1
|
Corbin JPM, Best RJ, Garthwaite IJ, Cooper HF, Doughty CE, Gehring CA, Hultine KR, Allan GJ, Whitham TG. Hyperspectral Leaf Reflectance Detects Interactive Genetic and Environmental Effects on Tree Phenotypes, Enabling Large-Scale Monitoring and Restoration Planning Under Climate Change. PLANT, CELL & ENVIRONMENT 2025; 48:1842-1857. [PMID: 39497286 PMCID: PMC11788971 DOI: 10.1111/pce.15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf-level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6-year-old experimental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%-98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%-23% of spectral variation within populations and 14%-48% of the variation across all populations. Second, we found gene by environment interactions leading to population-specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjustments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.
Collapse
Affiliation(s)
- Jaclyn P. M. Corbin
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca J. Best
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Iris J. Garthwaite
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Hillary F. Cooper
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Christopher E. Doughty
- School of Informatics, Computing and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Catherine A. Gehring
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Kevin R. Hultine
- Department of Research, Conservation and CollectionsDesert Botanical GardenPhoenixArizonaUSA
| | - Gerard J. Allan
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
2
|
Blanchard F, Bruneau A, Laliberté E. Foliar spectra accurately distinguish most temperate tree species and show strong phylogenetic signal. AMERICAN JOURNAL OF BOTANY 2024; 111:e16314. [PMID: 38641918 DOI: 10.1002/ajb2.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 04/21/2024]
Abstract
PREMISE Spectroscopy is a powerful remote sensing tool for monitoring plant biodiversity over broad geographic areas. Increasing evidence suggests that foliar spectral reflectance can be used to identify trees at the species level. However, most studies have focused on only a limited number of species at a time, and few studies have explored the underlying phylogenetic structure of leaf spectra. Accurate species identifications are important for reliable estimations of biodiversity from spectral data. METHODS Using over 3500 leaf-level spectral measurements, we evaluated whether foliar reflectance spectra (400-2400 nm) can accurately differentiate most tree species from a regional species pool in eastern North America. We explored relationships between spectral, phylogenetic, and leaf functional trait variation as well as their influence on species classification using a hurdle regression model. RESULTS Spectral reflectance accurately differentiated tree species (κ = 0.736, ±0.005). Foliar spectra showed strong phylogenetic signal, and classification errors from foliar spectra, although present at higher taxonomic levels, were found predominantly between closely related species, often of the same genus. In addition, we find functional and phylogenetic distance broadly control the occurrence and frequency of spectral classification mistakes among species. CONCLUSIONS Our results further support the link between leaf spectral diversity, taxonomic hierarchy, and phylogenetic and functional diversity, and highlight the potential of spectroscopy to remotely sense plant biodiversity and vegetation response to global change.
Collapse
Affiliation(s)
- Florence Blanchard
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Anne Bruneau
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| |
Collapse
|
3
|
Stejskal J, Čepl J, Neuwirthová E, Akinyemi OO, Chuchlík J, Provazník D, Keinänen M, Campbell P, Albrechtová J, Lstibůrek M, Lhotáková Z. Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0111. [PMID: 38026471 PMCID: PMC10644830 DOI: 10.34133/plantphenomics.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350- to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.
Collapse
Affiliation(s)
- Jan Stejskal
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences,
Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jaroslav Čepl
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences,
Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eva Neuwirthová
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences,
Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Experimental Plant Biology,
Charles University, Prague, Czech Republic
| | - Olusegun Olaitan Akinyemi
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences,
Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Environmental and Biological Sciences,
University of Eastern Finland, Joensuu, Finland
| | - Jiří Chuchlík
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences,
Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Daniel Provazník
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences,
Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Markku Keinänen
- Department of Environmental and Biological Sciences,
University of Eastern Finland, Joensuu, Finland
- Center for Photonic Sciences,
University of Eastern Finland, Joensuu, Finland
| | - Petya Campbell
- Department of Geography and Environmental Sciences,
University of Maryland Baltimore County, Baltimore, MD, USA
- Biospheric Sciences Laboratory,
NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Jana Albrechtová
- Department of Experimental Plant Biology,
Charles University, Prague, Czech Republic
| | - Milan Lstibůrek
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences,
Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology,
Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Seeley MM, Stacy EA, Martin RE, Asner GP. Foliar functional and genetic variation in a keystone Hawaiian tree species estimated through spectroscopy. Oecologia 2023; 202:15-28. [PMID: 37171625 DOI: 10.1007/s00442-023-05374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Imaging spectroscopy has the potential to map closely related plant taxa at landscape scales. Although spectral investigations at the leaf and canopy levels have revealed relationships between phylogeny and reflectance, understanding how spectra differ across, and are inherited from, genotypes of a single species has received less attention. We used a common-garden population of four varieties of the keystone canopy tree, Metrosideros polymorpha, from Hawaii Island and four F1-hybrid genotypes derived from controlled crosses to determine if reflectance spectra discriminate sympatric, conspecific varieties of this species and their hybrids. With a single exception, pairwise comparisons of leaf reflectance patterns successfully distinguished varieties of M. polymorpha on Hawaii Island as well as populations of the same variety from different islands. Further, spectral variability within a single variety from Hawaii Island and the older island of Oahu was greater than that observed among the four varieties on Hawaii Island. F1 hybrids most frequently displayed leaf spectral patterns intermediate to those of their parent taxa. Spectral reflectance patterns distinguished each of two of the hybrid genotypes from one of their parent varieties, indicating that classifying hybrids may be possible, particularly if sample sizes are increased. This work quantifies a baseline in spectral variability for an endemic Hawaiian tree species and advances the use of imaging spectroscopy in biodiversity studies at the genetic level.
Collapse
Affiliation(s)
- M M Seeley
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA.
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA.
| | - E A Stacy
- School of Life Sciences, University of Nevada, Las Vegas, NV, 89154, USA
| | - R E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA
| | - G P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
5
|
Bednaříková M, Gauslaa Y, Solhaug KA. Non-invasive monitoring of photosynthetic activity and water content in forest lichens by spectral reflectance data and RGB colors from photographs. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Wagner ND, Marinček P, Pittet L, Hörandl E. Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:1144. [PMID: 36904002 PMCID: PMC10005704 DOI: 10.3390/plants12051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The complex genomic composition of allopolyploid plants leads to morphologically diverse species. The traditional taxonomical treatment of the medium-sized, hexaploid shrub willows distributed in the Alps is difficult based on their variable morphological characters. In this study, RAD sequencing data, infrared-spectroscopy, and morphometric data are used to analyze the phylogenetic relationships of the hexaploid species of the sections Nigricantes and Phylicifoliae in a phylogenetic framework of 45 Eurasian Salix species. Both sections comprise local endemics as well as widespread species. Based on the molecular data, the described morphological species appeared as monophyletic lineages (except for S. phylicifolia s.str. and S. bicolor, which are intermingled). Both sections Phylicifoliae and Nigricantes are polyphyletic. Infrared-spectroscopy mostly confirmed the differentiation of hexaploid alpine species. The morphometric data confirmed the molecular results and supported the inclusion of S. bicolor into S. phylicifolia s.l., whereas the alpine endemic S. hegetschweileri is distinct and closely related to species of the section Nigricantes. The genomic structure and co-ancestry analyses of the hexaploid species revealed a geographical pattern for widespread S. myrsinifolia, separating the Scandinavian from the alpine populations. The newly described S. kaptarae is tetraploid and is grouped within S. cinerea. Our data reveal that both sections Phylicifoliae and Nigricantes need to be redefined.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
7
|
Buono D, Albach DC. Infrared spectroscopy for ploidy estimation: An example in two species of Veronica using fresh and herbarium specimens. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11516. [PMID: 37051581 PMCID: PMC10083463 DOI: 10.1002/aps3.11516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/20/2022] [Indexed: 06/19/2023]
Abstract
Premise Polyploidy has become a central factor in plant evolutionary biological research in recent decades. Methods such as flow cytometry have revealed the widespread occurrence of polyploidy; however, its inference relies on expensive lab equipment and is largely restricted to fresh or recently dried material. Methods Here, we assess the applicability of infrared spectroscopy to infer ploidy in two related species of Veronica (Plantaginaceae). Infrared spectroscopy relies on differences in the absorbance of tissues, which could be affected by primary and secondary metabolites related to polyploidy. We sampled 33 living plants from the greenhouse and 74 herbarium specimens with ploidy known through flow cytometrical measurements and analyzed the resulting spectra using discriminant analysis of principal components (DAPC) and neural network (NNET) classifiers. Results Living material of both species combined was classified with 70% (DAPC) to 75% (NNET) accuracy, whereas herbarium material was classified with 84% (DAPC) to 85% (NNET) accuracy. Analyzing both species separately resulted in less clear results. Discussion Infrared spectroscopy is quite reliable but is not a certain method for assessing intraspecific ploidy level differences in two species of Veronica. More accurate inferences rely on large training data sets and herbarium material. This study demonstrates an important way to expand the field of polyploid research to herbaria.
Collapse
Affiliation(s)
- Daniele Buono
- AG Plant Biodiversity and EvolutionCarl von Ossietzky UniversityAmmerlaender Heerstrasse 114‐11826129OldenburgGermany
- Institute of BotanyTechnical University of DresdenObergraben 601097DresdenGermany
- Present address:
Systematik, Biodiversität und Evolution der PflanzenLudwig‐Maximilians‐UniversityMenzinger Str. 6780638MunichGermany
| | - Dirk C. Albach
- AG Plant Biodiversity and EvolutionCarl von Ossietzky UniversityAmmerlaender Heerstrasse 114‐11826129OldenburgGermany
| |
Collapse
|
8
|
Kothari S, Beauchamp‐Rioux R, Laliberté E, Cavender‐Bares J. Reflectance spectroscopy allows rapid, accurate and non‐destructive estimates of functional traits from pressed leaves. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Kothari
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal QC Canada
| | - Rosalie Beauchamp‐Rioux
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal QC Canada
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal QC Canada
| | - Jeannine Cavender‐Bares
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul MN USA
| |
Collapse
|
9
|
Blonder B, Brodrick PG, Walton JA, Chadwick KD, Breckheimer IK, Marchetti S, Ray CA, Mock KE. Remote sensing of cytotype and its consequences for canopy damage in quaking aspen. GLOBAL CHANGE BIOLOGY 2022; 28:2491-2504. [PMID: 34962013 DOI: 10.1111/gcb.16064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Mapping geographic mosaics of genetic variation and their consequences via genotype x environment interactions at large extents and high resolution has been limited by the scalability of DNA sequencing. Here, we address this challenge for cytotype (chromosome copy number) variation in quaking aspen, a drought-impacted foundation tree species. We integrate airborne imaging spectroscopy data with ground-based DNA sequencing data and canopy damage data in 391 km2 of southwestern Colorado. We show that (1) aspen cover and cytotype can be remotely sensed at 1 m spatial resolution, (2) the geographic mosaic of cytotypes is heterogeneous and interdigitated, (3) triploids have higher leaf nitrogen, canopy water content, and carbon isotope shifts (δ13 C) than diploids, and (4) canopy damage varies among cytotypes and depends on interactions with topography, canopy height, and trait variables. Triploids are at higher risk in hotter and drier conditions.
Collapse
Affiliation(s)
- Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Philip G Brodrick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - James A Walton
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| | - Katherine Dana Chadwick
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Climate and Ecosystems Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Suzanne Marchetti
- Forest Health Protection, United States Forest Service, Gunnison, Colorado, USA
| | - Courtenay A Ray
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Karen E Mock
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| |
Collapse
|
10
|
White D, Pirro S. The complete genome sequences of three species of Mountain Avens ( Dryas, Rosaceae). BIODIVERSITY GENOMES 2022; 2022:10.56179/001c.40366. [PMID: 36482920 PMCID: PMC9728003 DOI: 10.56179/001c.40366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present the whole genome sequences of Dryas alaskensis, D. ajanensis, and D. integrifolia from plants collected from interior Alaska. We performed deep Illumina sequencing of a single leaf of each voucher. The sequence reads were then de novo assembled and conserved regions across all preassemblies were used to join contigs in a finishing step. The raw and assembled data is publicly available via Genbank.
Collapse
Affiliation(s)
- Dawson White
- Negaunee Integrative Research Center, Field Museum
| | | |
Collapse
|