1
|
Dai D, Yu D, Gao W, Perry GLW, Paterson AM, You C, Zhou S, Xu Z, Huang C, Cao D, Curran TJ, Cui X. Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity. Ecol Lett 2025; 28:e70056. [PMID: 39755937 DOI: 10.1111/ele.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC. LDMC varied across growth forms and taxonomic groups, displaying phylogenetic niche conservatism. Temperature, precipitation, aridity index, soil total nitrogen content and wildfire activity affected LDMC, and the effect of wildfire activity was stronger than other environmental factors across species with postfire regeneration abilities. Such species had higher LDMC, and their LDMC was less phylogenetically conserved and more strongly associated with fire activity. Our results suggest that, although LDMC shows phylogenetic niche conservatism, LDMC is determined by environmental factors, especially wildfire activity. Wildfire has likely acted as a selective pressure towards high LDMC across species that persist through fire using postfire regeneration.
Collapse
Affiliation(s)
- Dachuan Dai
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongli Yu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Wuchao Gao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Adrian M Paterson
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Chengming You
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Shixing Zhou
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Mt. Emei Forest Ecosystem National Observation and Research Station, Emei, China
| | - Congde Huang
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongyu Cao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Timothy J Curran
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Xinglei Cui
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Mt. Emei Forest Ecosystem National Observation and Research Station, Emei, China
| |
Collapse
|
2
|
Clark KM, Gallagher MJ, Canam T, Meiners SJ. Genetic relatedness can alter the strength of plant-soil interactions. AMERICAN JOURNAL OF BOTANY 2024; 111:e16289. [PMID: 38374713 DOI: 10.1002/ajb2.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
PREMISE Intraspecific variation may play a key role in shaping the relationships between plants and their interactions with soil microbial communities. The soil microbes of individual plants can generate intraspecific variation in the responsiveness of the plant offspring, yet have been much less studied. To address this need, we explored how the relatedness of seedlings from established clones of Solidago altissima altered the plant-soil interactions of the seedlings. METHODS Seedlings of known parentage were generated from a series of 24 clones grown in a common garden. Seedlings from these crosses were inoculated with soils from maternal, paternal, or unrelated clones and their performance compared to sterilized control inocula. RESULTS We found that soil inocula influenced by S. altissima clones had an overall negative effect on seedling biomass. Furthermore, seedlings inoculated with maternal or paternal soils tended to experience larger negative effects than seedlings inoculated with unrelated soils. However, there was much variation among individual crosses, with not all responding to relatedness. CONCLUSIONS Our data argue that genetic relatedness to the plant from which the soil microbial inoculum was obtained may cause differential impacts on establishing seedlings, encouraging the regeneration of non-kin adjacent to established clones. Such intraspecific variation represents a potentially important source of heterogeneity in plant-soil microbe interactions with implications for maintaining population genetic diversity.
Collapse
Affiliation(s)
- Kelly M Clark
- Department of Life Sciences, Ivy Tech Community College, Evansville, IN, 47710, USA
| | - Marci J Gallagher
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Thomas Canam
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| |
Collapse
|
3
|
Wang X, Gong L, Luo Y, Ding Z, Guo Q, Li X, Ma X. Phylogenetic diversity drives soil multifunctionality in arid montane forest-grassland transition zone. FRONTIERS IN PLANT SCIENCE 2024; 15:1344948. [PMID: 38410734 PMCID: PMC10894997 DOI: 10.3389/fpls.2024.1344948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Exploring plant diversity and ecosystem functioning in different dimensions is crucial to preserve ecological balance and advance ecosystem conservation efforts. Ecosystem transition zones serve as vital connectors linking two distinct ecosystems, yet the impact of various aspects of plant diversity (including taxonomic, functional, and phylogenetic diversity) on soil multifunctionality in these zones remains to be clarified. This study focuses on the forest-grassland transition zone in the mountains on the northern slopes of the Tianshan Mountains, and investigates vegetation and soil characteristics from forest ecosystems to grassland ecosystems to characterize plant diversity and soil functioning, as well as the driving role of plant diversity in different dimensions. In the montane forest-grassland transition zone, urease (URE) and total nitrogen (TN) play a major role in regulating plant diversity by affecting the soil nutrient cycle. Phylogenetic diversity was found to be the strongest driver of soil multifunctionality, followed by functional diversity, while taxonomic diversity was the least important driver. Diverse species were shown to play an important role in maintaining soil multifunctionality in the transition zone, especially distantly related species with high phylogeny. The study of multidimensional plant diversity and soil multifunctionality in the montane forest-grassland transition zone can help to balance the relationship between these two elements, which is crucial in areas where the ecosystem overlaps, and the application of the findings can support sustainable development in these regions.
Collapse
Affiliation(s)
- Xiaofei Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
| | - Lu Gong
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
| | - Yan Luo
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
| | - Zhaolong Ding
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
| | - Qian Guo
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
| | - Xiaochen Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
| | - Xinyu Ma
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, China
| |
Collapse
|
4
|
Rutten G, Allan E. Using root economics traits to predict biotic plant soil-feedbacks. PLANT AND SOIL 2023; 485:71-89. [PMID: 37181279 PMCID: PMC10167139 DOI: 10.1007/s11104-023-05948-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
Plant-soil feedbacks have been recognised as playing a key role in a range of ecological processes, including succession, invasion, species coexistence and population dynamics. However, there is substantial variation between species in the strength of plant-soil feedbacks and predicting this variation remains challenging. Here, we propose an original concept to predict the outcome of plant-soil feedbacks. We hypothesize that plants with different combinations of root traits culture different proportions of pathogens and mutualists in their soils and that this contributes to differences in performance between home soils (cultured by conspecifics) versus away soils (cultured by heterospecifics). We use the recently described root economics space, which identifies two gradients in root traits. A conservation gradient distinguishes fast vs. slow species, and from growth defence theory we predict that these species culture different amounts of pathogens in their soils. A collaboration gradient distinguishes species that associate with mycorrhizae to outsource soil nutrient acquisition vs. those which use a "do it yourself" strategy and capture nutrients without relying strongly on mycorrhizae. We provide a framework, which predicts that the strength and direction of the biotic feedback between a pair of species is determined by the dissimilarity between them along each axis of the root economics space. We then use data from two case studies to show how to apply the framework, by analysing the response of plant-soil feedbacks to measures of distance and position along each axis and find some support for our predictions. Finally, we highlight further areas where our framework could be developed and propose study designs that would help to fill current research gaps. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-05948-1.
Collapse
Affiliation(s)
- Gemma Rutten
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Eric Allan
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
5
|
Gao L, Wei C, He Y, Tang X, Chen W, Xu H, Wu Y, Wilschut RA, Lu X. Aboveground herbivory can promote exotic plant invasion through intra- and interspecific aboveground-belowground interactions. THE NEW PHYTOLOGIST 2023; 237:2347-2359. [PMID: 36200166 DOI: 10.1111/nph.18520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.
Collapse
Affiliation(s)
- Lunlun Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Chunqiang Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Guangxi Institute of Botany, Chinese Academy of Science, 540016, Guilin, China
| | - Yifan He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Xuefei Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
| | - Wei Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Hao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Henan, China
| | - Rutger A Wilschut
- Ecology Group, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Department of Nematology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| |
Collapse
|
6
|
Duell EB, Bever JD, Wilson GWT. Role of plant relatedness in plant-soil feedback dynamics of sympatric Asclepias species. Ecol Evol 2023; 13:e9763. [PMID: 36713479 PMCID: PMC9873585 DOI: 10.1002/ece3.9763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Plants affect associated biotic and abiotic edaphic factors, with reciprocal feedbacks from soil characteristics affecting plants. These two-way interactions between plants and soils are collectively known as plant-soil feedbacks (PSFs). The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of PSFs, although the strength and direction of feedbacks among sympatric congeners are not well-understood. We examined plant-soil feedback responses of Asclepias syriaca, a common clonal milkweed species, with several sympatric congeners across a gradient of increasing phylogenetic distances (A. tuberosa, A. viridis, A. sullivantii, and A. verticillata, respectively). Plant-soil feedbacks were measured through productivity and colonization by arbuscular mycorrhizal (AM) fungi. Asclepias syriaca produced less biomass in soils conditioned by the most phylogenetically distant species (A. verticillata), relative to conspecific-conditioned soils. Similarly, arbuscular mycorrhizal (AM) fungal colonization of A. syriaca roots was reduced when grown in soils conditioned by A. verticillata, compared with colonization in plants grown in soil conditioned by any of the other three Asclepias species, indicating mycorrhizal associations are a potential mechanism of observed positive PSFs. This display of differences between the most phylogenetically distant, but not close or intermediate, paring(s) suggests a potential phylogenetic threshold, although other exogenous factors cannot be ruled out. Overall, these results highlight the potential role of phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of plant-soil feedbacks (PSFs), although the strength and direction of feedbacks among sympatric congeners are not well-understood. Congeneric, sympatric milkweeds typically generated positive PSFs in terms of productivity and AM fungal colonization, suggesting the low likelihood of coexistence among tested pairs, with a strength of feedback increasing as the phylogenetic distance increases.
Collapse
Affiliation(s)
- Eric B. Duell
- Kansas Biological Survey & Center for Ecological ResearchLawrenceKansasUSA
| | - James D. Bever
- Kansas Biological Survey & Center for Ecological ResearchLawrenceKansasUSA
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Gail W. T. Wilson
- Department of Natural Resource Ecology & ManagementOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
7
|
Zaret MM, Bauer JT, Clay K, Whitaker BK. Conspecific leaf litter induces negative feedbacks in Asteraceae seedlings. Ecology 2021; 102:e03557. [PMID: 34625950 DOI: 10.1002/ecy.3557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/07/2022]
Abstract
The plant soil feedback (PSF) framework has been instrumental in understanding the impacts of soil microbes on plant fitness and species coexistence. PSFs develop when soil microbial communities are altered due to the identity and density of a particular plant species, which can then enhance or inhibit the local survival and growth of that plant species as well as different plant species. The recent extension of the PSF framework to aboveground microbiota, termed here as plant phyllosphere feedbacks (PPFs), can also help to determine the impact of aboveground microbes on plant fitness and species interactions. However, experimental tests of PPFs during early plant growth are nascent and the prevalence of PPFs across diverse plant species remains unknown. Additionally, it is unclear whether plant host characteristics, such as functional traits or phylogenetic distance, may help to predict the strength and direction of PPFs. To test for the prevalence of litter-mediated PPFs, recently senesced plant litter from 10 native Asteraceae species spanning a range of life history strategies was used to inoculate seedlings of both conspecific and heterospecific species. We found that exposure to conspecific litter significantly reduced the growth of four species relative to exposure to heterospecific litter (i.e., significant negative PPFs), three species experienced marginally significant negative PPFs, and the PPF estimates for all 10 species were negative. However, neither plant functional traits, nor phylogenetic distance were predictive of litter feedbacks across plant species pairs, suggesting that other mechanisms or traits not measured may be driving conspecific negative PPFs. Our results indicate that negative, litter-mediated PPFs are common among native Asteraceae species and that they may have substantial impacts on plant growth and plant species interactions, particularly during early plant growth.
Collapse
Affiliation(s)
- Max M Zaret
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jonathan T Bauer
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Department of Biology, Miami University, Oxford, Ohio, USA.,Institute for the Environment and Sustainability, Miami University, Oxford, Ohio, USA
| | - Keith Clay
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Briana K Whitaker
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Allen WJ, Sapsford SJ, Dickie IA. Soil sample pooling generates no consistent inference bias: a meta-analysis of 71 plant-soil feedback experiments. THE NEW PHYTOLOGIST 2021; 231:1308-1315. [PMID: 33982798 DOI: 10.1111/nph.17455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
There is current debate on how soil sample pooling affects the measurement of plant-soil feedbacks. Several studies have suggested that pooling soil samples among experimental units reduces variance and can bias estimates of plant-soil feedbacks. However, it is unclear whether pooling has resulted in systematic mismeasurement of plant-soil feedbacks in the literature. Using data from 71 experiments, we tested whether pairwise plant-soil feedback direction, magnitude and variance differed among soil pooling treatments. We also tested whether pooling has altered our understanding of abiotic and biotic drivers that influence pairwise plant-soil feedbacks. Pooling of soil samples among experimental units was used in 42% of examined experiments. Contrary to predictions, pooling did not affect mean pairwise plant-soil feedback effect size or within-experiment variance. Accounting for soil sample pooling also did not significantly alter our understanding of the drivers of pairwise plant-soil feedbacks. We conclude that there is no evidence that soil sample pooling systematically biases estimates of plant-soil feedback direction, magnitude, variance or drivers across many studies. Given the debate of whether to pool soil samples, researchers should be aware of potential criticisms and carefully consider how experimental design and soil pooling methods influence interpretation of experiments.
Collapse
Affiliation(s)
- Warwick J Allen
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Sarah J Sapsford
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
9
|
Martorell C, MartÍnez-Blancas A, García-Meza D. Plant-soil feedbacks depend on drought stress, functional group, and evolutionary relatedness in a semiarid grassland. Ecology 2021; 102:e03499. [PMID: 34314034 DOI: 10.1002/ecy.3499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022]
Abstract
Plant-soil feedback (PSF) occurs when plants change the biota and physicochemical properties of the soil, and these changes affect future survival or growth of plants. PSF depends on several factors such as plant functional attributes (e.g., life cycle or photosynthetic metabolism) and the environment. PSF often turn positive under dry conditions because soil biota confers drought tolerance. Conspecifics and close relatives share pathogens and consume similar resources, exerting negative PSF on each other. These ideas have mostly been tested under controlled conditions, while field studies remain scarce. To reevaluate these findings in nature, we analyzed plant-soil feedbacks over a drought-stress gradient in a phosphorus-limited semiarid grassland. We planted seedlings of 17 species in plots where community composition had been monitored for six years. To determine PSF intensity, we measured how seedling longevity was affected by previous occupancy of conspecifics and heterospecifics. The previous occupancy-survival relationship (OSR) was used as a proxy for PSF. Evidence for OSRs was found in one-third of the species pairs, with inconclusive evidence for the rest suggesting weak feedbacks. This is in line with the expectation that PSFs in the field are weaker than under controlled conditions. As expected, positive PSFs were more frequent as drought stress increased. The strongest OSRs were caused in dry plots by C4 perennial grasses, which had very positive OSRs on several C3 annual forbs, but negative effects on each other. Well-documented differences between these two functional groups may explain this result: C3 plants are more sensitive to drought, and thus may be favored by tolerance-conferring microbiota; in contrast, water-efficient C4 perennial grasses compete for phosphorus strongly, perhaps driving strong negative PSFs between them. Finally, close relatives had more negative OSRs on each other than on distant relatives as expected, although only in dry plots. This pattern was mostly due to the negative effects of closely related C4 grasses under dry conditions, and their positive effects on distantly related dicots. Our results highlight the importance of plant traits and of the environmental context in determining the direction and strength of PSFs under field conditions.
Collapse
Affiliation(s)
- Carlos Martorell
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Alejandra MartÍnez-Blancas
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universitaria 3000, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Diego García-Meza
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
10
|
Thakur MP, van der Putten WH, Wilschut RA, Veen GFC, Kardol P, van Ruijven J, Allan E, Roscher C, van Kleunen M, Bezemer TM. Plant-Soil Feedbacks and Temporal Dynamics of Plant Diversity-Productivity Relationships. Trends Ecol Evol 2021; 36:651-661. [PMID: 33888322 DOI: 10.1016/j.tree.2021.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists. Disentangling these processes in plant diversity experiments will yield new insights into how plant diversity-productivity relationships change over time.
Collapse
Affiliation(s)
- Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Rutger A Wilschut
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christiane Roscher
- Helmholtz Centre for Environmental Research, Physiological Diversity - UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, 2300, RA, Leiden, The Netherlands
| |
Collapse
|