2021; 187:1501-1518. [PMID: 34618062 PMCID: PMC8566288 DOI: 10.1093/plphys/kiab361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/01/2021] [Indexed: 05/13/2023]
Abstract
The epiphytic resurrection-or desiccation-tolerant (DT)-fern Pleopeltis polypodioides can survive extreme desiccation and recover physiological activity within hours of rehydration. Yet, how epiphytic DT ferns coordinate between deterioration and recovery of their hydraulic and photosynthetic systems remains poorly understood. We examined the functional status of the leaf vascular system, chlorophyll fluorescence, and photosynthetic rate during desiccation and rehydration of P. polypodioides. Xylem tracheids in the stipe embolized within 3-4 h during dehydration. When the leaf and rhizome received water, tracheids refilled after ∼24 h, which occurred along with dramatic structural changes in the stele. Photosynthetic rate and chlorophyll fluorescence recovered to predesiccation values within 12 h of rehydration, regardless of whether fronds were connected to their rhizome. Our data show that the epiphytic DT fern P. polypodioides can utilize foliar water uptake to rehydrate the leaf mesophyll and recover photosynthesis despite a broken hydraulic connection to the rhizome.
Collapse
Affiliation(s)
- Kyra A Prats
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Author for communication:
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Pittermann J, Baer A, Sang Y. Primary tissues may affect estimates of cavitation resistance in ferns. THE NEW PHYTOLOGIST 2021; 231:285-296. [PMID: 33786827 DOI: 10.1111/nph.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Different methods of measuring cavitation resistance in fern petioles lead to variable results, particularly with respect to the P50 metric. We hypothesised that the fern dictyostele structure affects air entry into the xylem, and therefore impacts the shape of the vulnerability curve. Our study examined this variation by comparing vulnerability curves constructed on petioles collected from evergreen and deciduous ferns in the field, with curves generated using the standard centrifuge, air-injection and bench-top dehydration methods. Additional experiments complemented the vulnerability curves to better understand how anatomy shapes estimates of cavitation resistance. Centrifugation and radial air injection generated acceptable vulnerability curves for the deciduous species, but overestimated drought resistance in the two evergreen ferns. In these hardy plants, axial air injection and bench-top dehydration produced results that most closely aligned with observations in nature. Additional experiments revealed that the dictyostele anatomy impedes air entry into the xylem during spinning and radial air injection. Each method produced acceptable vulnerability curves, depending on the species being tested. Therefore, we stress the importance of validating the curves with in situ measures of water potential and, if possible, hydraulic data to generate realistic results with any of the methods currently available.
Collapse
Affiliation(s)
- Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Alex Baer
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Ying Sang
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| |
Collapse
|
9
|
McAdam SAM, Duckett JG, Sussmilch FC, Pressel S, Renzaglia KS, Hedrich R, Brodribb TJ, Merced A. Stomata: the holey grail of plant evolution. AMERICAN JOURNAL OF BOTANY 2021; 108:366-371. [PMID: 33687736 PMCID: PMC8175006 DOI: 10.1002/ajb2.1619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 05/11/2023]
Affiliation(s)
- Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeffrey G Duckett
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, D-97082, Germany
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Amelia Merced
- USDA Forest Service, International Institute of Tropical Forestry, San Juan, PR, 00926, USA
| |
Collapse
|
10
|
Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186322] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The observation of a much-improved fitness of wild-type plants over abscisic acid (ABA)-deficient mutants during drought has led researchers from all over to world to perform experiments aiming at a better understanding of how this hormone modulates the physiology of plants under water-limited conditions. More recently, several promising approaches manipulating ABA biosynthesis and signaling have been explored to improve water use efficiency and confer drought tolerance to major crop species. Here, we review recent progress made in the last decade on (i) ABA biosynthesis, (ii) the roles of ABA on plant-water relations and on primary and secondary metabolisms during drought, and (iii) the regulation of ABA levels and perception to improve water use efficiency and drought tolerance in crop species.
Collapse
|
11
|
Cardoso AA, Billon LM, Fanton Borges A, Fernández-de-Uña L, Gersony JT, Güney A, Johnson KM, Lemaire C, Mrad A, Wagner Y, Petit G. New developments in understanding plant water transport under drought stress. THE NEW PHYTOLOGIST 2020; 227:1025-1027. [PMID: 32662102 DOI: 10.1111/nph.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Amanda A Cardoso
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Lise-Marie Billon
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Ana Fanton Borges
- Yale School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
| | | | - Jess T Gersony
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Aylin Güney
- Institute of Botany, University of Hohenheim, Garbenstr 30, D-70599, Stuttgart, Germany
- Department of Biology, Faculty of Science, Akdeniz University, 07058, Antalya, Turkey
| | - Kate M Johnson
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Yael Wagner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Giai Petit
- Department TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
12
|
McAdam SAM, Sussmilch FC. The evolving role of abscisic acid in cell function and plant development over geological time. Semin Cell Dev Biol 2020; 109:39-45. [PMID: 32571626 DOI: 10.1016/j.semcdb.2020.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
Abscisic acid (ABA) is found in a wide diversity of organisms, yet we know most about the hormonal action of this compound in the ecologically dominant and economically important angiosperms. In angiosperms, ABA regulates a suite of critical responses from desiccation tolerance through to seed dormancy and stomatal closure. Work exploring the function of key genes in the ABA signalling pathway of angiosperms has revealed that this signal transduction pathway is ancient, yet considerable change in the physiological roles of this hormone have occurred over geological time. With recent advances in our capacity to characterise gene function in non-angiosperms we are on the cusp of revealing the origins of this critical hormonal signalling pathway in plants, and understanding how a simple hormone may have shaped land plant diversity, ecology and adaptation over the past 500 million years.
Collapse
Affiliation(s)
- Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Frances C Sussmilch
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| |
Collapse
|