1
|
Tricerri N, Tomasella M, Cavalletto S, Petruzzellis F, Natale S, Crivellaro A, Gamba R, Piermattei A, D'Amico L, Tromba G, Nardini A, Zwieniecki MA, Secchi F. Fibers beyond structure: do they contribute to embolism reversal after drought relief in poplar? THE NEW PHYTOLOGIST 2025. [PMID: 40313028 DOI: 10.1111/nph.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Short-term recovery from drought-induced vessel embolism is an energy-dependent biological process that requires a water source and solutes, both likely supplied by parenchyma cells. Despite fibers primarily providing structural support, their functional role as a reservoir of unbound water during and after stress remains unclear. In this study, Populus nigra plants were exposed to two drying regimes (slow and fast developing stress). At the end of the drought treatments and after stress relief, nondestructive structural observations were performed in vivo using synchrotron X-ray microCT. Different drought progression rates did not affect the final extent of vessel embolism, but poplars subjected to slower drought development exhibited higher levels of air-filled fibers. Following stress relief, faster hydraulic recovery was observed in plants exposed to rapid drought, which displayed lower occurrences of water-depleted fibers. We suggest a novel functional role for xylem fibers during drought and recovery. We hypothesize that parenchyma cells can access water stored in completely mature fibers via pits, enhancing their survival during drought. Upon xylem tension relief, this stored water may be mobilized by living cells from fibers to vessels, facilitating the recovery of their transport function.
Collapse
Affiliation(s)
- Niccolò Tricerri
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- University School for Advanced Studies IUSS Pavia, 27100, Pavia, Italy
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
| | - Silvia Cavalletto
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padova, Italy
| | - Sara Natale
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padova, Italy
| | - Alan Crivellaro
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Rachele Gamba
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Alma Piermattei
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Lorenzo D'Amico
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Ave, 95616, Davis, CA, USA
| | - Francesca Secchi
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| |
Collapse
|
2
|
Ávila-Lovera E, Haro R, Choudhary M, Acosta-Rangel A, Pratt RB, Santiago LS. The benefits of woody plant stem photosynthesis extend to hydraulic function and drought survival in Parkinsonia florida. TREE PHYSIOLOGY 2024; 44:tpae013. [PMID: 38284819 PMCID: PMC10918054 DOI: 10.1093/treephys/tpae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
As climate change exacerbates drought stress in many parts of the world, understanding plant physiological mechanisms for drought survival is critical to predicting ecosystem responses. Stem net photosynthesis, which is common in arid environments, may be a drought survival trait, but whether the additional carbon fixed by stems contributes to plant hydraulic function and drought survival in arid land plants is untested. We conducted a stem light-exclusion experiment on saplings of a widespread North American desert tree species, Parkinsonia florida L., and after shading acclimation, we then subjected half of the plants to a drought treatment to test the interaction between light exclusion and water limitation on growth, leaf and stem photosynthetic gas exchange, xylem embolism assessed with micro-computed tomography and gravimetric techniques, and survival. Growth, stem photosynthetic gas exchange, hydraulic function and survival all showed expected reductions in response to light exclusion. However, stem photosynthesis mitigated the drought-induced reductions in gas exchange, xylem embolism (percent loss of conductivity, PLC) and mortality. The highest mortality was in the combined light exclusion and drought treatment, and was related to stem PLC and native sapwood-specific hydraulic conductivity. This research highlights the integration of carbon economy and water transport. Our results show that additional carbon income by photosynthetic stems has an important role in the growth and survival of a widespread desert tree species during drought. This shift in function under conditions of increasing stress underscores the importance of considering stem photosynthesis for predicting drought-induced mortality not only for the additional supply of carbon, but also for its extended benefits for hydraulic function.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- School of Biological Sciences, The University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| | - Roxana Haro
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Manika Choudhary
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Aleyda Acosta-Rangel
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - R Brandon Pratt
- Department of Biology, California State University, 9001 Stockdale Hwy, Bakersfield, CA 93311, USA
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
3
|
Li Z, Luo D, Ibrahim MM, Hou E, Wang C. Adaptive strategies to freeze-thaw cycles in branch hydraulics of tree species coexisting in a temperate forest. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108223. [PMID: 38043252 DOI: 10.1016/j.plaphy.2023.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Freeze-thaw cycles (FTCs) limit the distribution and survival of temperate tree species. Tree species with different wood types coexist in temperate forests and are subjected to the same FTCs. It is essential to understand how these trees differentially cope with xylem hydraulic failure induced by FTCs in the field. The branch hydraulic traits and nonstructural carbohydrate concentration of six coexisting tree species in a temperate forest were measured from mid-winter to early spring when the FTCs occurred from January to April. The percentage loss of hydraulic conductivity (PLC) was lower, and the water potential inducing a 50% loss of hydraulic conductivity (P50) was more negative in tracheid trees than in ring- and diffuse-porous trees, suggesting tracheid trees with narrow tracheid diameters showed less vulnerable to embolism and provided a lower degree of hydraulic failure during FTCs (stronger resistance). Ring-porous trees always showed lower hydraulic conductivity and higher PLC and P50, and these traits did not change during FTCs, suggesting that they might lose the hydraulic functions in winter and abandon the last year xylem. The P50 in diffuse-porous increased after several FTCs (frost fatigue), but that in tracheid species continued to increase (or even decrease) until the end of FTCs (69 cycles), suggesting that tracheid trees were less sensitive to frost fatigue than diffuse-porous trees. Soluble sugar concentration in deciduous trees negatively correlated with PLC at the end of FTCs, indicating that the effect of soluble sugar on refilling embolism occurred in early spring. While the soluble sugar concentration of deciduous trees decreased, that of two evergreen tracheid trees gradually increased, possibly due to the winter photosynthesis of evergreen leaves. Our results suggest temperate trees adopt different strategies to cope with the same FTCs. These findings enrich the understanding of plant hydraulics and carbon physiology in winter and provide insights into the response of different species coexisting in temperate forests under climate change.
Collapse
Affiliation(s)
- Zhimin Li
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Dandan Luo
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Muhammed Mustapha Ibrahim
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Tomasella M, Petruzzellis F, Natale S, Tromba G, Nardini A. Detecting and Quantifying Xylem Embolism by Synchrotron-Based X-Ray Micro-CT. Methods Mol Biol 2024; 2722:51-63. [PMID: 37897599 DOI: 10.1007/978-1-0716-3477-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The vulnerability to xylem embolism is a key trait underlying species-specific drought tolerance of plants, and hence is critical for screening climate-resilient crops and understanding vegetation responses to drought and heat waves. Yet, accurate determination of embolism in plant's xylem is challenging, because most traditional hydraulic techniques are destructive and prone to artefacts. Hence, direct and in vivo synchrotron-based X-ray micro-CT observation of xylem conduits has emerged as a key reference technique for accurate quantification of vulnerability to xylem embolism. Micro-CT is nowadays a fundamental tool for studies of plant hydraulic architecture, and this chapter describes the fundamentals of acquisition and processing of micro-CT images of plant xylem.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | | | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | | | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.
| |
Collapse
|
5
|
Dai Y, Wang L, Wan X. Maintenance of xylem hydraulic function during winter in the woody bamboo Phyllostachys propinqua McClure. PeerJ 2023; 11:e15979. [PMID: 37719123 PMCID: PMC10504893 DOI: 10.7717/peerj.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Background Frost is a common environmental stress for temperate plants. Xylem embolism occurs in many overwintering plants due to freeze-thaw cycles, so coping with freeze-thaw-induced embolisms is essential for the survival of temperate plants. Methods This study was conducted on Phyllostachys propinqua McClure, a woody bamboo species that was grown under natural frost conditions to explore its responses to winter embolisms. From autumn to the following spring, the following measurements were recorded: predawn branch and leaf embolism, branch and leaf relative water content (RWC), root pressure and soil temperature, xylem sap osmotic potential, branch and leaf electrolyte leakage (EL), branch nonstructural carbohydrate (NSC) content and leaf net photosynthetic rate. Results P. propinqua had a mean vessel diameter of 68.95 ±1.27 µm but did not suffer severe winter embolism, peaking around 60% in winter (January), with a distinct reduction in March when root pressure returned. Leaves had a more severe winter embolism, up to 90%. Leaf RWC was much lower in winter, and leaf EL was significantly higher than branch EL in all seasons. Root pressure remained until November when soil temperature reached 9 °C, then appeared again in March when soil temperatures increased from -6 °C (January) to 11 °C. Xylem sap osmotic potential decreased from autumn to winter, reaching a minimum in March, and then increasing again. Soluble sugar (SS) concentration increased throughout the winter, peaked in March, and then decreased. Conclusions These results suggest that (1) there is a hydraulic segmentation between the stem and leaf, which could prevent stem water loss and further embolization in winter; (2) maintenance of root pressure in early winter played an important role in reducing the effect of freeze-thaw cycles on the winter embolism; (3) the physiological process that resulted in a decrease in xylem sap osmotic potential and tissue water content, and an accumulation of SS associated with cold acclimation also aided in reducing the extent of freeze-thaw-induced embolism. All these strategies could be helpful for the maintenance of xylem hydraulic function of this bamboo species during winter.
Collapse
Affiliation(s)
- Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
6
|
Secchi F, Bevilacqua I, Agliassa C, Maghrebi M, Cavalletto S, Morabito C, Lembo S, Vigani G. Alkaline soil primes the recovery from drought in Populus nigra plants through physiological and chemical adjustments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107838. [PMID: 37364510 DOI: 10.1016/j.plaphy.2023.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Perennial plants are frequently exposed to severe and prolonged drought, and when the balance between water transport and transpirational demand is compromised trees are in danger of embolism formation. To maintain the physiological balance, plants can rely on mechanisms to quickly recover the lost xylem hydraulic capacity and reduce the prolonged impact on photosynthetic activity upon rehydration. Among factors helpful for plants to sustain acclimation and adaptation responses to drought and promote recovery, maintaining an optimal nutritional status is crucial for plant survival. This study aimed to investigate the physiological and biochemical responses under drought and recovery of Populus nigra plants grown in soil with impaired nutrient bioavailability obtained by adding calcium oxide (CaO) to the substrate. Although the CaO treatment did not affect plant growth, in well-watered conditions, treated poplars displayed an impaired inorganic ions profile in tissues. Under drought, although CaO-treated and untreated plants showed similar physiological responses, the former closed the stomata earlier. During water stress relief, the CaO-treated poplars exhibited a faster stomatal opening and a higher capacity to restore xylem hydraulic conductivity compared to not-treated plants, probably due to the higher osmolyte accumulation during drought. The content of some inorganic ions (e.g, Ca2+ and Cl-) was also higher in the xylem sap collected from stressed CaO-treated plants, thus contributing to increase the osmotic gradient necessary for the recovery. Taken together, our results suggest that CaO treatment promotes a faster and more efficient plant recovery after drought due to a modulation of ions homeostasis.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco, Italy.
| | - Ivan Bevilacqua
- Department of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Chiara Agliassa
- Department of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Moez Maghrebi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Cavalletto
- Department of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Cristina Morabito
- Department of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Silvia Lembo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
7
|
Natale S, La Rocca N, Battistuzzi M, Morosinotto T, Nardini A, Alboresi A. Structure and function of bark and wood chloroplasts in a drought-tolerant tree (Fraxinus ornus L.). TREE PHYSIOLOGY 2023; 43:893-908. [PMID: 36738252 DOI: 10.1093/treephys/tpad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/31/2023] [Indexed: 06/11/2023]
Abstract
Leaves are the most important photosynthetic organs in most woody plants, but chloroplasts are also found in organs optimized for other functions. However, the actual photosynthetic efficiency of these chloroplasts is still unclear. We analyzed bark and wood chloroplasts of Fraxinus ornus L. saplings. Optical and spectroscopic methods were applied to stem samples and compared with leaves. A sharp light gradient was detected along the stem radial direction, with blue light mainly absorbed by the outer bark, and far-red-enriched light reaching the underlying xylem and pith. Chlorophylls were evident in the xylem rays and the pith and showed an increasing concentration gradient toward the bark. The stem photosynthetic apparatus showed features typical of acclimation to a low-light environment, such as larger grana stacks, lower chlorophyll a/b and photosystem I/II ratios compared with leaves. Despite likely receiving very few photons, wood chloroplasts were photosynthetically active and fully capable of generating a light-dependent electron transport. Our data provide a comprehensive scenario of the functional features of bark and wood chloroplasts in a woody species and suggest that stem photosynthesis is coherently optimized to the prevailing micro-environmental conditions at the bark and wood level.
Collapse
Affiliation(s)
- Sara Natale
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Alessandro Alboresi
- Department of Biology, University of Padova, Via Ugo Bassi 58B, Padova 35121, Italy
| |
Collapse
|
8
|
Teshome DT, Zharare GE, Ployet R, Naidoo S. Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis. TREE PHYSIOLOGY 2023; 43:979-994. [PMID: 36851855 DOI: 10.1093/treephys/tpad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/23/2023] [Indexed: 06/11/2023]
Abstract
The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| | - Godfrey Elijah Zharare
- Department of Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| |
Collapse
|
9
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
10
|
Losso A, Challis A, Gauthey A, Nolan RH, Hislop S, Roff A, Boer MM, Jiang M, Medlyn BE, Choat B. Canopy dieback and recovery in Australian native forests following extreme drought. Sci Rep 2022; 12:21608. [PMID: 36517498 PMCID: PMC9751299 DOI: 10.1038/s41598-022-24833-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought. Most species exhibited high PLC during drought (PLC:65.1 ± 3.3%), with no clear patterns across sites or species. Heavily impaired trees (PLC > 70%) showed extensive canopy browning. In the post-drought period, most surviving trees exhibited hydraulic recovery (PLC:26.1 ± 5.1%), although PLC remained high in some trees (50-70%). Regained hydraulic function (PLC < 50%) corresponded to decreased canopy browning indicating improved tree health. Similar drought (37.1 ± 4.2%) and post-drought (35.1 ± 4.4%) percentages of basal area with dead canopy suggested that trees with severely compromised canopies immediately after drought were not able to recover. This dataset provides insights into the impacts of severe natural drought on the health of mature trees, where hydraulic failure is a major contributor in canopy dieback and tree mortality during extreme drought events.
Collapse
Affiliation(s)
- Adriano Losso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| | - Anthea Challis
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Plant Ecology Research Laboratory PERL, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Rachael H Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Samuel Hislop
- Forest Science, NSW Department of Primary Industries, Parramatta, NSW, 2150, Australia
| | - Adam Roff
- Department of Planning, Industry and Environment, Remote Sensing and Landscape Science, 26 Honeysuckle Drive, Newcastle, NSW, 2302, Australia
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- NSW Bushfire Risk Management Research Hub, Wollongong, NSW, Australia
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang, China
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
11
|
Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, Jin S. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100344. [PMID: 35655429 PMCID: PMC9700174 DOI: 10.1016/j.xplc.2022.100344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/27/2022] [Indexed: 06/01/2023]
Abstract
Plant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in multi-dimensional data acquisition and analysis. Substantial progress of PRS applications in PP has been observed over the last two decades and is analyzed here from an interdisciplinary perspective based on 2972 publications. This progress covers most aspects of PRS application in PP, including patterns of global spatial distribution and temporal dynamics, specific PRS technologies, phenotypic research fields, working environments, species, and traits. Subsequently, we demonstrate how to link PRS to multi-omics studies, including how to achieve multi-dimensional PRS data acquisition and processing, how to systematically integrate all kinds of phenotypic information and derive phenotypic knowledge with biological significance, and how to link PP to multi-omics association analysis. Finally, we identify three future perspectives for PRS-based PP: (1) strengthening the spatial and temporal consistency of PRS data, (2) exploring novel phenotypic traits, and (3) facilitating multi-omics communication.
Collapse
Affiliation(s)
- Haiyu Tao
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Shan Xu
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Yongchao Tian
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhaofeng Li
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yan Ge
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaoping Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Guodong Zhou
- Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Xiong Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ze Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yanfeng Ding
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Dong Jiang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Qinghua Guo
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Shichao Jin
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
12
|
Wang L, Li J, Wang Y, Xue H, Dai Y, Han Y. Interactive effect between tree ageing and trunk-boring pest reduces hydraulics and carbon metabolism in Hippophae rhamnoides. AOB PLANTS 2022; 14:plac051. [PMID: 36545298 PMCID: PMC9762721 DOI: 10.1093/aobpla/plac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Sea-buckthorn (Hippophae rhamnoides) is widely distributed across the Eurasian continent. Recently sea-buckthorn has shown premature ageing and decline when confronted with water deficiency and Holcocerus hippophaecolus damage in northwest China and the Loess Plateau region. However, the physiological process of sea-buckthorn senescence in response to drought and pest damage is still unknown. In this study, 4-year-old (4y), 15-year-old normal growth (15yN) and 15-year-old seriously moth-damaged sea-buckthorn plants (15yH) were used as the research objects. The growth of branches and roots, branch water potential and percentage loss of conductivity (PLC), branch vulnerability to embolism (quantified by P50, xylem water potential at 50 % of PLC), branch xylem parenchyma cell viability, photosynthesis and the non-structural carbohydrate (NSC) content in branches and roots in dry and wet seasons were measured. The results showed that the length, basal diameter of 1-year-old branches and the leaf area of 4y trees were significantly larger than that of 15yN and 15yH trees, and the fine root density of 15yH trees was significantly lower than that of 15yN trees in all measured areas. The branch-specific hydraulic conductivity of 15yN and 15yH trees was only 50.2 % and 12.3 % of that of 4y trees, and the P50 of 4y, 15yH and 15yN trees was -3.69 MPa, -2.71 MPa and -1.15 MPa, respectively. The midday water potential and photosynthetic rate were highest in 4y trees, followed by 15yN and then 15yH trees in both the dry season and wet seasons, while branch PLC declined in the opposite direction (15yH trees highest, 4y trees lowest). The degree of PLC repair within a day was highest in 4y trees, followed by 15yN and then 15yH trees, and the viability of xylem cells was consistent with this pattern. The branch xylem starch and NSC content of 4y and 15yN trees were significantly higher than that of 15yH trees in the dry season, and the root starch and NSC content of 4y trees were significantly higher than that of 15yH trees in the two seasons. The above results suggest that the hydraulic properties of the normal elderly and seriously pest-damaged sea-buckthorn were significantly worse than in juvenile plants. Narrower early wood width and vessel density, high embolism vulnerability and weak embolism repair capacity led to the decline in water-conducting ability, and similarly further affected photosynthesis and the root NSC content. The decline in xylem parenchyma cell viability was the main reason for the limited embolism repair in the branches.
Collapse
Affiliation(s)
- Lin Wang
- Corresponding author’s e-mail address:
| | - Junpeng Li
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yang Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Hao Xue
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| |
Collapse
|
13
|
Pritzkow C, Brown MJM, Carins-Murphy MR, Bourbia I, Mitchell PJ, Brodersen C, Choat B, Brodribb TJ. Conduit position and connectivity affect the likelihood of xylem embolism during natural drought in evergreen woodland species. ANNALS OF BOTANY 2022; 130:431-444. [PMID: 35420657 PMCID: PMC9486930 DOI: 10.1093/aob/mcac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Hydraulic failure is considered a main cause of drought-induced forest mortality. Yet, we have a limited understanding of how the varying intensities and long time scales of natural droughts induce and propagate embolism within the xylem. METHODS X-ray computed tomography (microCT) images were obtained from different aged branch xylem to study the number, size and spatial distribution of in situ embolized conduits among three dominant tree species growing in a woodland community. KEY RESULTS Among the three studied tree species, those with a higher xylem vulnerability to embolism (higher water potential at 50 % loss of hydraulic conductance; P50) were more embolized than species with lower P50. Within individual stems, the probability of embolism was independent of conduit diameter but associated with conduit position. Rather than the occurrence of random or radial embolism, we observed circumferential clustering of high and low embolism density, suggesting that embolism spreads preferentially among conduits of the same age. Older xylem also appeared more likely to accumulate embolisms than young xylem, but there was no pattern suggesting that branch tips were more vulnerable to cavitation than basal regions. CONCLUSIONS The spatial analysis of embolism occurrence in field-grown trees suggests that embolism under natural drought probably propagates by air spreading from embolized into neighbouring conduits in a circumferential pattern. This pattern offers the possibility to understand the temporal aspects of embolism occurrence by examining stem cross-sections.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Matilda J M Brown
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Ibrahim Bourbia
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2750, Australia
| | | |
Collapse
|
14
|
Wang X, Zhao J, Huang J, Peng S, Xiong D. Evaporative flux method of leaf hydraulic conductance estimation: sources of uncertainty and reporting format recommendation. PLANT METHODS 2022; 18:63. [PMID: 35549958 PMCID: PMC9097237 DOI: 10.1186/s13007-022-00888-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The accurate estimation of leaf hydraulic conductance (Kleaf) is important for revealing leaf physiological characteristics and function. However, the Kleaf values are largely incomparable in previous studies for a given species indicating some uncertain influencing factors in Kleaf measurement. RESULT We investigated the potential impacts of plant sampling method, measurement setup, environmental factors, and transpiration steady state identification on Kleaf estimation in Oryza sativa and Cinnamomum camphora using evaporation flux method (EFM). The effects of sampling and rehydration time, the small gravity pressure gradients between water sources and leaves, and water degassing on Kleaf estimation were negligible. As expected, the estimated steady flow rate (E) was significantly affected by multiple environmental factors including airflow around leaf, photosynthetically active radiation (PARa) on leaf surfaces and air temperature. Kleaf decreased by 40% when PARa declined from 1000 to 500 µmol m-2 s-1 and decreased by 15.1% when air temperature increased from 27 to 37 °C. In addition, accurate steady-state flow rate identification and leaf water potential measurement were important for Kleaf estimation. CONCLUSIONS Based on the analysis of influencing factors, we provided a format for reporting the metadata of EFM-based Kleaf to achieve greater comparability among studies and interpretation of differences.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jinfang Zhao
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Duan H, Resco de Dios V, Wang D, Zhao N, Huang G, Liu W, Wu J, Zhou S, Choat B, Tissue DT. Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species. PLANT, CELL & ENVIRONMENT 2022; 45:1187-1203. [PMID: 34985807 DOI: 10.1111/pce.14254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88 and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, Unversitat de Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA Centre, Lleida, Spain
| | - Defu Wang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Guomin Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Wenfei Liu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Jianping Wu
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, New South Wales, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| |
Collapse
|
16
|
Tomasella M, Natale S, Petruzzellis F, Di Bert S, D’Amico L, Tromba G, Nardini A. No Evidence for Light-Induced Embolism Repair in Cut Stems of Drought-Resistant Mediterranean Species under Soaking. PLANTS 2022; 11:plants11030307. [PMID: 35161287 PMCID: PMC8840644 DOI: 10.3390/plants11030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
(1) Recent studies suggested that stem photosynthesis could favor bark water uptake and embolism recovery when stem segments are soaked in water under light conditions, but evidence for this phenomenon in drought-resistant Mediterranean species with photosynthetic stems is missing. (2) Embolism recovery upon immersion in water for 2 h–4 h under light was assessed (i) via a classical hydraulic method in leafless Fraxinus ornus and Olea europaea branch segments stressed to xylem water potentials (Yxyl) inducing ca. 50% loss of hydraulic conductivity (PLC) and (ii) via X-ray micro-CT imaging of the stem segments of drought-stressed potted F. ornus saplings. Hydraulic recovery was also assessed in vivo in intact drought-stressed F. ornus saplings upon soil re-irrigation. (3) Intact F. ornus plants recovered hydraulic function through root water uptake. Conversely, the soaked stem segments of both species did not refill embolized conduits, although Yxyl recovered to pre-stress levels (between −0.5 MPa and −0.2 MPa). (4) We hypothesize that xylem embolism recovery through bark water uptake, even in light conditions, may not be a common phenomenon in woody plants and/or that wounds caused by cutting short stem segments might inhibit the refilling process upon soaking.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100 Udine, Italy
| | - Sara Di Bert
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
| | - Lorenzo D’Amico
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Italy (G.T.)
- Dipartimento di Fisica, Università di Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Italy (G.T.)
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy; (M.T.); (S.N.); (F.P.); (S.D.B.)
- Correspondence:
| |
Collapse
|
17
|
Tomasella M, Casolo V, Natale S, Petruzzellis F, Kofler W, Beikircher B, Mayr S, Nardini A. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra. THE NEW PHYTOLOGIST 2021; 231:108-121. [PMID: 33811346 PMCID: PMC9290559 DOI: 10.1111/nph.17384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/28/2021] [Indexed: 05/08/2023]
Abstract
Nonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography. Plants were stressed to 80% loss of hydraulic conductance (PLC) and re-irrigated to check for possible recovery. We measured PLC, bark and wood NSC content, as well as xylem sap pH, surface tension (γsap ) and sugar concentration, before, during and after drought. Shading induced depletion of stem NSC (mainly starch) reserves. All methods converged in indicating higher xylem vulnerability in S than in L plants. This difference was not explained by xylem vessel and pit anatomy or by γsap . Shading impeded sap acidification and sugar accumulation during drought in S plants and prevented hydraulic recovery, which was observed in L plants. Our results highlight the importance of stem NSCs to sustain xylem hydraulic functioning during drought and suggest that light and/or adequate stem NSC thresholds are required to trigger xylem sap chemical changes involved in embolism recovery.
Collapse
Affiliation(s)
- Martina Tomasella
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Valentino Casolo
- Dipartimento di Scienze AgroalimentariAmbientali e AnimaliUniversità di UdineVia delle Scienze 91Udine33100Italy
| | - Sara Natale
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| | - Werner Kofler
- Department of BotanyUniversity of InnsbruckSternwartestraße 15Innsbruck6020Austria
| | - Barbara Beikircher
- Department of BotanyUniversity of InnsbruckSternwartestraße 15Innsbruck6020Austria
| | - Stefan Mayr
- Department of BotanyUniversity of InnsbruckSternwartestraße 15Innsbruck6020Austria
| | - Andrea Nardini
- Dipartimento di Scienze della VitaUniversità di TriesteVia L. Giorgieri 10Trieste34127Italy
| |
Collapse
|
18
|
Marusig D, Tombesi S. Abscisic Acid Mediates Drought and Salt Stress Responses in Vitis vinifera-A Review. Int J Mol Sci 2020; 21:E8648. [PMID: 33212767 PMCID: PMC7698233 DOI: 10.3390/ijms21228648] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
The foreseen increase in evaporative demand and reduction in rainfall occurrence are expected to stress the abiotic constrains of drought and salt concentration in soil. The intensification of abiotic stresses coupled with the progressive depletion in water pools is a major concern especially in viticulture, as most vineyards rely on water provided by rainfall. Because its economical relevance and its use as a model species for the study of abiotic stress effect on perennial plants, a significant amount of literature has focused on Vitis vinifera, assessing the physiological mechanisms occurring under stress. Despite the complexity of the stress-resistance strategy of grapevine, the ensemble of phenomena involved seems to be regulated by the key hormone abscisic acid (ABA). This review aims at summarizing our knowledge on the role of ABA in mediating mechanisms whereby grapevine copes with abiotic stresses and to highlight aspects that deserve more attention in future research.
Collapse
Affiliation(s)
| | - Sergio Tombesi
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| |
Collapse
|