1
|
Werner R, Gasser LT, Steinparzer M, Mayer M, Ahmed IU, Sandén H, Godbold DL, Rewald B. Early overyielding in a mixed deciduous forest is driven by both above- and below-ground species-specific acclimatization. ANNALS OF BOTANY 2024; 134:1077-1096. [PMID: 39312215 DOI: 10.1093/aob/mcae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND AND AIMS Mixed forest plantations are increasingly recognized for their role in mitigating the impacts of climate change and enhancing ecosystem resilience. Yet, there remains a significant gap in understanding the early-stage dynamics of species trait diversity and interspecies interactions, particularly in pure deciduous mixtures. This study aims to explore the timing and mechanisms by which trait diversity of deciduous species and competitive interactions influence yield, carbon allocation and space occupation in mixed forests, both above and below ground. METHODS A forest inventory was conducted in planted monocultures, two-species and four-species mixtures of European Acer, Tilia, Carpinus and Quercus, representing a spectrum from acquisitive to conservative tree species. Effects of competition were assessed with linear mixed-effects models at the level of biomass and space acquisition, including leaf, canopy, stem and fine root traits. KEY RESULTS Early above-ground growth effects were observed 6 years post-planting, with significant biomass accumulation after 8 years, strongly influenced by species composition. Mixtures, especially with acquisitive species, exhibited above-ground overyielding, 1.5-1.9 times higher than monocultures. Fine roots showed substantial overyielding in high-diversity stands. Biomass allocation was species specific and varied markedly by tree size and the level of diversity and between acquisitive Acer and the more conservative species. No root segregation was found. CONCLUSIONS Our findings underscore the crucial role of species trait diversity in enhancing productivity in mixed deciduous forest plantations. Allometric changes highlight the need to differentiate between (active) acclimatizations and (passive) tree size-related changes, but illustrate major consequences of competitive interactions for the functional relationship between leaves, stem and roots. This study points towards the significant contributions of both above- and below-ground components to overall productivity of planted mixed-species forests.
Collapse
Affiliation(s)
- Ramona Werner
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
| | - Lisa T Gasser
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
| | - Matthias Steinparzer
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
| | - Mathias Mayer
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Iftekhar U Ahmed
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
- Federal Research and Training Center for Forests (BFW), Department of Forest Protection, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Hans Sandén
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
| | - Douglas L Godbold
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Zemědělská 3, 61300 Brno, Czech Republic
| | - Boris Rewald
- Institute of Forest Ecology, Department of Forest and Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33, 1190 Vienna, Austria
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Zemědělská 3, 61300 Brno, Czech Republic
- Vienna Scientific Instruments, Heiligenkreuzer Straße 433, 2534 Alland, Austria
| |
Collapse
|
2
|
Lencioni SJ, Massatti R, Keefover‐Ring K, Holeski LM. The Cost of Self-Defense: Browsing Effects in the Rare Plant Species Salix arizonica. Ecol Evol 2024; 14:e70582. [PMID: 39583043 PMCID: PMC11586088 DOI: 10.1002/ece3.70582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024] Open
Abstract
Coevolution between plants and their animal predators has led to diverse defensive adaptations. Multiple theories of defense propose that there are resource allocation costs associated with producing chemical defenses. One leading hypothesis, optimal defense theory (ODT), suggests that natural selection will result in the allocation of resources to defenses that optimize the cost-to-benefit ratio between defense and other functional processes. The population decline of the rare subalpine wetland species, Arizona willow (Salix arizonica), has been attributed to various biotic and abiotic factors, with browsing from wild and domestic ungulates as a significant concern for at least three decades. In a field experiment using natural populations, we compare the relationship between phytochemical defense and height in Arizona willows with and without long-term protection from browsing via browse exclosures. Consistent with the predictions of ODT, individuals with physical protection from ungulate browsing for multiple years had significantly lower phenolic glycoside (PG) concentrations and increased plant height compared to unprotected individuals. A similar pattern was found across all individuals, whereby total PG concentration and height were negatively correlated. In a short-term experiment in natural populations, changes in levels of defense were not observed when plants received protection for only one growing season. The contrasting pattern of defense plasticity in response to long-term versus short-term physical protection suggests a differential plastic response in this long-lived species. Delayed reduction in PG concentration may serve as a benefit to avoid mismatches between environmental cues and responses. Our research sheds light on the intricate dynamics between plant-defense strategies, environmental pressures, and evolutionary adaptations in shaping plant-browser interactions.
Collapse
Affiliation(s)
- Shannon J. Lencioni
- Department of Biological Sciences, Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rob Massatti
- U.S. Geological Survey, Southwest Biological Science CenterFlagstaffArizonaUSA
| | - Ken Keefover‐Ring
- Department of Botany and GeographyUniversity of WisconsinMadisonWisconsinUSA
| | - Liza M. Holeski
- Department of Biological Sciences, Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
3
|
Lindroth RL, Zierden MR, Morrow CJ, Fernandez PC. Forest defoliation by an invasive outbreak insect: Catastrophic consequences for a charismatic mega moth. Ecol Evol 2024; 14:e70046. [PMID: 39161623 PMCID: PMC11331496 DOI: 10.1002/ece3.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Earth is now experiencing declines in insect abundance and diversity unparalleled in human history. The drivers underlying those declines are many, complex, and incompletely known. Here, using a natural experiment, we report the first test of the hypothesis that forest defoliation by an invasive outbreak insect compromises the fitness of a native insect via damage-induced increases in toxicity of the forest canopy. We demonstrate that defoliation by the invasive spongy moth (Lymantria dispar) elicits an average 8.4-fold increase in foliar defense expression among aspen (Populus tremuloides) genotypes. In turn, elevated defense dramatically reduces survivorship, feeding, and growth of a charismatic mega moth (Anthereae polyphemus). This work suggests that changes to the phytochemical landscape of forests, mediated by invasive outbreak insects, are likely to negatively impact native insects, with potential repercussions for community diversity and ecosystem function across expansive scales.
Collapse
Affiliation(s)
| | - Mark R. Zierden
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Department of ChemistryLake Superior State UniversitySault Sainte MarieMichiganUSA
| | - Clay J. Morrow
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Forest Products LaboratoryUnited States Forest ServiceMadisonWisconsinUSA
| | - Patricia C. Fernandez
- CONICET‐Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria – Pabellón 2Buenos AiresArgentina
- Departamento de Biología Aplicada y Alimentos, Cátedra de Química de BiomoléculasUniversidad de Buenos Aires, Facultad de AgronomíaBuenos AiresArgentina
| |
Collapse
|
4
|
Cooksley H, Dreyling L, Esler KJ, Griebenow S, Neumann G, Valentine A, Schleuning M, Schurr FM. Functional traits shape plant-plant interactions and recruitment in a hotspot of woody plant diversity. THE NEW PHYTOLOGIST 2024; 241:1100-1114. [PMID: 38083904 DOI: 10.1111/nph.19453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 01/12/2024]
Abstract
Understanding and predicting recruitment in species-rich plant communities requires identifying functional determinants of both density-independent performance and interactions. In a common-garden field experiment with 25 species of the woody plant genus Protea, we varied the initial spatial and taxonomic arrangement of seedlings and followed their survival and growth during recruitment. Neighbourhood models quantified how six key functional traits affect density-independent performance, interaction effects and responses. Trait-based neighbourhood models accurately predicted individual survival and growth from the initial spatial and functional composition of species-rich experimental communities. Functional variation among species caused substantial variation in density-independent survival and growth that was not correlated with interaction effects and responses. Interactions were spatially restricted but had important, predominantly competitive, effects on recruitment. Traits increasing the acquisition of limiting resources (water for survival and soil P for growth) mediated trade-offs between interaction effects and responses. Moreover, resprouting species had higher survival but reduced growth, likely reinforcing the survival-growth trade-off in adult plants. Resource acquisition of juvenile plants shapes Protea community dynamics with acquisitive species with strong competitive effects suffering more from competition. Together with functional determinants of density-independent performance, this makes recruitment remarkably predictable, which is critical for efficient restoration and near-term ecological forecasts of species-rich communities.
Collapse
Affiliation(s)
- Huw Cooksley
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599, Stuttgart, Germany
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Lukas Dreyling
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599, Stuttgart, Germany
- Senckenberg Biodiversity and Climate Research Centre, 60325, Frankfurt am Main, Germany
| | - Karen J Esler
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Stian Griebenow
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Günter Neumann
- Institute of Crop Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Alex Valentine
- Department of Horticulture, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre, 60325, Frankfurt am Main, Germany
| | - Frank M Schurr
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599, Stuttgart, Germany
- KomBioTa - Center for Biodiversity and Integrative Taxonomy, University of Hohenheim & State Museum of Natural History, 70599, Stuttgart, Germany
| |
Collapse
|
5
|
Alía R, Climent J, Santos-Del-Blanco L, Gonzalez-Arrojo A, Feito I, Grivet D, Majada J. Adaptive potential of maritime pine under contrasting environments. BMC PLANT BIOLOGY 2024; 24:37. [PMID: 38191282 PMCID: PMC10775667 DOI: 10.1186/s12870-023-04687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Predicting the adaptability of forest tree populations under future climates requires a better knowledge of both the adaptive significance and evolvability of measurable key traits. Phenotypic plasticity, standing genetic variation and degree of phenotypic integration shape the actual and future population genetic structure, but empirical estimations in forest tree species are still extremely scarce. We analysed 11 maritime pine populations covering the distribution range of the species (119 families and 8 trees/family, ca. 1300 trees) in a common garden experiment planted at two sites with contrasting productivity. We used plant height as a surrogate of fitness and measured five traits (mean and plasticity of carbon isotope discrimination, specific leaf area, needle biomass, Phenology growth index) related to four different strategies (acquisitive economics, photosynthetic organ size, growth allocation and avoidance of water stress). RESULTS Estimated values of additive genetic variation would allow adaptation of the populations to future environmental conditions. Overall phenotypic integration and selection gradients were higher at the high productivity site, while phenotypic integration within populations was higher at the low productivity site. Response to selection was related mainly to photosynthetic organ size and drought-avoidance mechanisms rather than to water use efficiency. Phenotypic plasticity of water use efficiency could be maladaptive, resulting from selection for height growth. CONCLUSIONS Contrary to the expectations in a drought tolerant species, our study suggests that variation in traits related to photosynthetic organ size and acquisitive investment of resources drive phenotypic selection across and within maritime pine populations. Both genetic variation and evolvability of key adaptive traits were considerably high, including plasticity of water use efficiency. These characteristics would enable a relatively fast micro-evolution of populations in response to the ongoing climate changes. Moreover, differentiation among populations in the studied traits would increase under the expected more productive future Atlantic conditions.
Collapse
Affiliation(s)
- Ricardo Alía
- Instituto de Ciencias Forestales, ICIFOR-INIA, CSIC, Madrid, 28040, Spain.
| | - Jose Climent
- Instituto de Ciencias Forestales, ICIFOR-INIA, CSIC, Madrid, 28040, Spain
| | | | | | | | - Delphine Grivet
- Instituto de Ciencias Forestales, ICIFOR-INIA, CSIC, Madrid, 28040, Spain
| | - Juan Majada
- Forest and Wood Technology Research Centre (CETEMAS), Carbayin, 33936, Spain
| |
Collapse
|
6
|
Zhang Z, Wang X, Guo S, Li Z, He M, Zhang Y, Li G, Han X, Yang G. Divergent patterns and drivers of leaf functional traits of Robinia pseudoacacia and Pinus tabulaeformis plantations along a precipitation gradient in the Loess plateau, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119318. [PMID: 37857219 DOI: 10.1016/j.jenvman.2023.119318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Changes in precipitation patterns in arid and semi-arid regions can reshape plant functional traits and significantly affect ecosystem functions. However, the synchronous responses of leaf economical, anatomical, photosynthetic, and biochemical traits to precipitation changes and their driving factors have rarely been investigated, which hinders our understanding of plants' ecological adaptation strategies to drought tolerance in arid areas. Therefore, the leaf traits of two typical plantations (Robinia pseudoacacia, RP and Pinus tabulaeformis, PT) along the precipitation gradient in the Loess Plateau, including economical, anatomical, photosynthetic, and biochemical traits, were investigated in this study. The results show that the leaf photosynthetic traits of RP and PT increase along the precipitation gradient, whereas leaf biochemical traits decrease. The anatomical traits of PT decrease with increasing precipitation, whereas no significant variation was observed for RP. Random Forest analysis show that LNC, LDMC, Chl, and PRO are leaf traits that significantly vary with the precipitation gradient in both plantations. Correlation analysis reveals that the traits coordination of RP is better than that of PT. The LMG model was used to determine driving factors. The results suggest that MAP explains the variation of PT leaf traits better (30.38%-36.78%), whereas SCH and SPH contribute more to the variation of RP leaf traits (20.88%-41.76%). In addition, the piecewise Structural Equation Model shows that the climate and soil physical and chemical properties directly affect the selected leaf functional traits of RP, whereas only the soil chemical properties directly affect the selected leaf functional traits of PT. The results of this study contribute to the understanding of the ecological adaptation of plants to environmental gradients and highlight that correlations among leaf traits should be considered when predicting plant adaptation strategies under future global change scenarios.
Collapse
Affiliation(s)
- Zhenjiao Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Xing Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Shujuan Guo
- A School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, PR China.
| | - Zhenxia Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Mengfan He
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Yunlong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Guixing Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China.
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| |
Collapse
|
7
|
Lindroth RL, Wooley SC, Donaldson JR, Rubert-Nason KF, Morrow CJ, Mock KE. Phenotypic Variation in Phytochemical Defense of Trembling Aspen in Western North America: Genetics, Development, and Geography. J Chem Ecol 2023; 49:235-250. [PMID: 36765024 DOI: 10.1007/s10886-023-01409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Trembling aspen (Populus tremuloides) is arguably the most important deciduous tree species in the Intermountain West of North America. There, as elsewhere in its range, aspen exhibits remarkable genetic variation in observable traits such as morphology and phenology. In contrast to Great Lakes populations, however, relatively little is known about phytochemical variation in western aspen. This survey of phytochemistry in western aspen was undertaken to assess how chemical expression varies among genotypes, cytotypes (diploid vs. triploid), and populations, and in response to development and mammalian browsing. We measured levels of foliar nitrogen, salicinoid phenolic glycosides (SPGs) and condensed tannins (CTs), as those constituents influence organismal interactions and ecosystem processes. Results revealed striking genotypic variation and considerable population variation, but minimal cytotype variation, in phytochemistry of western aspen. Levels of SPGs and nitrogen declined, whereas levels of CTs increased, with tree age. Browsed ramets had much higher levels of SPGs, and lower levels of CTs, than unbrowsed ramets of the same genotype. We then evaluated how composite chemical profiles of western aspen differ from those of Great Lakes aspen (assessed in earlier research). Interestingly, mature western aspen trees maintain much higher levels of SPGs, and lower levels of CTs, than Great Lakes aspen. Phenotypic variation in chemical composition of aspen - a foundation species - in the Intermountain West likely has important consequences for organismal interactions and forest ecosystem dynamics. Moreover, those consequences likely play out over spatial and temporal scales somewhat differently than have been documented for Great Lakes aspen.
Collapse
Affiliation(s)
- Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Stuart C Wooley
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biological Sciences, California State University-Stanislaus, Turlock, CA, 95382, USA
| | - Jack R Donaldson
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- , Orem, UT, USA
| | - Kennedy F Rubert-Nason
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Division of Natural Sciences, University of Maine at Fort Kent, Fort Kent, ME, 04743, USA
| | - Clay J Morrow
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
8
|
Kerr KL, Fickle JC, Anderegg WRL. Decoupling of functional traits from intraspecific patterns of growth and drought stress resistance. THE NEW PHYTOLOGIST 2023. [PMID: 37129078 DOI: 10.1111/nph.18937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought. Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait-mediated trade-offs in growth and drought stress tolerance. We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth-drought stress tolerance trade-offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress. Our results highlight the limits of trait-mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments.
Collapse
Affiliation(s)
- Kelly L Kerr
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jaycie C Fickle
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
9
|
Hillabrand RM, Gordon H, Hynes B, Constabel CP, Landhäusser SM. Populus root salicinoid phenolic glycosides are not mobilized to support metabolism and regrowth under carbon limited conditions. TREE PHYSIOLOGY 2023:tpad020. [PMID: 36809479 DOI: 10.1093/treephys/tpad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Remobilization of carbon storage compounds in trees is crucial for the resilience to disturbances, stress, and the requirements of their perennial lifestyle, all of which can impact photosynthetic carbon gain. Trees contain abundant non-structural carbohydrates (NSC) in the form of starch and sugars for long term carbon storage, yet questions remain about the ability of trees to remobilize non-conventional carbon compounds under stress. Aspens, like other members of the genus Populus, have abundant specialized metabolites called salicinoid phenolic glycosides, which contain a core glucose moiety. In this study, we hypothesized that the glucose-containing salicinoids could be remobilized as an additional carbon source during severe carbon limitation. We made use of genetically modified hybrid aspen (Populus tremula x P. alba) with minimal salicinoid content and compared these to control plants with high salicinoid content during resprouting (suckering) in dark (carbon limited) conditions. As salicinoids are abundant anti-herbivore compounds, identification of such a secondary function for salicinoids may provide insight to the evolutionary pressures that drive their accumulation. Our results show that salicinoid biosynthesis is maintained during carbon limitation and suggests that salicinoids are not remobilized as a carbon source for regenerating shoot tissue. However, we found that salicinoid-producing aspens had reduced resprouting capacity per available root biomass when compared to salicinoid-deficient aspens. Therefore, our work shows that the constitutive salicinoid production in aspens can reduce the capacity for resprouting and survival in carbon limited conditions.
Collapse
Affiliation(s)
- R M Hillabrand
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| | - H Gordon
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, British Columbia, Canada
| | - B Hynes
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| | - C P Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, British Columbia, Canada
| | - S M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
10
|
Ibsen PC, Santiago LS, Shiflett SA, Chandler M, Jenerette GD. Irrigated urban trees exhibit greater functional trait plasticity compared to natural stands. Biol Lett 2023; 19:20220448. [PMID: 36596464 PMCID: PMC9810417 DOI: 10.1098/rsbl.2022.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Urbanization creates novel ecosystems comprised of species assemblages and environments with no natural analogue. Moreover, irrigation can alter plant function compared to non-irrigated systems. However, the capacity of irrigation to alter functional trait patterns across multiple species is unknown but may be important for the dynamics of urban ecosystems. We evaluated the hypothesis that urban irrigation influences plasticity in functional traits by measuring carbon-gain and water-use traits of 30 tree species planted in Southern California, USA spanning a coastal-to-desert gradient. Tree species respond to irrigation through increasing the carbon-gain trait relationship of leaf nitrogen per specific leaf area compared to their native habitat. Moreover, most species shift to a water-use strategy of greater water loss through stomata when planted in irrigated desert-like environments compared to coastal environments, implying that irrigated species capitalize on increased water availability to cool their leaves in extreme heat and high evaporative demand conditions. Therefore, irrigated urban environments increase the plasticity of trait responses compared to native ecosystems, allowing for novel response to climatic variation. Our results indicate that trees grown in water-resource-rich urban ecosystems can alter their functional traits plasticity beyond those measured in native ecosystems, which can lead to plant trait dynamics with no natural analogue.
Collapse
Affiliation(s)
- Peter C. Ibsen
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA,Geosciences and Environmental Change Science Center, United States Geological Survey, Denver, CO 80225, USA
| | - Louis S. Santiago
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Sheri A. Shiflett
- Department of Environmental Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | | | - G. Darrel Jenerette
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Mo YX, Corlett RT, Wang G, Song L, Lu HZ, Wu Y, Hao GY, Ma RY, Men SZ, Li Y, Liu WY. Hemiepiphytic figs kill their host trees: acquiring phosphorus is a driving factor. THE NEW PHYTOLOGIST 2022; 236:714-728. [PMID: 35811425 DOI: 10.1111/nph.18367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.
Collapse
Affiliation(s)
- Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Liang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Hua-Zheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yi Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110010, China
| | - Ren-Yi Ma
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountains, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Shi-Zheng Men
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yuan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wen-Yao Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
12
|
Gaur RK, de Abreu IN, Albrectsen BR. Compensatory phenolic induction dynamics in aspen after aphid infestation. Sci Rep 2022; 12:9582. [PMID: 35688882 PMCID: PMC9187625 DOI: 10.1038/s41598-022-13225-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
Condensed tannins (CTs) are polyphenolics and part of the total phenolic (TP) pool that shape resistance in aspen (Populus tremula). CTs are negatively associated with pathogens, but their resistance properties against herbivores are less understood. CTs shape resistance to pathogens and chewing herbivores and could also shape resistance to aphids. Being chemical pools that are highly variable it can further be questioned whether CT-shaped resistance is better described by constitutive levels, by the induced response potential, or by both. Here, aspen genotypes were propagated and selected to represent a range of inherent abilities to produce and store foliar CTs; the plantlets were then exposed to Chaitophorus aphid infestation and to mechanical (leaf rupture) damage, and the relative abundance of constitutive and induced CTs was related to aphid fitness parameters. As expected, aphid fecundity was negatively related to CT-concentrations of the aphid infested plants although more consistently related to TPs. While TPs increased in response to damage, CT induction was generally low and it even dropped below constitutive levels in more CT-rich genotypes, suggesting that constitutive CTs are more relevant measurements of resistance compared to induced CT-levels. Relating CT and TP dynamics with phenolic low molecular compounds further suggested that catechin (the building block of CTs) increased in response to aphid damage in amounts that correlated negatively with CT-induction and positively with constitutive CT-levels and aphid fecundity. Our study portrays dynamic phenolic responses to two kinds of damage detailed for major phenylpropanoid classes and suggests that the ability of a genotype to produce and store CTs may be a measurement of resistance, caused by other, more reactive, phenolic compounds such as catechin. Rupture damage however appeared to induce catechin levels oppositely supporting that CTs may respond differently to different kinds of damage.
Collapse
Affiliation(s)
- Rajarshi Kumar Gaur
- Department of Plant Physiology, Umeå Plant Science Centre, 90187, Umeå, Sweden.,Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Ilka Nacif de Abreu
- Department of Plant Physiology, Umeå Plant Science Centre, 90187, Umeå, Sweden
| | | |
Collapse
|
13
|
Müller C, Junker RR. Chemical phenotype as important and dynamic niche dimension of plants. THE NEW PHYTOLOGIST 2022; 234:1168-1174. [PMID: 35297052 DOI: 10.1111/nph.18075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Niche theory considering the traits of species and individuals provides a powerful tool to integrate ecology and evolution of species. In plant ecology, morphological and physiological traits are commonly considered as niche dimensions, whereas phytochemical traits are mostly neglected in this context despite their pivotal functions in plant responses to their environment and in mediating interactions. The diversity of plant phytochemicals can thus mediate three key processes: niche choice, conformance and construction. Here, we integrate frameworks from niche theory with chemical ecology and argue that plants use their individual-specific diversity in phytochemicals (chemodiversity) for different niche realization processes. Our concept has important implications for ecosystem processes and stability and increases the predictive ability of chemical ecology.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
14
|
DeRose RJ, Gardner RS, Lindroth RL, Mock KE. Polyploidy and growth-defense tradeoffs in natural populations of western quaking Aspen. J Chem Ecol 2022; 48:431-440. [PMID: 35416535 DOI: 10.1007/s10886-022-01355-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
Polyploidy, the expression of more than two sets of chromosomes, is common in plants, and is thought to influence plant trait expression and drive plant species evolution. The degree to which polyploidy influences interactions among physiological processes such as growth and defense in natural populations through its effect on phenotypic variability is poorly understood. We link broad plant genotypic features (including polyploidy) to phenotypic expression of growth and chemical defense in natural populations of quaking aspen (Populus tremuloides) to examine patterns in resource allocation that might drive growth-defense tradeoffs. Quaking aspen are capable of rapid growth, and are also a primary food plant for a large range of herbivores, including insects and ungulates. While often diploid, aspen can exhibit polyploidy as triploid clones. We tested for the effect of genotype, cytotype (ploidy level, divided between diploids and triploids), and ramet age on relationships between growth and leaf chemistry across natural aspen clones in northern Utah. Substantial genotype variability in growth and leaf chemistry occurred across both cytotypes. Phenolic glycosides, but not condensed tannins, were negatively related to growth. Ramet age was also negatively related to growth. Phenolic glycosides were negatively related to condensed tannins, but only for the diploid clones. Triploid clones exhibited ~ 20% higher levels of phenolic glycosides than diploids. Growth in quaking aspen was likely sacrificed for the production of phenolic glycosides. Our study underscores the importance of considering polyploidy, genetic variability, and ramet age in understanding growth-defense tradeoffs in natural populations of clonal organisms, such as quaking aspen.
Collapse
Affiliation(s)
- R Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, 5230, Old Main, USA.
| | - Richard S Gardner
- Department of Wildland Resources and Ecology Center, Utah State University, 5230, Old Main, USA.,USDA Forest Service, Umatilla National Forest, 72510 Coyote Road, 97801, Pendleton, OR, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, Utah State University, 5230, Old Main, USA
| |
Collapse
|
15
|
Oduor AMO. Native plant species show evolutionary responses to invasion by Parthenium hysterophorus in an African savanna. THE NEW PHYTOLOGIST 2022; 233:983-994. [PMID: 34170513 DOI: 10.1111/nph.17574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Invasive plant species often competitively displace native plant species but some populations of native plant species can evolve adaptation to competition from invasive plants and persist in invaded habitats. However, studies are lacking that examine how variation in abiotic conditions in invaded landscapes may affect fitness of native plants that have adapted to compete with invasive plants. I tested whether invasion by Parthenium hysterophorus in Nairobi National Park - Kenya may have selected for native plant individuals with greater competitive ability than conspecific naïve natives in nutrient-rich and mesic soil conditions. I compared vegetative growth and seed yields of invader-experienced and conspecific naïve individuals of seven native species. Invader-experienced natives grew shorter than naïve natives regardless of growth conditions. Nevertheless, the two groups of native plants also exhibited treatment-specific differences in competitive ability against P. hysterophorus. Invader-experienced natives displayed plasticity in seed yield under drought treatment, while naïve natives did not. Moreover, drought treatment enhanced competitive effects of invader-experienced natives on P. hysterophorus, while nutrient enrichment relaxed competitive effects of invader-experienced natives on the invader. The results suggest that P. hysterophorus may have selected for shorter native plant genotypes that also exhibit plasticity in competitive ability under drought conditions.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, PO Box 52428 - 00200, Nairobi, Kenya
| |
Collapse
|
16
|
Growth-defense trade-offs shape population genetic composition in an iconic forest tree species. Proc Natl Acad Sci U S A 2021; 118:2103162118. [PMID: 34507992 DOI: 10.1073/pnas.2103162118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
All organisms experience fundamental conflicts between divergent metabolic processes. In plants, a pivotal conflict occurs between allocation to growth, which accelerates resource acquisition, and to defense, which protects existing tissue against herbivory. Trade-offs between growth and defense traits are not universally observed, and a central prediction of plant evolutionary ecology is that context-dependence of these trade-offs contributes to the maintenance of intraspecific variation in defense [Züst and Agrawal, Annu. Rev. Plant Biol., 68, 513-534 (2017)]. This prediction has rarely been tested, however, and the evolutionary consequences of growth-defense trade-offs in different environments are poorly understood, especially in long-lived species [Cipollini et al., Annual Plant Reviews (Wiley, 2014), pp. 263-307]. Here we show that intraspecific trait trade-offs, even when fixed across divergent environments, interact with competition to drive natural selection of tree genotypes corresponding to their growth-defense phenotypes. Our results show that a functional trait trade-off, when coupled with environmental variation, causes real-time divergence in the genetic architecture of tree populations in an experimental setting. Specifically, competitive selection for faster growth resulted in dominance by fast-growing tree genotypes that were poorly defended against natural enemies. This outcome is a signature example of eco-evolutionary dynamics: Competitive interactions affected microevolutionary trajectories on a timescale relevant to subsequent ecological interactions [Brunner et al., Funct. Ecol. 33, 7-12 (2019)]. Eco-evolutionary drivers of tree growth and defense are thus critical to stand-level trait variation, which structures communities and ecosystems over expansive spatiotemporal scales.
Collapse
|
17
|
Cope OL, Lindroth RL, Helm A, Keefover-Ring K, Kruger EL. Trait plasticity and trade-offs shape intra-specific variation in competitive response in a foundation tree species. THE NEW PHYTOLOGIST 2021; 230:710-719. [PMID: 33378548 DOI: 10.1111/nph.17166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The ability to tolerate neighboring plants (i.e. degree of competitive response) is a key determinant of plant success in high-competition environments. Plant genotypes adjust their functional trait expression under high levels of competition, which may help explain intra-specific variation in competitive response. However, the relationships between traits and competitive response are not well understood, especially in trees. In this study, we investigated among-genotype associations between tree trait plasticity and competitive response. We manipulated competition intensity in experimental stands of trembling aspen (Populus tremuloides) to address the covariance between competition-induced changes in functional trait expression and aspects of competitive ability at the genotype level. Genotypic variation in the direction and magnitude of functional trait responses, especially those of crown foliar mass, phytochemistry, and leaf physiology, was associated with genotypic variation in competitive response. Traits exhibited distinct plastic responses to competition, with varying degrees of genotypic variation and covariance with other trait responses. The combination of genotypic diversity and covariance among functional traits led to tree responses to competition that were coordinated among traits yet variable among genotypes. Such relationships between tree traits and competitive success have the potential to shape stand-level trait distributions over space and time.
Collapse
Affiliation(s)
- Olivia L Cope
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew Helm
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Eric L Kruger
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|