1
|
Anghel IG, Smith LL, Lichter‐Marck IH, Zapata F. When the sand blossoms: Phylogeny, trait evolution, and geography of speciation in Linanthus. AMERICAN JOURNAL OF BOTANY 2025; 112:e70005. [PMID: 40007150 PMCID: PMC11928924 DOI: 10.1002/ajb2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 02/27/2025]
Abstract
PREMISE Understanding how plants successfully diversified in novel environments is a central question in evolutionary biology. Linanthus occurs in arid areas of western North America and exhibits extensive floral trait variation, multiple color polymorphisms, differences in blooming time, and variation in life history strategies. We reconstructed the evolutionary history of this genus. METHODS We generated restriction-site associated (ddRAD) sequences for 180 individuals and target capture (TC) sequences for 63 individuals, with complete species sampling. Using maximum likelihood and pseudo-coalescent approaches, we inferred phylogenies of Linanthus and used them to model the evolution of phenotypic traits and investigate the genus's geographic speciation history. RESULTS Relationships are consistent and well supported with both ddRAD and TC data. Most species are monophyletic despite extensive local sympatry and range overlap, suggesting strong isolating barriers. The non-monophyly of the night-blooming and perennial species may be due to rapid speciation or cryptic diversity. Perenniality likely evolved from annuality, a rare shift in angiosperms. Night-blooming evolved three times independently. Flower color polymorphism is an evolutionarily labile trait that is likely ancestral. No single geographic mode of speciation characterizes this diversification, but most species overlap in range, which suggests that they evolved in parapatry. CONCLUSIONS Our results illustrate the complexity of phylogenetic inference for recent radiations, even with multiple sources of genomic data and extensive sampling. This analysis provides a foundation for understanding aridity adaptations, such as evolution of flower color polymorphisms, night-blooming, and perenniality, as well as speciation mechanisms.
Collapse
Affiliation(s)
- Ioana G. Anghel
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos Angeles90095CaliforniaUSA
| | - Lydia L. Smith
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeley94720CaliforniaUSA
- Department of Integrative BiologyUniversity of California, Valley Life Sciences BuildingBerkeley94720CaliforniaUSA
| | - Isaac H. Lichter‐Marck
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos Angeles90095CaliforniaUSA
- Institute for Biodiversity Science and SustainabilityCalifornia Academy of SciencesSan Francisco94118CaliforniaUSA
| | - Felipe Zapata
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos Angeles90095CaliforniaUSA
- Center for Tropical Research, Institute of the Environment and SustainabilityUniversity of CaliforniaLos Angeles90095CaliforniaUSA
| |
Collapse
|
2
|
Nge FJ, Hammer TA, Vasconcelos T, Biffin E, Kellermann J, Waycott M. Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae). ANNALS OF BOTANY 2025; 135:531-548. [PMID: 39441970 PMCID: PMC11920800 DOI: 10.1093/aob/mcae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations between ploidy and plant radiations could be the result of polyploid lineages exploiting broader niche space and novel niches due to their enhanced adaptability. The evolution of ploidy and its link to plant diversification across the Australian continent is not well understood. Here, we focus on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae. METHODS We generated a densely sampled phylogeny (90 %, 215/240 species) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using treePL. Ploidy estimates for each sequenced species were obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling and WorldClim data. KEY RESULTS Polyploidy is extensive across the tribe, with almost half (45 %) of species and the majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e. species richness), but a non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae; however, polyploidy did allow transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of south-west Western Australia. CONCLUSIONS The relationship between polyploidy and diversification is complex. Ancient polyploidization events likely played an important role in the diversification of species-rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Mount Annan, NSW 2567, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
- IRD – Institut de Recherche pour le Développement, Montpellier, BP 64501, France
| | - Timothy A Hammer
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Jürgen Kellermann
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Combrink LL, Golcher-Benavides J, Lewanski AL, Rick JA, Rosenthal WC, Wagner CE. Population Genomics of Adaptive Radiation. Mol Ecol 2025; 34:e17574. [PMID: 39717932 DOI: 10.1111/mec.17574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/25/2024]
Abstract
Adaptive radiations are rich laboratories for exploring, testing, and understanding key theories in evolution and ecology because they offer spectacular displays of speciation and ecological adaptation. Particular challenges to the study of adaptive radiation include high levels of species richness, rapid speciation, and gene flow between species. Over the last decade, high-throughput sequencing technologies and access to population genomic data have lessened these challenges by enabling the analysis of samples from many individual organisms at whole-genome scales. Here we review how population genomic data have facilitated our knowledge of adaptive radiation in five key areas: (1) phylogenetics, (2) hybridization, (3) timing and rates of diversification, (4) the genomic basis of trait evolution, and (5) the role of genome structure in divergence. We review current knowledge in each area, highlight outstanding questions, and focus on methods that facilitate detection of complex patterns in the divergence and demography of populations through time. It is clear that population genomic data are revolutionising the ability to reconstruct evolutionary history in rapidly diversifying clades. Additionally, studies are increasingly emphasising the central role of gene flow, re-use of standing genetic variation during adaptation, and structural genomic elements as facilitators of the speciation process in adaptive radiations. We highlight hybridization-and the hypothesized processes by which it shapes diversification-and questions seeking to bridge the divide between microevolutionary and macroevolutionary processes as rich areas for future study. Overall, access to population genomic data has facilitated an exciting era in adaptive radiation research, with implications for deeper understanding of fundamental evolutionary processes across the tree of life.
Collapse
Affiliation(s)
- Lucia L Combrink
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Jimena Golcher-Benavides
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Biology Department, Hope College, Holland, Michigan, USA
| | - Alexander L Lewanski
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jessica A Rick
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - William C Rosenthal
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
4
|
Tian H, Zhang H, Shi X, Ma W, Zhang J. Population genetic diversity and environmental adaptation of Tamarix hispida in the Tarim Basin, arid Northwestern China. Heredity (Edinb) 2024; 133:298-307. [PMID: 39138378 PMCID: PMC11528106 DOI: 10.1038/s41437-024-00714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Arid ecosystems, characterized by severe water scarcity, play a crucial role in preserving Earth's biodiversity and resources. The Tarim Basin in Northwestern China, a typical arid region isolated by the Tianshan Mountains and expansive deserts, provides a special study area for investigating how plant response and adaptation to such environments. Tamarix hispida, a species well adapted to saline-alkaline and drought conditions, dominates in the saline-alkali lands of the Tarim Basin. This study aims to examine the genetic diversity and environmental adaptation of T. hispida in the Tarim Basin. Genomic SNPs for a total of 160 individuals from 17 populations were generated using dd-RAD sequencing approach. Population genetic structure and genetic diversity were analyzed by methods including ADMIXTURE, PCA, and phylogenetic tree. Environmental association analysis (EAA) was performed using LFMM and RDA analyses. The results revealed two major genetic lineages with geographical substitution patterns from west to east, indicating significant gene flow and hybridization. Environmental factors such as Precipitation Seasonality (bio15) and Topsoil Sand Fraction (T_SAND) significantly shaped allele frequencies, supporting the species' genetic adaptability. Several genes associated with environmental adaptation were identified and annotated, highlighting physiological and metabolic processes crucial for survival in arid conditions. The study highlights the role of geographical isolation and environmental factors in shaping genetic structure and adaptive evolution. The identified adaptive genes related to stress tolerance emphasize the species' resilience and highlight the importance of specific physiological and metabolic pathways.
Collapse
Affiliation(s)
- Haowen Tian
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hongxiang Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China.
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| | - Xiaojun Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| | - Wenhui Ma
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Jian Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Singhal S, DiVittorio C, Jones C, Ixta I, Widmann A, Giffard-Mena I, Zapata F, Roddy A. Population structure and natural selection across a flower color polymorphism in the desert plant Encelia farinosa. AMERICAN JOURNAL OF BOTANY 2024; 111:e16413. [PMID: 39352124 DOI: 10.1002/ajb2.16413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 10/03/2024]
Abstract
PREMISE Clines-or the geographic sorting of phenotypes across continual space-provide an opportunity to understand the interaction of dispersal, selection, and history in structuring polymorphisms. METHODS In this study, we combine field-sampling, genetics, climatic analyses, and machine learning to understand a flower color polymorphism in the wide-ranging desert annual Encelia farinosa. RESULTS We find evidence for replicated transitions in disk floret color from brown to yellow across spatial scales, with the most prominent cline stretching ~100 km from southwestern United States into México. Because population structure across the cline is minimal, selection is more likely than drift to have an important role in determining cline width. CONCLUSIONS Given that the cline aligns with a climatic transition but there is no evidence for pollinator preference for flower color, we hypothesize that floret color likely varies as a function of climatic conditions.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biology, California State University Dominguez Hills, Carson, 90747, California, USA
| | - Christopher DiVittorio
- University of California Institute for Mexico and the United States, University of California, Riverside, 92521, California, USA
- Pinecrest Research Corporation, Oakland, 94609, California, USA
| | - Chandra Jones
- Department of Biology, California State University Dominguez Hills, Carson, 90747, California, USA
| | - Itzel Ixta
- Department of Biology, California State University Dominguez Hills, Carson, 90747, California, USA
| | - Alexis Widmann
- Department of Biology, California State University Dominguez Hills, Carson, 90747, California, USA
| | - Ivone Giffard-Mena
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, 22860 Ensenada, Baja California, México
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology and Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 90095, California, USA
| | - Adam Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, 33133, Florida, USA
- Department of Environmental Studies, New York University, New York, 10003, New York, USA
| |
Collapse
|
6
|
Rose JP, Kriebel R, Sytsma KJ, Drew BT. Phylogenomic perspectives on speciation and reproductive isolation in a North American biodiversity hotspot: an example using California sages (Salvia subgenus Audibertia: Lamiaceae). ANNALS OF BOTANY 2024; 134:295-310. [PMID: 38733329 PMCID: PMC11232522 DOI: 10.1093/aob/mcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND AIMS The California Floristic Province (CA-FP) is the most species-rich region of North America north of Mexico. One of several proposed hypotheses explaining the exceptional diversity of the region is that the CA-FP harbours myriad recently diverged lineages with nascent reproductive barriers. Salvia subgenus Audibertia is a conspicuous element of the CA-FP, with multiple sympatric and compatible species. METHODS Using 305 nuclear loci and both organellar genomes, we reconstruct species trees, examine genomic discordance, conduct divergence-time estimation, and analyse contemporaneous patterns of gene flow and mechanical reproductive isolation. KEY RESULTS Despite strong genomic discordance, an underlying bifurcating tree is supported. Organellar genomes capture additional introgression events not detected in the nuclear genome. Most interfertility is found within clades, indicating that reproductive barriers arise with increasing genetic divergence. Species are generally not mechanically isolated, suggesting that it is unlikely to be the primary factor leading to reproductive isolation. CONCLUSIONS Rapid, recent speciation with some interspecific gene flow in conjunction with the onset of a Mediterranean-like climate is the underlying cause of extant diversity in Salvia subgenus Audibertia. Speciation has largely not been facilitated by gene flow. Its signal in the nuclear genome seems to mostly be erased by backcrossing, but organellar genomes each capture different instances of historical gene flow, probably characteristic of many CA-FP lineages. Mechanical reproductive isolation appears to be only part of a mosaic of factors limiting gene flow.
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Bryan T Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| |
Collapse
|
7
|
Krieg CP. A unified framework to investigate and interpret hybrid and allopolyploid biodiversity across biological scales. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11612. [PMID: 39184201 PMCID: PMC11342226 DOI: 10.1002/aps3.11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Premise Hybridization and polyploidization are common in vascular plants and important drivers of biodiversity by facilitating speciation and ecological diversification. A primary limitation to making broad synthetic discoveries in hybrid and allopolyploid biodiversity research is the absence of a standardized framework to compare data across studies and biological scales. Methods Here, I present a new quantitative framework to investigate and interpret patterns in hybrid and allopolyploid biology called the divergence index (DI). The DI framework produces standardized data that are comparable across studies and variables. To show how the DI framework can be used to synthesize data, I analyzed published biochemical, physiological, and ecological trait data of hybrids and allopolyploids. I also apply key ecological and evolutionary concepts in hybrid and polyploid biology to translate nominal outcomes, including transgression, intermediacy, expansion, and contraction, in continuous DI space. Results Biochemical, physiological, ecological, and evolutionary data can all be analyzed, visualized, and interpreted in the DI framework. The DI framework is particularly suited to standardize and compare variables with very different scales. When using the DI framework to understand niche divergence, a metric of niche overlap can be used to complement insights to centroid and breadth changes. Discussion The DI framework is an accessible framework for hybrid and allopolyploid biology and represents a flexible and intuitive tool that can be used to reconcile outstanding problems in plant biodiversity research.
Collapse
|
8
|
Karimi N, Krieg CP, Spalink D, Lemmon AR, Lemmon EM, Eifler E, Hernández AI, Chan PW, Rodríguez A, Landis JB, Strickler SR, Specht CD, Givnish TJ. Chromosomal evolution, environmental heterogeneity, and migration drive spatial patterns of species richness in Calochortus (Liliaceae). Proc Natl Acad Sci U S A 2024; 121:e2305228121. [PMID: 38394215 PMCID: PMC10927571 DOI: 10.1073/pnas.2305228121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.
Collapse
Affiliation(s)
- Nisa Karimi
- Science and Conservation Division, Missouri Botanical Garden, St. Louis, MO63110
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | | | - Daniel Spalink
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX77845
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL32306
| | | | - Evan Eifler
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Adriana I. Hernández
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY14853
| | - Patricia W. Chan
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Aarón Rodríguez
- Departamento de Botánica y Zoología, Universidad de la Guadalajara, Zapopan, Jalisco45200, Mexico
| | - Jacob B. Landis
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- Departamento de Botánica y Zoología, Universidad de la Guadalajara, Zapopan, Jalisco45200, Mexico
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
| | | | - Chelsea D. Specht
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- L. H. Bailey Hortorium, Cornell University, Ithaca, NY14853
| | - Thomas J. Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
9
|
Leon-De La Luz JL, Lichter-Marck IH. A new species of Encelia (Compositae, Heliantheae, Enceliinae) from the southern Baja California Peninsula. PHYTOKEYS 2022; 212:97-109. [PMID: 36763056 PMCID: PMC9836472 DOI: 10.3897/phytokeys.212.91190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/18/2022] [Indexed: 06/18/2023]
Abstract
Here, we describe and illustrate Enceliabalandra sp. nov., a new species of Compositae from the Baja California Peninsula. It is rare and known only from the rocky hills around Puerto Balandra and Pichilingüe, inside the bay of La Paz, in the State of Baja California Sur, Mexico. We determine that this new species has affinities with Encelia, based on its suffruticose woody habit, neuter ray florets and compressed disc cypselae with a cleft apex. The taxonomic placement within Encelia is supported by nuclear ribosomal sequence data from two regions, ITS and ETS. We also present detailed photographs, a conservation assessment and a dichotomous key to the Encelia of the southern Baja California Peninsula. Finally, we discuss the uniqueness of Enceliabalandra amongst peninsular Encelia and its potential significance for understanding the enigmatic biogeography of this ecologically important genus.
Collapse
Affiliation(s)
- Jose Luis Leon-De La Luz
- Programa de Protección Ambiental y Cambio Global, Centro de Investigaciones Biológicas de Noreste, Apdo. Postal 128, La Paz, Baja California Sur, 23000 MexicoPrograma de Protección Ambiental y Cambio Global, Centro de Investigaciones Biológicas de NoresteLa PazMexico
| | - Isaac H. Lichter-Marck
- Department of Integrative Biology & Jepson Herbarium, University of California Berkeley, Berkeley, California, USAUniversity of California BerkeleyBerkeleyUnited States of America
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USAUniversity of California Los AngelesLos AngelesUnited States of America
| |
Collapse
|
10
|
Ehleringer JR, Driscoll AW. Intrinsic water-use efficiency influences establishment in Encelia farinosa. Oecologia 2022; 199:563-578. [PMID: 35819533 DOI: 10.1007/s00442-022-05217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
We describe establishment of Encelia farinosa, a drought-deciduous shrub common to the Mojave and Sonoran Deserts, based on annual observations of two populations between 1980 and 2020. Only 11 establishment events of 50 + yearlings (0.02-0.03 individuals m-2) occurred during this monitoring period; in 68% of the years fewer than 10 yearlings were established. Yearling survival to adulthood (age 4) ranged from 88 to 5% and was significantly related to cumulative precipitation. Juvenile survival rates were lowest during the current megadrought period. We calculated intrinsic water-use efficiency (iWUE) and observed the widest variations in iWUE values among the youngest plants. Among juveniles, surviving yearlings with the lowest iWUE values exhibited upward ontogenetic shifts in iWUE values, whereas those yearlings with the highest initial iWUE values exhibited little if any change. Juvenile size, higher iWUE values, and greater likelihood of surviving were all positively related with each other over the past several decades. Furthermore, iWUE and photosynthetic capacity were positively related to each other, providing a mechanistic explanation for why increased iWUE values among juveniles could lead to greater survival rates and to larger plants under water-deficit conditions. We posit that there is bi-directional selection for genotypic variations in iWUE values among E. farinosa and that this variation is selected for because of interannual environmental heterogeneity in precipitation and VPD associated with both high- and low-frequency climate cycles. Extreme drought cycles may favor plants with higher iWUE values, whereas more mesic periods may allow for greater persistence of lower iWUE genotypes.
Collapse
Affiliation(s)
- James R Ehleringer
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Avery W Driscoll
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
- Present Address: Department of Soil and Crop Sciences, Colorado State University, 301 University Avenue, Fort Collins, CO, 80523, USA
| |
Collapse
|
11
|
Buck R, Flores-Rentería L. The Syngameon Enigma. PLANTS (BASEL, SWITZERLAND) 2022; 11:895. [PMID: 35406874 PMCID: PMC9002738 DOI: 10.3390/plants11070895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 05/17/2023]
Abstract
Despite their evolutionary relevance, multispecies networks or syngameons are rarely reported in the literature. Discovering how syngameons form and how they are maintained can give insight into processes such as adaptive radiations, island colonizations, and the creation of new hybrid lineages. Understanding these complex hybridization networks is even more pressing with anthropogenic climate change, as syngameons may have unique synergistic properties that will allow participating species to persist. The formation of a syngameon is not insurmountable, as several ways for a syngameon to form have been proposed, depending mostly on the magnitude and frequency of gene flow events, as well as the relatedness of its participants. Episodic hybridization with small amounts of introgression may keep syngameons stable and protect their participants from any detrimental effects of gene flow. As genomic sequencing becomes cheaper and more species are included in studies, the number of known syngameons is expected to increase. Syngameons must be considered in conservation efforts as the extinction of one participating species may have detrimental effects on the survival of all other species in the network.
Collapse
Affiliation(s)
- Ryan Buck
- Department of Biology, San Diego State University, San Diego, CA 92182, USA;
| | | |
Collapse
|