1
|
Eweda MA, Jalil S, Rashwan AK, Tsago Y, Hassan U, Jin X. Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110012. [PMID: 40388855 DOI: 10.1016/j.plaphy.2025.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/21/2025]
Abstract
Drought stress poses a major challenge to rice (Oryza sativa L.) production, significantly threatening global food security, especially in the context of climate change. Root architecture plays a key role in drought resistance, as rice plants require substantial water throughout their growth. The genetic diversity of rice root systems exhibits various growth patterns and adaptive traits that enable plants to endure water-deficient conditions. Harnessing this diversity to improve drought resilience demands a thorough understanding of critical root traits and adaptive mechanisms. This review explores rice roots' anatomical, physiological, and biochemical responses to drought, emphasizing important traits such as root architecture, xylem vessel modifications, root cortical aerenchyma (RCA), and water transport mechanisms. The role of biochemical regulators, including phytohormones, sugars, lipids, and reactive oxygen species (ROS), in root adaptation to drought is also explored. Additionally, the genetic and molecular pathways influencing root development under drought stress are discussed, with a focus on key genes and transcription factors (TFs) such as NAC, bZIP, AP2/ERF, and others that contribute to enhanced drought tolerance. Understanding these complex interactions is crucial for breeding drought-tolerant rice varieties, ultimately improving crop productivity under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Ali Eweda
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China; Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Sanaullah Jalil
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yohannes Tsago
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Umair Hassan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China
| | - Xiaoli Jin
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Masumoto T, Hashimoto Y, Ito T, Takahashi K, Makita N. Pressure-volume curves of fine roots reveal intraspecific variation across different elevations in a subalpine forest. JOURNAL OF PLANT RESEARCH 2025; 138:419-432. [PMID: 39922948 PMCID: PMC12062139 DOI: 10.1007/s10265-025-01618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Water conservation in fine roots can be important for the adaptation of trees to cold, nutrient-poor ecosystems. Although pressure-volume (p-v) curve traits are commonly used to assess leaf water conservation, little is known about their intraspecific variation in fine roots and their association with root functional traits, such as morphology and chemistry. Here, we aimed to determine the p-v curve traits of Betula ermanii and Abies mariesii fine roots at 2,000 and 2,500 m elevations and explore their intraspecific variation with root morphological and chemical traits in a subalpine forest. Turgor loss point (πtlp), relative water content at πtlp, osmotic potential at full hydration, and capacitance at full turgor (Cft) were evaluated as p-v curve traits. Additionally, root diameter, specific root length, and root tissue density (RTD) were assessed as morphological traits, and nitrogen (N) content was measured as a chemical trait. For A mariesii roots, the Cft was lower, and πtlp was more negative at 2,500 m than at 2,000 m. The p-v curve traits of B ermanii roots remained unchanged with elevation. There were strong correlations between RTD and πtlp and between N content and πtlp and Cft, especially for A. mariesii. These results indicated A. mariesii adjusted p-v curve traits with RTD and N content and achieved water conservation in fine roots at higher elevations. The p-v curve traits, particularly πtlp and Cft, reflected diverse tree strategies for environmental acclimation with fine-root carbon economy. Our findings highlighted the importance of adjusting water relation traits for acclimation to cold and nutrient-poor subalpine regions, particularly for evergreen coniferous species. The p-v curve traits revealed diverse fine-root water relation traits as a basis for water conservation capacity by preserving root function under stress conditions and enabling prolonged resource acquisition in a subalpine forest.
Collapse
Affiliation(s)
- Taiga Masumoto
- Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yuki Hashimoto
- Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takumi Ito
- Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Koichi Takahashi
- Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Naoki Makita
- Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
3
|
Kowalski AJ, Wyka TP. Narrow vessels - a hallmark of frost-adapted evergreen leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:434-442. [PMID: 40035320 DOI: 10.1111/plb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
The freezing-induced formation of embolisms in xylem conduits presents one of the challenges faced by evergreen leaves in frost-experiencing regions. Given that the probability of permanent embolism formation is related to the conduit diameter, we hypothesized that diameters of the vessels in evergreen leaves should be smaller than in deciduous leaves. We used live botanical garden collections to sample leaves of 21 evergreen and 47 deciduous species originating from various temperate biotopes and representing a broad taxonomic diversity. We determined the diameters of the largest vessels in their petioles. After controlling for conductive path length, the vessels in evergreen leaves were significantly smaller than those in deciduous leaves. Our results suggest a selective advantage of vessel diameter reduction for the evergreen leaf habit in cold climates. This result recapitulates the contrast between deciduous and evergreen species previously reported for stems. Moreover, the strong scaling relationships of vessel diameter with distance to leaf tip found in both leaf forms suggest that evolutionary reduction in vessel diameter associated with the evergreen habit may necessitate leaf size reduction, consistent with the trend documented in other studies.
Collapse
Affiliation(s)
- A J Kowalski
- General Botany Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - T P Wyka
- General Botany Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Stewart JJ, Allen BS, Polutchko SK, Ocheltree TW, Gleason SM. Xylem embolism refilling revealed in stems of a weedy grass. Proc Natl Acad Sci U S A 2025; 122:e2420618122. [PMID: 40112095 PMCID: PMC12002171 DOI: 10.1073/pnas.2420618122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Plant hydraulic dysfunction by embolism formation can impair photosynthesis, growth, and reproduction and, in severe cases, lead to death. Embolism reversal, or "refilling," is a hypothesized adaptive process in which xylem functionality is rapidly and sustainably restored. This study investigated xylem embolism refilling during recovery from severe drought stress using entirely noninvasive measurements of the same plants. These results were considered in relation to functional traits to address long-standing gaps in understanding the consequences of severe drought stress. Leaf and stem xylem embolism as well as transpiration, photosynthesis, and stem water potential were characterized nondestructively on intact barnyard grass plants during an acute drought event. Plants were rewatered and returned to growth conditions for 10 d, during which time recovery of stem xylem embolism and transpiration were monitored. Leaf xylem embolism and declines in leaf gas exchange occurred mostly between -1.0 MPa and -2.0 MPa, whereas stem xylem embolism occurred mostly between -3.0 MPa and -4.0 MPa. In all measured plants, which included embolism levels up to 88%, stem xylem embolism reversed completely within 24 h after rewatering, and this refilling supported recovery of transpiration and growth after plants were returned to growth conditions. This study provides direct evidence of complete and functional stem xylem refilling. These results present a clear need to elucidate underlying mechanisms and the adaptive significance of this phenomenon as well as its prevalence in nature.
Collapse
Affiliation(s)
- Jared J. Stewart
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Brendan S. Allen
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Stephanie K. Polutchko
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO80309
| | - Troy W. Ocheltree
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| | - Sean M. Gleason
- Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO80526
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
5
|
Hmidi D, Muraya F, Fizames C, Véry A, Roelfsema MRG. Potassium extrusion by plant cells: evolution from an emergency valve to a driver of long-distance transport. THE NEW PHYTOLOGIST 2025; 245:69-87. [PMID: 39462778 PMCID: PMC11617655 DOI: 10.1111/nph.20207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 10/29/2024]
Abstract
The ability to accumulate nutrients is a hallmark for living creatures and plants evolved highly effective nutrient transport systems, especially for the uptake of potassium (K+). However, plants also developed mechanisms that enable the rapid extrusion of K+ in combination with anions. The combined release of K+ and anions is probably an ancient extrusion system, as it is found in the Characeae that are closely related to land plants. We postulate that the ion extrusion mechanisms have developed as an emergency valve, which enabled plant cells to rapidly reduce their turgor, and prevent them from bursting. Later in evolution, seed plants adapted this system for various responses, such as the closure of stomata, long-distance stress waves, dropping of leaves by pulvini, and loading of xylem vessels. We discuss the molecular nature of the transport proteins that are involved in ion extrusion-based functions of plants and describe the functions that they obtained during evolution.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Florence Muraya
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| | - Cécile Fizames
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - Anne‐Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro‐INRAE34060Montpellier Cedex 2France
| | - M. Rob G. Roelfsema
- Molecular Plant Physiology and Biophysics, Julius‐von‐Sachs Institute for Biosciences, BiocenterWürzburg UniversityJulius‐von‐Sachs‐Platz 2D‐97082WürzburgGermany
| |
Collapse
|
6
|
Harrison Day BL, Johnson KM, Tonet V, Bourbia I, Blackman CJ, Brodribb TJ. A one-way ticket: Wheat roots do not functionally refill xylem emboli following rehydration. PLANT PHYSIOLOGY 2024; 196:2362-2373. [PMID: 39297870 PMCID: PMC11638109 DOI: 10.1093/plphys/kiae407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 12/14/2024]
Abstract
Understanding xylem embolism spread in roots is essential for predicting the loss of function across root systems during drought. However, the lasting relevance of root embolism to plant recovery depends on whether roots can refill xylem emboli and resume function after rehydration. Using MicroCT and optical and dye staining methods, we investigated embolism repair in rehydrated intact roots of wheat (Triticum aestivum L. 'Krichauff') exposed to a severe water deficit of -3.5 MPa, known to cause approximately 30% total root network embolism in this species. Air emboli in the xylem vessels of intact roots remained clearly observable using MicroCT after overnight rehydration. This result was verified by xylem staining of the root system and optical quantification of emboli, both of which indicated a lack of functional root xylem recovery 60 h following soil re-saturation. The absence of root xylem refilling in wheat has substantial implications for how we understand plant recovery after drought. Our findings suggest that xylem embolism causes irreversible damage to the soil-root hydraulic connection in affected parts of the root network.
Collapse
Affiliation(s)
| | - Kate M Johnson
- Plant Ecology Research Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8930 Birmensdorf, Switzerland
| | - Vanessa Tonet
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris J Blackman
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
7
|
Mudrilov M, Ladeynova M, Vetrova Y, Vodeneev V. Analysis of the Mechanisms Underlying the Specificity of the Variation Potential Induced by Different Stimuli. PLANTS (BASEL, SWITZERLAND) 2024; 13:2896. [PMID: 39458843 PMCID: PMC11511009 DOI: 10.3390/plants13202896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Plants are able to perceive diverse environmental factors and form an appropriate systemic functional response. Systemic responses are induced by stimulus-specific long-distance signals that carry information about the stimulus. Variation potential is proposed as a candidate for the role of such a signal. Here, we focus on the mechanisms that determine the specificity of the variation potential under the action of different local stimuli. Local stimuli such as heating, burning and wounding cause variation potential, the parameters of which differ depending on the type of stimulus. It was found that the stimulus-specific features of the hydraulic signal monitored by changes in leaf thickness and variation potential, such as a greater amplitude upon heating and burning and a significant amplitude decrement upon burning and wounding, were similar. The main features of these signals are the greater amplitude upon heating and burning, and a significant amplitude decrement upon burning and wounding. Together with the temporal correspondence of signal propagation, this evidence indicates a role for the hydraulic signal in the induction of stimulus-specific variation potential. Experiments using mechanosensitive channel inhibitors have demonstrated that the hydraulic signal contributes more to the induction of the variation potential in the case of rapidly growing stimuli, such as burning and wounding, than in the case of gradual heating. For thermal stimuli (gradual heating and burning), a greater contribution, compared to wounding, of the chemical signal related to reactive oxygen species to the induction of the variation potential was demonstrated. Thus, the specificity of the parameters of the variation potential is determined by the different contributions of hydraulic and chemical signals.
Collapse
Affiliation(s)
| | | | | | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Paluch-Lubawa E, Polcyn W. Tissue-specific accumulation of PIP aquaporins of a particular heteromeric composition is part of the maize response to mycorrhiza and drought. Sci Rep 2024; 14:21712. [PMID: 39289494 PMCID: PMC11408657 DOI: 10.1038/s41598-024-72828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
The systemic coordination of accumulation of plasma membrane aquaporins (PIP) was investigated in this study in relation to mycorrhized maize response to a rapid development of severe drought followed by rewatering. In non-mycorrhizal roots, drought led to a drop in PIP abundance, followed by a transient increase under rewatering, whereas leaves showed an opposite pattern. In contrast, mycorrhiza contributed to maintenance of high and stable levels of PIPs in both plant organs after an initial increase, prolonged over the irrigation period. Isoelectric focusing electrophoresis resolved up to 13 aquaporin complexes with highly reproducible pl positions across leaf and root samples, symbiotic and non-symbiotic, stressed or not. Mass spectrometry recognized in leaves and roots a different ratio of PIP1 and PIP2 subunits within 2D spots that accumulated the most. Regardless of symbiotic status, drought regulation of aquaporins in roots was manifested as the prevalence of complexes that comprise almost exclusively PIP2 monomers. In contrast, the leaf response involved enrichment in PIP1s. PIP1s are thought to enhance water transport, facilitate CO2 diffusion but also affect stomatal movements. These features, together with elevated aquaporin levels, might explain a stress tolerance mechanism observed in mycorrhizal plants, resulting in faster recovery of stomatal water conductance and CO2 assimilation rate after drought.
Collapse
Affiliation(s)
| | - Władysław Polcyn
- Department of Plant Physiology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
9
|
Jupa R, Plichta R, Plavcová L, Paschová Z, Gloser V. Adjustment of storage capacity for non-structural carbohydrates in response to limited water availability in two temperate woody species. PHYSIOLOGIA PLANTARUM 2024; 176:e14522. [PMID: 39248017 DOI: 10.1111/ppl.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L. and Betula pendula Roth., cultivated under different substrate water availability. We found that relative contents of soluble NSC, starch and total NSC increased with decreasing water availability in stems of both species, and similar tendencies were also observed in roots of A. negundo. In the roots of B. pendula, soluble NSC contents decreased along with the decreasing water availability, possibly due to phloem decoupling or NSC translocation to shoots. Despite the contrast in organ responses, NSC contents (namely starch) positively correlated with proportions of total organ SC. Individual types of SC showed markedly distinct plasticity upon decreasing water availability, suggesting that water availability changes the partitioning of organ storage capacity. We found an increasing contribution of parenchyma-rich bark to the total organ NSC storage capacity under decreasing water availability. However, xylem SC showed substantially greater plasticity than those in bark. Axial storage cells, namely living fibers in A. negundo, responded more sensitively to decreasing water availability than radial parenchyma. Our results demonstrate that drought-induced changes in carbon balance affect the organ storage capacity provided by living cells, whose proportions are sensitively coordinated along with changing NSC reserves.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Lenka Plavcová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Zuzana Paschová
- Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Vít Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Zhang F, Liu YW, Qin J, Jansen S, Zhu SD, Cao KF. Xylem embolism induced by freeze-thaw and drought are influenced by different anatomical traits in subtropical montane evergreen angiosperm trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14567. [PMID: 39377145 DOI: 10.1111/ppl.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Subtropical evergreen broadleaved forests distributed in montane zones of southern China experience seasonal droughts and winter frost. Previously, studies have recognized that xylem anatomy is a determinant of its vulnerability to embolism caused by drought and freezing events. We hypothesized that there is a coordination of xylem resistance to freeze-thaw and drought-induced embolism for the subtropical montane evergreen broadleaved tree species because they are influenced by common xylem structural traits (e.g., vessel diameter). We examined the branch xylem anatomy, resistance to drought-induced embolism (P50), and the percent loss of branch hydraulic conductivity after a severe winter frost (PLCwinter) for 15 evergreen broadleaved tree species in a montane forest in South China. Our results showed that P50 of the studied species ranged from -2.81 to -5.13 MPa, which was not associated with most xylem anatomical properties except for the axial parenchyma-to-vessel connectivity. These tree species differed substantially in PLCwinter, ranging from 0% to 76.41%. PLCwinter was positively related to vessel diameter and negatively related to vessel density, vessel group index, and vessel-to-vessel connectivity, but no coordination with P50. This study suggests that hydraulic adaptation to frost is important to determine the distributional limit of subtropical montane evergreen woody angiosperms.
Collapse
Affiliation(s)
- Feng Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yi-Wen Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Nanjing University, Nanjing, Jiangsu, China
| | - Jie Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Tianjin University, Tianjin, Tianjin, China
| | | | - Shi-Dan Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Michaud JM, Mocko K, Schenk HJ. Positive pressure in bamboo is generated in stems and rhizomes, not in roots. AOB PLANTS 2024; 16:plae040. [PMID: 39119045 PMCID: PMC11306578 DOI: 10.1093/aobpla/plae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Bamboos stand out among other tall plants in being able to generate positive pressure in the xylem at night, pushing water up to the leaves and causing drops to fall from leaf tips as guttation that can amount to a steady nocturnal 'bamboo rain'. The location and mechanism of nocturnal pressure generation in bamboos are unknown, as are the benefits for the plants. We conducted a study on the tall tropical bamboo species Bambusa oldhamii (giant timber bamboo) growing outdoors in southern California under full irrigation to determine where in the plant the nocturnal pressure is generated, when it rises in the evening, and when it dissipates in the morning. We hypothesized that the build-up of positive pressure would be triggered by the cessation of transpiration-driven sap flow and that resumption of sap flow in the morning would cause the pressure to dissipate. Nocturnal pressure was observed in mature stems and rhizomes, but never in roots. The pressure was episodic and associated with stem swelling and was usually, but not always, higher in rhizomes and basal stems than in stems at greater height. Time series analyses revealed that dry atmospheric conditions were followed by lower nocturnal pressure and rainfall events by higher stem pressure. Nocturnal pressure was unrelated to sap flow and even was generated for a short time in isolated stem pieces placed in water. We conclude that nocturnal pressure in bamboo is not 'root pressure' but is generated in the pseudo-woody rhizomes and stems. It is unrelated to the presence or absence of sap flow and therefore must be created outside of vessels, such as in phloem, parenchyma, or fibres. It is unlikely to be a drought adaptation and may benefit the plants by maximizing stem water storage for daytime transpiration or by transporting nutrients to the leaves.
Collapse
Affiliation(s)
- Joseph M Michaud
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Kerri Mocko
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd., Fullerton, CA 92831, USA
| |
Collapse
|
12
|
Nauber T, Hodač L, Wäldchen J, Mäder P. Parametrization of biological assumptions to simulate growth of tree branching architectures. TREE PHYSIOLOGY 2024; 44:tpae045. [PMID: 38696364 PMCID: PMC11128038 DOI: 10.1093/treephys/tpae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.
Collapse
Affiliation(s)
- Tristan Nauber
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ehrenbergstraße 29, Ilmenau 98693, Germany
| | - Ladislav Hodač
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Jana Wäldchen
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
- German Centre for Integrative Biodiversity Research, iDiv (Halle-Jena-Leipzig), Puschstraße 4, Leipzig 04103, Germany
| | - Patrick Mäder
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ehrenbergstraße 29, Ilmenau 98693, Germany
- German Centre for Integrative Biodiversity Research, iDiv (Halle-Jena-Leipzig), Puschstraße 4, Leipzig 04103, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Fürstengraben 1, Jena 07737, Germany
| |
Collapse
|
13
|
Drobnitch ST, Wenz J, Gleason SM, Comas LH. Searching for mechanisms driving root pressure in Zea mays-a transcriptomic approach. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154209. [PMID: 38520968 DOI: 10.1016/j.jplph.2024.154209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
While there are many theories and a variety of innovative datasets contributing to our understanding of the mechanism generating root pressure in vascular plants, we are still unable to produce a specific cellular mechanism for any species. To discover these mechanisms, we used RNA-Seq to explore differentially expressed genes in three different tissues between individual Zea mays plants expressing root pressure and those producing none. Working from the perspective that roots cells are utililizing a combination of osmotic exudation and hydraulic pressure mechanisms to generate positively-pressured flow of water into the xylem from the soil, we hypothesized that differential expression analysis would yield candidate genes coding for membrane transporters, ion channels, ATPases, and hormones with clear relevance to root pressure generation. In basal stem and coarse root tissue, we observed these classes of differentially expressed genes and more, including a strong cytoskeletal remodeling response. Fine roots displayed remarkably little differential expression relevant to root pressure, leading us to conclude that they either do not contribute to root pressure generation or are constitutively expressing root pressure mechanisms regardless of soil water content.
Collapse
Affiliation(s)
- Sarah Tepler Drobnitch
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA.
| | - Joshua Wenz
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | - Louise H Comas
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| |
Collapse
|
14
|
Zarrinderakht M, Konrad I, Wilmot TR, Perkins TD, van den Berg AK, Stockie JM. Experimental and computational comparison of freeze-thaw-induced pressure generation in red and sugar maple. TREE PHYSIOLOGY 2024; 44:tpae006. [PMID: 38206883 PMCID: PMC11448476 DOI: 10.1093/treephys/tpae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Sap exudation is the process whereby trees such as sugar (Acer saccharum Marsh.) and red maple (Acer rubrum L.) generate unusually high positive stem pressure in response to repeated cycles of freeze and thaw. This elevated xylem pressure permits the sap to be harvested over a period of several weeks and hence is a major factor in the viability of the maple syrup industry. The extensive literature on sap exudation documents competing hypotheses regarding the physical and biological mechanisms that drive positive pressure generation in maple, but to date, relatively little effort has been expended on devising mathematical models for the exudation process. In this paper, we utilize an existing model of Graf et al. (J Roy Soc Interface 12:20150665, 2015) that describes heat and mass transport within the multiphase gas-liquid-ice mixture in the porous xylem tissue. The model captures the inherent multiscale nature of xylem transport by including phase change and osmotic transport in wood cells on the microscale, which is coupled to heat transport through the tree stem on the macroscale. A parametric study based on simulations with synthetic temperature data identifies the model parameters that have greatest impact on stem pressure build-up. Measured daily temperature fluctuations are then used as model inputs and the resulting simulated pressures are compared directly with experimental measurements taken from mature red and sugar maple stems during the sap harvest season. The results demonstrate that our multiscale freeze-thaw model reproduces realistic exudation behavior, thereby providing novel insights into the specific physical mechanisms that dominate positive pressure generation in maple trees.
Collapse
Affiliation(s)
- Maryam Zarrinderakht
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Isabell Konrad
- Comsysto Reply GmbH, Tumblingerstraße 23, 80337 Munich, Germany
| | - Timothy R Wilmot
- Proctor Maple Research Center, University of Vermont, 58 Harvey Road, Underhill, VT 05489, USA
| | - Timothy D Perkins
- Proctor Maple Research Center, University of Vermont, 58 Harvey Road, Underhill, VT 05489, USA
| | - Abby K van den Berg
- Proctor Maple Research Center, University of Vermont, 58 Harvey Road, Underhill, VT 05489, USA
| | - John M Stockie
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
15
|
Zhang Y, Pereira L, Kaack L, Liu J, Jansen S. Gold perfusion experiments support the multi-layered, mesoporous nature of intervessel pit membranes in angiosperm xylem. THE NEW PHYTOLOGIST 2024; 242:493-506. [PMID: 38404029 DOI: 10.1111/nph.19608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.
Collapse
Affiliation(s)
- Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Jiabao Liu
- College of Ecology and Environment, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
16
|
Jupa R, Pokorná K. Bark wounding triggers gradual embolism spreading in two diffuse-porous tree species. TREE PHYSIOLOGY 2024; 44:tpad132. [PMID: 37930242 PMCID: PMC10849750 DOI: 10.1093/treephys/tpad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Xylem transport is essential for the growth, development and survival of vascular plants. Bark wounding may increase the risk of xylem transport failure by tension-driven embolism. However, the consequences of bark wounding for xylem transport are poorly understood. Here, we examined the impacts of the bark wounding on embolism formation, leaf water potential and gas exchange in the terminal branches of two diffuse-porous tree species (Acer platanoides L. and Prunus avium L.). The effects of bark removal were examined on field-grown mature trees exposed to increased evaporative demands on a short-term and longer-term basis (6 h vs 6 days after bark wounding). Bark removal of 30% of branch circumference had a limited effect on the xylem hydraulic conductivity when embolized vessels were typically restricted to the last annual ring near the bark wound. Over the 6-day exposure, the non-conductive xylem area had significantly increased in the xylem tissue underneath the bark wound (from 22-29% to 51-52% of the last annual ring area in the bark wound zone), pointing to gradual yet relatively limited embolism spreading to deeper xylem layers over time. In both species, the bark removal tended to result in a small but non-significant increase in the percent loss of hydraulic conductivity compared with control intact branches 6 days after bark wounding (from 6 to 8-10% in both species). The bark wounding had no significant effects on midday leaf water potential, CO2 assimilation rates, stomatal conductance and water-use efficiency of the leaves of the current-year shoot, possibly due to limited impacts on xylem transport. The results of this study demonstrate that bark wounding induces limited but gradual embolism spreading. However, the impacts of bark wounding may not significantly limit water delivery to distal organs and leaf gas exchange at the scale of several days.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - Kamila Pokorná
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| |
Collapse
|
17
|
Dai Y, Wang L, Wan X. Maintenance of xylem hydraulic function during winter in the woody bamboo Phyllostachys propinqua McClure. PeerJ 2023; 11:e15979. [PMID: 37719123 PMCID: PMC10504893 DOI: 10.7717/peerj.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Background Frost is a common environmental stress for temperate plants. Xylem embolism occurs in many overwintering plants due to freeze-thaw cycles, so coping with freeze-thaw-induced embolisms is essential for the survival of temperate plants. Methods This study was conducted on Phyllostachys propinqua McClure, a woody bamboo species that was grown under natural frost conditions to explore its responses to winter embolisms. From autumn to the following spring, the following measurements were recorded: predawn branch and leaf embolism, branch and leaf relative water content (RWC), root pressure and soil temperature, xylem sap osmotic potential, branch and leaf electrolyte leakage (EL), branch nonstructural carbohydrate (NSC) content and leaf net photosynthetic rate. Results P. propinqua had a mean vessel diameter of 68.95 ±1.27 µm but did not suffer severe winter embolism, peaking around 60% in winter (January), with a distinct reduction in March when root pressure returned. Leaves had a more severe winter embolism, up to 90%. Leaf RWC was much lower in winter, and leaf EL was significantly higher than branch EL in all seasons. Root pressure remained until November when soil temperature reached 9 °C, then appeared again in March when soil temperatures increased from -6 °C (January) to 11 °C. Xylem sap osmotic potential decreased from autumn to winter, reaching a minimum in March, and then increasing again. Soluble sugar (SS) concentration increased throughout the winter, peaked in March, and then decreased. Conclusions These results suggest that (1) there is a hydraulic segmentation between the stem and leaf, which could prevent stem water loss and further embolization in winter; (2) maintenance of root pressure in early winter played an important role in reducing the effect of freeze-thaw cycles on the winter embolism; (3) the physiological process that resulted in a decrease in xylem sap osmotic potential and tissue water content, and an accumulation of SS associated with cold acclimation also aided in reducing the extent of freeze-thaw-induced embolism. All these strategies could be helpful for the maintenance of xylem hydraulic function of this bamboo species during winter.
Collapse
Affiliation(s)
- Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
18
|
Rowland L, Ramírez-Valiente JA, Hartley IP, Mencuccini M. How woody plants adjust above- and below-ground traits in response to sustained drought. THE NEW PHYTOLOGIST 2023. [PMID: 37306017 DOI: 10.1111/nph.19000] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/01/2023] [Indexed: 06/13/2023]
Abstract
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a selection of key above-ground and below-ground plant traits. We assess whether evaluating the drought adjustment of single traits, or selections of traits that operate on the same plant functional axis (e.g. photosynthetic traits) is sufficient, or whether a multi-trait approach, integrating across multiple axes, is required. We conclude that studies on drought adjustments in woody plants might overestimate the capacity for adjustment to drier environments if spatial studies along gradients are used, without complementary experimental approaches. We provide evidence that drought adjustment is common in above-ground and below-ground traits; however, whether this is adaptive and sufficient to respond to future droughts remains uncertain for most species. To address this uncertainty, we must move towards studying trait integration within and across multiple axes of plant function (e.g. above-ground and below-ground) to gain a holistic view of drought adjustments at the whole-plant scale and how these influence plant survival.
Collapse
Affiliation(s)
- Lucy Rowland
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | | | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Maurizio Mencuccini
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallés, Barcelona, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
19
|
Ingram S, Jansen S, Schenk HJ. Lipid-Coated Nanobubbles in Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1776. [PMID: 37299679 PMCID: PMC10254470 DOI: 10.3390/nano13111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
One of the more surprising occurrences of bulk nanobubbles is in the sap inside the vascular transport system of flowering plants, the xylem. In plants, nanobubbles are subjected to negative pressure in the water and to large pressure fluctuations, sometimes encompassing pressure changes of several MPa over the course of a single day, as well as wide temperature fluctuations. Here, we review the evidence for nanobubbles in plants and for polar lipids that coat them, allowing nanobubbles to persist in this dynamic environment. The review addresses how the dynamic surface tension of polar lipid monolayers allows nanobubbles to avoid dissolution or unstable expansion under negative liquid pressure. In addition, we discuss theoretical considerations about the formation of lipid-coated nanobubbles in plants from gas-filled spaces in the xylem and the role of mesoporous fibrous pit membranes between xylem conduits in creating the bubbles, driven by the pressure gradient between the gas and liquid phase. We discuss the role of surface charges in preventing nanobubble coalescence, and conclude by addressing a number of open questions about nanobubbles in plants.
Collapse
Affiliation(s)
- Stephen Ingram
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, 00560 Helsinki, Finland
| | - Steven Jansen
- Institute of Botany, Ulm University, 89081 Ulm, Germany
| | - H. Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831-3599, USA
| |
Collapse
|
20
|
Pittermann J, Baer A, Campany C, Jansen S, Holmlund H, Schuettpelz E, Mehltreter K, Watkins JE. A reduced role for water transport during the Cenozoic evolution of epiphytic Eupolypod ferns. THE NEW PHYTOLOGIST 2023; 237:1745-1758. [PMID: 36484140 DOI: 10.1111/nph.18667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The Cretaceous-Cenozoic expansion of tropical forests created canopy space that was subsequently occupied by diverse epiphytic communities including Eupolypod ferns. Eupolypods proliferated in this more stressful niche, where lower competition enabled the adaptive radiation of thousands of species. Here, we examine whether xylem traits helped shape the Cenozoic radiation of Eupolypod ferns. We characterized the petiole xylem anatomy of 39 species belonging to the Eupolypod I and Eupolypod II clades occupying the epiphytic, hemiepiphytic, and terrestrial niche, and we assessed vulnerability to embolism in a subset of species. The transition to the canopy was associated with reduced xylem content and smaller tracheid diameters, but no differences were found in species vulnerability to embolism and pit membrane thickness. Phylogenetic analyses support selection for traits associated with reduced water transport in Eupolypod 1 species. We posit that in Eupolypod epiphytes, selection favored water retention via thicker leaves and lower stomatal density over higher rates of water transport. Consequently, lower leaf water loss was coupled with smaller quantities of xylem and narrower tracheid diameters. Traits associated with water conservation were evident in terrestrial Eupolypod 1 ferns and may have predisposed this clade toward radiation in the canopy.
Collapse
Affiliation(s)
- Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Alex Baer
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Courtney Campany
- Department of Biology, Shepherd University, Shepherdstown, WV, 25443, USA
| | - Steven Jansen
- Institute for Systematic Botany and Ecology, University of Ulm, Ulm, 89081, Germany
| | - Helen Holmlund
- Natural Science Division, Pepperdine University, Malibu, CA, 90263, USA
| | - Eric Schuettpelz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Klaus Mehltreter
- Red de Ecologia Funcíonal, Instituto de Ecología A.C, Xalapa, Veracruz, 91073, Mexico
| | - James E Watkins
- Department of Biology, Colgate University, Hamilton, NY, 13346, USA
| |
Collapse
|
21
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
22
|
Kurokawa SYS, Weiss G, Lapointe D, Delagrange S, Rossi S. Daily timings of sap production in sugar maple in Quebec, Canada. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:211-218. [PMID: 36318316 DOI: 10.1007/s00484-022-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Global warming is affecting plant phenology, with potential consequences on the dynamics of growth reactivation of sugar maple and the timings of maple syrup production. In this study, we assess the temperatures inducing the daily reactivation or cessation of sap production. We selected 19 sugarbushes across Quebec, Canada, using a tapping method associated with the tubing system, we recorded the daily timings of onset and ending of sap production during winter and spring 2018, and we associated the hourly temperatures at each site. Sap production occurred from mid-February to the end of April, starting on average between 10 and 11 AM, and ending from 6 to 8 PM. We observed a seasonal pattern in the onset and ending of sap production during spring, with the onset showing a greater change than the ending. Onset and ending of sap production occurred mostly under temperatures ranging between -2 and 2 °C. The production of sap in maple is closely related to circadian freeze-thaw cycles and occurs under nighttime and daytime temperatures fluctuating below and above 0 °C. The daily lengthening of the duration of sap production mirrors the changes in the timings of freeze and thaw events and can be explained by the physical properties of the water and the physiological processes occurring during growth reactivation. The ongoing warming will result in earlier and warmer springs, which may anticipate the cycles of freeze and thaw and advance sap production in sugar maple.
Collapse
Affiliation(s)
- Sara Yumi Sassamoto Kurokawa
- Laboratoire sur les écosystèmes terrestres boréaux (EcoTer), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada.
| | - Gabriel Weiss
- Ministère de L'Agriculture, des Pêcheries et de L'Alimentation, Direction Régionale de L'Estrie, Lac-Mégantic, QC, G6B 1H6, Canada
| | - David Lapointe
- Ministère de L'Agriculture, des Pêcheries et de L'Alimentation, Direction Régionale du Centre-du-Québec, Québec, QC, Canada
| | - Sylvain Delagrange
- Department of Natural Sciences, Université du Québec en Outaouais (UQO), 58 Main Street, Ripon, QC, J0V 1W0, Canada
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux (EcoTer), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada
| |
Collapse
|
23
|
Guan X, Werner J, Cao KF, Pereira L, Kaack L, McAdam SAM, Jansen S. Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1208-1223. [PMID: 34990084 DOI: 10.1111/plb.13384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long-term measurements. We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems. Apart from A. pseudoplatanus and Q. petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited to B. pendula and C. avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM ) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel. Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental and TPM data show that leaf xylem is generally no more vulnerable than stem xylem.
Collapse
Affiliation(s)
- X Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - J Werner
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - K-F Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - L Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - L Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - S A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - S Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
24
|
Wang L, Li J, Wang Y, Xue H, Dai Y, Han Y. Interactive effect between tree ageing and trunk-boring pest reduces hydraulics and carbon metabolism in Hippophae rhamnoides. AOB PLANTS 2022; 14:plac051. [PMID: 36545298 PMCID: PMC9762721 DOI: 10.1093/aobpla/plac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Sea-buckthorn (Hippophae rhamnoides) is widely distributed across the Eurasian continent. Recently sea-buckthorn has shown premature ageing and decline when confronted with water deficiency and Holcocerus hippophaecolus damage in northwest China and the Loess Plateau region. However, the physiological process of sea-buckthorn senescence in response to drought and pest damage is still unknown. In this study, 4-year-old (4y), 15-year-old normal growth (15yN) and 15-year-old seriously moth-damaged sea-buckthorn plants (15yH) were used as the research objects. The growth of branches and roots, branch water potential and percentage loss of conductivity (PLC), branch vulnerability to embolism (quantified by P50, xylem water potential at 50 % of PLC), branch xylem parenchyma cell viability, photosynthesis and the non-structural carbohydrate (NSC) content in branches and roots in dry and wet seasons were measured. The results showed that the length, basal diameter of 1-year-old branches and the leaf area of 4y trees were significantly larger than that of 15yN and 15yH trees, and the fine root density of 15yH trees was significantly lower than that of 15yN trees in all measured areas. The branch-specific hydraulic conductivity of 15yN and 15yH trees was only 50.2 % and 12.3 % of that of 4y trees, and the P50 of 4y, 15yH and 15yN trees was -3.69 MPa, -2.71 MPa and -1.15 MPa, respectively. The midday water potential and photosynthetic rate were highest in 4y trees, followed by 15yN and then 15yH trees in both the dry season and wet seasons, while branch PLC declined in the opposite direction (15yH trees highest, 4y trees lowest). The degree of PLC repair within a day was highest in 4y trees, followed by 15yN and then 15yH trees, and the viability of xylem cells was consistent with this pattern. The branch xylem starch and NSC content of 4y and 15yN trees were significantly higher than that of 15yH trees in the dry season, and the root starch and NSC content of 4y trees were significantly higher than that of 15yH trees in the two seasons. The above results suggest that the hydraulic properties of the normal elderly and seriously pest-damaged sea-buckthorn were significantly worse than in juvenile plants. Narrower early wood width and vessel density, high embolism vulnerability and weak embolism repair capacity led to the decline in water-conducting ability, and similarly further affected photosynthesis and the root NSC content. The decline in xylem parenchyma cell viability was the main reason for the limited embolism repair in the branches.
Collapse
Affiliation(s)
- Lin Wang
- Corresponding author’s e-mail address:
| | - Junpeng Li
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yang Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Hao Xue
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| |
Collapse
|
25
|
Shen C, Yang YM, Sun YF, Zhang M, Chen XJ, Huang YY. The regulatory role of abscisic acid on cadmium uptake, accumulation and translocation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:953717. [PMID: 36176683 PMCID: PMC9513065 DOI: 10.3389/fpls.2022.953717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
To date, Cd contamination of cropland and crops is receiving more and more attention around the world. As a plant hormone, abscisic acid (ABA) plays an important role in Cd stress response, but its effect on plant Cd uptake and translocation varies among plant species. In some species, such as Arabidopsis thaliana, Oryza sativa, Brassica chinensis, Populus euphratica, Lactuca sativa, and Solanum lycopersicum, ABA inhibits Cd uptake and translocation, while in other species, such as Solanum photeinocarpum and Boehmeria nivea, ABA severs the opposite effect. Interestingly, differences in the methods and concentrations of ABA addition also triggered the opposite result of Cd uptake and translocation in Sedum alfredii. The regulatory mechanism of ABA involved in Cd uptake and accumulation in plants is still not well-established. Therefore, we summarized the latest studies on the ABA synthesis pathway and comparatively analyzed the physiological and molecular mechanisms related to ABA uptake, translocation, and detoxification of Cd in plants at different ABA concentrations or among different species. We believe that the control of Cd uptake and accumulation in plant tissues can be achieved by the appropriate ABA application methods and concentrations in plants.
Collapse
|
26
|
De La Fuente L, Merfa MV, Cobine PA, Coleman JJ. Pathogen Adaptation to the Xylem Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:163-186. [PMID: 35472277 DOI: 10.1146/annurev-phyto-021021-041716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A group of aggressive pathogens have evolved to colonize the plant xylem. In this vascular tissue, where water and nutrients are transported from the roots to the rest of the plant, pathogens must be able to thrive under acropetal xylem sap flow and scarcity of nutrients while having direct contact only with predominantly dead cells. Nevertheless, a few bacteria have adapted to exclusively live in the xylem, and various pathogens may colonize other plant niches without causing symptoms unless they reach the xylem. Once established, the pathogens modulate its physicochemical conditions to enhance their growth and virulence. Adaptation to the restrictive lifestyle of the xylem leads to genome reduction in xylem-restricted bacteria, as they have a higher proportion of pseudogenes in their genome. The basis of xylem adaptation is not completely understood; therefore, a need still exists for model systems to advance the knowledge on this topic.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
27
|
Preisler AC, Carvalho LB, Saraiva-Santos T, Verri WA, Mayer JLS, Fraceto LF, Dalazen G, Oliveira HC. Interaction of Nanoatrazine and Target Organism: Evaluation of Fate and Photosystem II Inhibition in Hydroponically Grown Mustard ( Brassica juncea) Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7644-7652. [PMID: 35675570 DOI: 10.1021/acs.jafc.2c01601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(epsilon-caprolactone) nanoparticles are an efficient carrier system for atrazine. However, there is a gap regarding the effects of nanoencapsulation on herbicide-plant interactions. Here, we evaluate the fate and photosystem II inhibition of nano and commercial atrazine in hydroponically grown mustard (Brassica juncea) plants whose roots were exposed to the formulations. In addition, to quantify the endogenous levels of atrazine in plant organs, we measured the inhibition of photosystem II activity by both formulations. Moreover, the fluorescently labeled nanoatrazine was tracked in plant tissues using confocal microscopy. The nanoencapsulation induced greater inhibition of photosystem II activity as well as higher accumulation of atrazine in roots and leaves. The nanoparticles were quickly absorbed by the roots, being detected in the vascular tissues and the leaves. Overall, these results provide insights into the mechanisms involved in the enhanced preemergent herbicidal activity of nanoatrazine against target plants.
Collapse
Affiliation(s)
- Ana Cristina Preisler
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
- Department of Agronomy, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Lucas Bragança Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Juliana Lischka Sampaio Mayer
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), P.O. Box 6109, Campinas, São Paulo 13083-970, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil
| | - Giliardi Dalazen
- Department of Agronomy, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
28
|
Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, Watanabe Y, Oda Y, Persson S. Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol 2022; 12:210208. [PMID: 35506204 PMCID: PMC9065968 DOI: 10.1098/rsob.210208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.
Collapse
Affiliation(s)
- Huizhen Xu
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro Giannetti
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Wenna Zheng
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam, Germany
| | - Yoichiro Watanabe
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Staffan Persson
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Sheridan RA, Nackley LL. Applying Plant Hydraulic Physiology Methods to Investigate Desiccation During Prolonged Cold Storage of Horticultural Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:818769. [PMID: 35283873 PMCID: PMC8908214 DOI: 10.3389/fpls.2022.818769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Plant nursery production systems are a multi-billion-dollar, international, and horticultural industry that depends on storing and shipping live plants. The storage environment represents potentially desiccating and even fatal conditions for dormant, bareroot, and deciduous horticulture crops, like orchard trees, forestry trees, ornamental trees, and grapevines. When tree mortality is considered within a plant hydraulic framework, plants experiencing water stress are thought to ultimately die from hydraulic failure or carbon starvation. We hypothesized that the hydraulic framework can be applied to stored crops to determine if hydraulic failure or carbon starvation could be attributed to mortality. We used deciduous trees as model species because they are important horticultural crops and provide a diversity of hydraulic strategies. We selected cultivars from six genera: Acer, Amelanchier, Gleditsia, Gymnocladus, Malus, and Quercus. For each cultivar, we measured stem hydraulic conductance and vulnerability to embolism. On a weekly basis for 14 weeks (March-June), we removed trees of each cultivar from cold storage (1-2°C). Each week and for each cultivar, we measured stem water potential and water content (n = 7) and planted trees to track survival and growth (n = 10). At three times during this period, we also measured non-structural carbohydrates. Our results showed that for four cultivars (Acer, Amelanchier, Malus, and Quercus), the stem water potentials measured in trees removed from storage did not exceed stem P 50, the water potential at which 50% of stem hydraulic conductivity is lost. This suggests that the water transport system remains intact during storage. For two cultivars (Gleditsia and Gymnocladus), the water potential measured on trees out of storage exceeded stem P 50, yet planted trees from all weeks survived and grew. In the 14 weeks, there were no significant changes or directional trends in stem water potential, water content, or NSC for most cultivars, with a few exceptions. Overall, the results show that the trees did not experience detrimental water relations or carbon starvation thresholds. Our results suggest that many young deciduous trees are resilient to conditions caused by prolonged dormancy and validate the current storage methods. This experiment provides an example of how a mechanistically based understanding of physiological responses can inform cold storage regimes in nursery tree production.
Collapse
Affiliation(s)
| | - Lloyd L. Nackley
- North Willamette Research and Extension Center, Oregon State University, Corvallis, OR, United States
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
30
|
Manzi OJL, Bellifa M, Ziegler C, Mihle L, Levionnois S, Burban B, Leroy C, Coste S, Stahl C. Drought stress recovery of hydraulic and photochemical processes in Neotropical tree saplings. TREE PHYSIOLOGY 2022; 42:114-129. [PMID: 34302178 DOI: 10.1093/treephys/tpab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Climate models predict an increase in the severity and the frequency of droughts. Tropical forests are among the ecosystems that could be highly impacted by these droughts. Here, we explore how hydraulic and photochemical processes respond to drought stress and re-watering. We conducted a pot experiment on saplings of five tree species. Before the onset of drought, we measured a set of hydraulic traits, including minimum leaf conductance, leaf embolism resistance and turgor loss point. During drought stress, we monitored traits linked to leaf hydraulic functioning (leaf water potential (ψmd) and stomatal conductance (gs)) and traits linked to leaf photochemical functioning (maximum quantum yield of photosystem II (Fv/Fm) and maximum electron transport rate (ETRmax)) at different wilting stages. After re-watering, the same traits were measured after 3, 7 and 14 days. Hydraulic trait values decreased faster than photochemical trait values. After re-watering, the values of the four traits recovered at different rates. Fv/Fm recovered very fast close to their initial values only 3 days after re-watering. This was followed by ETRmax, Ψmd and gs. Finally, we show that species with large stomatal and leaf safety margin and low πtlp are not strongly impacted by drought, whereas they have a low recovery on photochemical efficiency. These results demonstrate that πtlp, stomatal and leaf safety margin are a good indicators of plant responses to drought stress and also to recovery for photochemical efficiency.
Collapse
Affiliation(s)
- Olivier Jean Leonce Manzi
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, PO Box 330, Huye, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - Maxime Bellifa
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Camille Ziegler
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Louis Mihle
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Sébastien Levionnois
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Benoit Burban
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Céline Leroy
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sabrina Coste
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Clément Stahl
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
31
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
32
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
33
|
Islam A, McKee C, Ghosh PK, Abedin J, Epstein JH, Daszak P, Luby SP, Khan SU, Gurley ES. Seasonality of Date Palm Sap Feeding Behavior by Bats in Bangladesh. ECOHEALTH 2021; 18:359-371. [PMID: 34609649 DOI: 10.1007/s10393-021-01561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pteropus bats are the natural reservoir for Nipah virus, and in Bangladesh, it is transmitted to people through consumption of raw or fermented date palm sap. Our objective was to understand seasonal patterns of bat feeding on date palm sap at a location where sap is collected year-round. Seven nights each month over three years, we mounted infrared cameras in four trees to observe bats' feeding behavior at date palm trees harvested for fermented sap production. We described the frequency of bat visits, duration of bat visits, and duration of bat-sap contact by month and by year. We captured 42,873 bat visits during 256 camera-nights of observation, of which 3% were Pteropus and 94% were non-Pteropus bats. Though the frequency of Pteropus bat visits to each tree/night was much lower than non-Pteropus bat visits, Pteropus bats stayed in contact with sap longer than non-Pteropus bats. Frequency of bat visits was higher during winter compared to other seasons, which may arise as a consequence of limited availability of food sources during this period or may be related to seasonal characteristics of the sap. Seasonal alignment of sap consumption by humans and bats may have consequences for viral spillover into humans.
Collapse
Affiliation(s)
- Ausraful Islam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), IPH Building, Shaheed Tajuddin Ahmed Sarani, Room 302968, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Probir Kumar Ghosh
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), IPH Building, Shaheed Tajuddin Ahmed Sarani, Room 302968, Mohakhali, Dhaka, 1212, Bangladesh
| | - Jaynal Abedin
- Insight Centre for Data Analytics, National University of Ireland Galway, Galway, Ireland
| | | | | | - Stephen P Luby
- Department of Medicine, Division of Infectious Diseases & Geographic Medicine, Stanford University, 300 Pasteur Dr., L-134, Stanford, CA, 94305, USA
| | | | - Emily S Gurley
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), IPH Building, Shaheed Tajuddin Ahmed Sarani, Room 302968, Mohakhali, Dhaka, 1212, Bangladesh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| |
Collapse
|
34
|
Trabi CL, Pereira L, Guan X, Miranda MT, Bittencourt PRL, Oliveira RS, Ribeiro RV, Jansen S. A User Manual to Measure Gas Diffusion Kinetics in Plants: Pneumatron Construction, Operation, and Data Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:633595. [PMID: 34163496 PMCID: PMC8216216 DOI: 10.3389/fpls.2021.633595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/12/2021] [Indexed: 05/17/2023]
Abstract
The Pneumatron device measures gas diffusion kinetics in the xylem of plants. The device provides an easy, low-cost, and powerful tool for research on plant water relations and gas exchange. Here, we describe in detail how to construct and operate this device to estimate embolism resistance of angiosperm xylem, and how to analyse pneumatic data. Simple and more elaborated ways of constructing a Pneumatron are shown, either using wires, a breadboard, or a printed circuit board. The instrument is based on an open-source hardware and software system, which allows users to operate it in an automated or semi-automated way. A step-by-step manual and a troubleshooting section are provided. An excel spreadsheet and an R-script are also presented for fast and easy data analysis. This manual aims at helping users to avoid common mistakes, such as unstable measurements of the minimum and maximum amount of gas discharged from xylem tissue, which has major consequences for estimating embolism resistance. Major advantages of the Pneumatron device include its automated and accurate measurements of gas diffusion rates, including highly precise measurements of the gas volume in intact, embolised conduits. It is currently unclear if the method can also be applied to woody monocots, gymnosperm species that possess torus-margo pit membranes, or to herbaceous species.
Collapse
Affiliation(s)
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
- Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Xinyi Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Marcela T. Miranda
- Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
| | | | - Rafael S. Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
35
|
Drobnitch ST, Comas LH, Flynn N, Ibarra Caballero J, Barton RW, Wenz J, Person T, Bushey J, Jahn CE, Gleason SM. Drought-Induced Root Pressure in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2021; 12:571072. [PMID: 33613594 PMCID: PMC7886691 DOI: 10.3389/fpls.2021.571072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023]
Abstract
Root pressure, also manifested as profusive sap flowing from cut stems, is a phenomenon in some species that has perplexed biologists for much of the last century. It is associated with increased crop production under drought, but its function and regulation remain largely unknown. In this study, we investigated the initiation, mechanisms, and possible adaptive function of root pressure in six genotypes of Sorghum bicolor during a drought experiment in the greenhouse. We observed that root pressure was induced in plants exposed to drought followed by re-watering but possibly inhibited by 100% re-watering in some genotypes. We found that root pressure in drought stressed and re-watered plants was associated with greater ratio of fine: coarse root length and shoot biomass production, indicating a possible role of root allocation in creating root pressure and adaptive benefit of root pressure for shoot biomass production. Using RNA-Seq, we identified gene transcripts that were up- and down-regulated in plants with root pressure expression, focusing on genes for aquaporins, membrane transporters, and ATPases that could regulate inter- and intra-cellular transport of water and ions to generate positive xylem pressure in root tissue.
Collapse
Affiliation(s)
- Sarah Tepler Drobnitch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Louise H. Comas
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Nora Flynn
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Jorge Ibarra Caballero
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Ryan W. Barton
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Joshua Wenz
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Taylor Person
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Julie Bushey
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| | - Courtney E. Jahn
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Sean M. Gleason
- Water Management Research Unit, Agricultural Research Service, USDA, Ft. Collins, CO, United States
| |
Collapse
|