1
|
Halliwell B, Holland BR, Yates LA. Multi-response phylogenetic mixed models: concepts and application. Biol Rev Camb Philos Soc 2025; 100:1294-1316. [PMID: 40192008 PMCID: PMC12120399 DOI: 10.1111/brv.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 06/01/2025]
Abstract
The scale and resolution of trait databases and molecular phylogenies is increasing rapidly. These resources permit many open questions in comparative biology to be addressed with the right statistical tools. Multi-response (MR) phylogenetic mixed models (PMMs) offer great potential for multivariate analyses of trait evolution. While flexible and powerful, these methods are not often employed by researchers in ecology and evolution, reflecting a specialised and technical literature that creates barriers to usage for many biologists. Here we present a practical and accessible guide to MR-PMMs. We begin with a review of single-response (SR) PMMs to introduce key concepts and outline the limitations of this approach for characterising patterns of trait coevolution. We emphasise MR-PMMs as a preferable approach for analyses involving multiple species traits, due to the explicit decomposition of trait covariances. We discuss multilevel models, multivariate models of evolution, and extensions to non-Gaussian response traits. We highlight techniques for causal inference using graphical models, as well as advanced topics including prior specification and latent factor models. Using simulated data and visual examples, we discuss interpretation, prediction, and model validation. We implement many of the techniques discussed in example analyses of plant functional traits to demonstrate the general utility of MR-PMMs in handling complex real-world data sets. Finally, we discuss the emerging synthesis of comparative techniques made possible by MR-PMMs, highlight strengths and weaknesses, and offer practical recommendations to analysts. To complement this material, we provide online tutorials including side-by-side model implementations in two popular R packages, MCMCglmm and brms.
Collapse
Affiliation(s)
- Ben Halliwell
- School of Natural Sciences, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
| | - Barbara R. Holland
- School of Natural Sciences, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
| | - Luke A. Yates
- School of Natural Sciences, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
2
|
Jiang D, Nie T, He Q, Yan J, Feng E, Ye Q. A Trade-Off Between Leaf Carbon Economics and Plant Size Among Mangrove Species in Dongzhaigang, China. Ecol Evol 2024; 14:e70559. [PMID: 39563707 PMCID: PMC11576130 DOI: 10.1002/ece3.70559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Plant size is closely linked to its leaf trait characteristics, which are essential for determining its form and function. These relationships constitute a fundamental component of the global spectrum of plant diversity. Despite this, the size-trait relationships in coastal mangroves have often been overlooked, with a common assumption that they would mirror those found in terrestrial tropical trees. However, recent studies have begun to challenge this assumption, revealing unique adaptations and trait variations in mangroves that are influenced by their specific environmental conditions, such as salinity and nutrient availability. In this research, we investigated the leaf structural traits, plant height, and diameter at breast height or basal height (DBH) of 10 shrub and tree species. This study was carried out along an intertidal gradient within a mangrove forest located in Southeast China. We found that leaf traits differed significantly between shrubs and trees in their response to intertidal gradients, indicating that different species have evolved specific adaptations to thrive in their respective intertidal zones. This insight can help us decipher the selective pressures that have shaped trait evolution. Among all species, leaf carbon (C) economics (leaf dry mass content, leaf mass per area, and leaf density) decreased significantly with increasing plant height and DBH. For each growth form and intertidal zone, the relationships between plant size (height or DBH) and leaf C economics traits were consistent with those in the pooled dataset. Our study reveals that mangrove plants exhibit size-related adjustments in leaf C economic strategies, indicating that plant size potentially acts as a proxy for the "slow-fast" continuum of plant performance. This discovery is pivotal for advancing our understanding of plant functional ecology and for enhancing the precision of global C cycle models, which are highly responsive to perturbations in atmospheric CO2 and climate change.
Collapse
Affiliation(s)
- Dalong Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Tao Nie
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Qiuyu He
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Jing Yan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Erhui Feng
- Hainan Dongzhaigang National Nature Reserve Authority Haikou Hainan China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- College of Life Sciences, Gannan Normal University Ganzhou China
| |
Collapse
|
3
|
Huang J, Wang Q, Sanchez-Martinez P, El-Kassaby YA, Jia Q, Xie Y, Guan W, Zang R. Phylogenetic conservatism and coordination in traits of Chinese woody endemic flora. iScience 2024; 27:109885. [PMID: 38799551 PMCID: PMC11126960 DOI: 10.1016/j.isci.2024.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Range-limited endemic species, often labeled as endangered due to their low adaptability to climate change, exhibit unclear evolutionary mechanisms influencing their distribution. This study explores the relationship between leaf length, maximum height, and seed diameter and their linkage to phylogeny and climate in the macroecology of 1,370 woody endemics. Using Bayesian analytical method that allows partitioning phylogenetic and environmental variances and covariance, we revealed moderate to high phylogenetic signals in these traits, indicating evolutionary constraints potentially impacting climate change adaptability. The study uncovered a phylogenetically conserved coordination between height and leaf length which showed to be independent of macroecological patterns of temperature and precipitation. These findings emphasize the role of phylogenetic ancestry in shaping the distribution of woody endemics, highlighting the need for prioritized in-situ conservation and providing insights for ex situ conservation strategies.
Collapse
Affiliation(s)
- Jihong Huang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qing Wang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Ecological Technical Research Institute (Beijing) CO., Ltd., CIECC, Beijing 100037, China
| | - Pablo Sanchez-Martinez
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Universitat Autòonoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Qiang Jia
- Ecological Technical Research Institute (Beijing) CO., Ltd., CIECC, Beijing 100037, China
| | - Yifei Xie
- Ganzhou Key Laboratory of Nanling Plant Resources Protection and Utilization, School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Wenbin Guan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Runguo Zang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
4
|
Laurans M, Munoz F, Charles-Dominique T, Heuret P, Fortunel C, Isnard S, Sabatier SA, Caraglio Y, Violle C. Why incorporate plant architecture into trait-based ecology? Trends Ecol Evol 2024; 39:524-536. [PMID: 38212187 DOI: 10.1016/j.tree.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.
Collapse
Affiliation(s)
- Marilyne Laurans
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, CNRS, Grenoble, France
| | - Tristan Charles-Dominique
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France; CNRS UMR7618, Institute of Ecology and Environmental Sciences, Paris, Sorbonne University, Paris, France
| | - Patrick Heuret
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Claire Fortunel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sandrine Isnard
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sylvie-Annabel Sabatier
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Yves Caraglio
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Cyrille Violle
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
5
|
Puglielli G, Bricca A, Chelli S, Petruzzellis F, Acosta ATR, Bacaro G, Beccari E, Bernardo L, Bonari G, Bolpagni R, Boscutti F, Calvia G, Campetella G, Cancellieri L, Canullo R, Carbognani M, Carboni M, Carranza ML, Castellani MB, Ciccarelli D, Coppi A, Cutini M, Dalla Vecchia A, Dalle Fratte M, de Francesco MC, De Frenne P, De Sanctis M, de Simone L, Di Cecco V, Fanelli G, Farris E, Ferrara A, Fenu G, Filibeck G, Gasperini C, Gargano D, Kindermann E, La Bella G, Lastrucci L, Lazzaro L, Maccherini S, Marignani M, Mugnai M, Naselli-Flores L, Passalacqua NG, Pavanetto N, Petraglia A, Rota F, Santoianni LA, Schettino A, Selvi F, Stanisci A, Trotta G, Vangansbeke P, Varricchione M, Vuerich M, Wellstein C, Tordoni E. Intraspecific variability of leaf form and function across habitat types. Ecol Lett 2024; 27:e14396. [PMID: 38456670 DOI: 10.1111/ele.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses.
Collapse
Grants
- Ente Parco Nazionale del Pollino (Rotonda, Italy) in the frame of the project "Un laboratorio naturale permanente nel Parco Nazionale del Pollino"
- National Biodiversity Future Center NBFC, CUP J33C22001190001
- European Union - NextGenerationEU within the framework of National Biodiversity Future Center (Spoke 4, Activity 4)
- NBFC to the University of Florence, funded by the Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, "Dalla ricerca all'impresa", Investimento 1.4, Project CN00000033
- NBFC to University of Roma Tre/Department of Science, funded by the Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, "Dalla ricerca all'impresa", Investimento 1.4, Project CN00000033. Grant of Excellence Departments 2018- 2022, MIUR Italy
- NBFC to University of Molise/Department of Bioscience and Territory, funded by the Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, "Dalla ricerca all'impresa", Investimento 1.4, Project CN00000033, MIUR Italy
- PID2021-122214NA-I00 MCIN/AEI/ 10.13039/501100011033 and by FEDER "ESF Investing in your future"
- Grant of Excellence Departments 2018- 2022, MIUR Italy
- G.Bo. and SM acknowledge the support of NBFC to University of Siena, funded by the Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, 'Dalla ricerca all', Investimento 1.4, Project CN00000033
Collapse
Affiliation(s)
- Giacomo Puglielli
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Alessandro Bricca
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Chelli
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | | | - Giovanni Bacaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Beccari
- Institute of Ecology and Earth Science, University of Tartu, Tartu, Estonia
| | - Liliana Bernardo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Gianmaria Bonari
- Department of Life Sciences, University of Siena, Siena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Rossano Bolpagni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesco Boscutti
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giacomo Calvia
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giandiego Campetella
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Cancellieri
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Roberto Canullo
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Marta Carboni
- Department of Sciences, University of Roma Tre, Rome, Italy
| | - Maria Laura Carranza
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Biosciences and Territory, ENVIXLAB, University of Molise, Pesche, Italy
| | | | | | - Andrea Coppi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alice Dalla Vecchia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Dalle Fratte
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Maria Carla de Francesco
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Biosciences and Territory, ENVIXLAB, University of Molise, Pesche, Italy
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium
| | - Michele De Sanctis
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | - Valter Di Cecco
- Department of Biosciences and Territory, ENVIXLAB, University of Molise, Pesche, Italy
| | - Giuliano Fanelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Emmanuele Farris
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Arianna Ferrara
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Goffredo Filibeck
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Cristina Gasperini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Domenico Gargano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Elisabeth Kindermann
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Greta La Bella
- Department of Sciences, University of Roma Tre, Rome, Italy
| | | | - Lorenzo Lazzaro
- Department of Biology, University of Florence, Florence, Italy
| | - Simona Maccherini
- Department of Life Sciences, University of Siena, Siena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Michela Marignani
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Mugnai
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Luigi Naselli-Flores
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | - Nicola Pavanetto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesco Rota
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | | | - Federico Selvi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Angela Stanisci
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Biosciences and Territory, ENVIXLAB, University of Molise, Pesche, Italy
| | - Giacomo Trotta
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Pieter Vangansbeke
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle, Belgium
| | - Marco Varricchione
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Biosciences and Territory, ENVIXLAB, University of Molise, Pesche, Italy
| | - Marco Vuerich
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Enrico Tordoni
- Institute of Ecology and Earth Science, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Islam T, Hamid M, Nawchoo IA, Khuroo AA. Leaf functional traits vary among growth forms and vegetation zones in the Himalaya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167274. [PMID: 37741392 DOI: 10.1016/j.scitotenv.2023.167274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Compression of life zones along elevational gradients in mountains supports diverse vegetation types, and therefore offers ideal setting to study plant functional traits. Functional traits, the features that enable plants to live in varied environmental conditions, help in understanding ecological interactions, evolutionary adaptations, and predicting plant response to global change drivers. To date, little is known how the trait diversity varies across different growth forms and vegetation zones in mountains. Here, we aimed to investigate interspecific leaf trait variability among different growth forms and vegetation zones along a wide elevation gradient (2000-4200 m) in Kashmir Himalaya. We measured leaf functional traits (specific leaf area-SLA, leaf thickness - LT, leaf dry matter content -LDMC) of 76 plant species corresponding to three growth forms (trees, shrubs and herbs) and three vegetation zones (Himalayan dry temperate forests, subalpine forests and alpine grasslands). Our results revealed high trait variability across the regional species pool studied. We found significant variation in leaf functional traits among the different growth forms, with higher values of LT and LDMC recorded for woody species than herbaceous ones. Among different vegetation zones, the SLA was found to be significantly higher at lower to middle elevations, while the other leaf traits (LT and LDMC) showed an opposite trend. Across all the vegetative zones, we also found a negative correlation between SLA and the other leaf traits, and the latter showed a positive trait-trait correlation. Overall, our study contributes to a deeper understanding of trait-trait, trait-growth form and trait-vegetation zone relationships. Our findings suggest that the variation in leaf functional traits among different growth forms seems to be a trade-off mechanism between resource acquisition and leaf construction, and also help in identifying species' adaptive functional traits that are critical for plant survival in the face of ongoing climate change in the Himalaya.
Collapse
Affiliation(s)
- Tajamul Islam
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India; Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Irshad A Nawchoo
- Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Martínez-Vilalta J, García-Valdés R, Jump A, Vilà-Cabrera A, Mencuccini M. Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants. THE NEW PHYTOLOGIST 2023; 240:23-40. [PMID: 37501525 DOI: 10.1111/nph.19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Raúl García-Valdés
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), E25280, Solsona, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, School of Experimental Sciences and Technology, Rey Juan Carlos University, E28933, Móstoles, Madrid, Spain
| | - Alistair Jump
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Albert Vilà-Cabrera
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, E08010, Barcelona, Spain
| |
Collapse
|
8
|
Song G, Wang Q, Zhuang J, Jin J. Timely estimation of leaf chlorophyll fluorescence parameters under varying light regimes by coupling light drivers to leaf traits. PHYSIOLOGIA PLANTARUM 2023; 175:e14048. [PMID: 37882289 DOI: 10.1111/ppl.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Unveiling informative chlorophyll a fluorescence (ChlF) parameters and leaf morphological/biochemical traits under varying light conditions is important in ecological studies but has less been investigated. In this study, the trait-ChlF relationship and regressive estimation of ChlF parameters from leaf traits under varying light conditions were investigated using a dataset of synchronous measurements of ChlF parameters and leaf morphological/biochemical traits in Mangifera indica L. The results showed that the relationships between ChlF parameters and leaf traits varied across light intensities, as indicated by different slopes and intercepts, highlighting the limitations of using leaf traits alone to capture the dynamics of ChlF parameters. Light drivers, on the other hand, showed a better predictive ability for light-dependent ChlF parameters compared to leaf traits, with light intensity having a large effect on light-dependent ChlF parameters. Furthermore, the responses of ФF and NPQ to light drivers differed between leaf types, with light intensity having an effect on ФF in shaded leaves, whereas it had a primary effect on NPQ in sunlit leaves. These results facilitate and deepen our understanding of how the light environment affects leaf structure and function and, therefore, provide the theoretical basis for understanding plant ecological strategies in response to the light environment.
Collapse
Affiliation(s)
- Guangman Song
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Quan Wang
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Jie Zhuang
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Jia Jin
- Institute of Geography and Oceanography, Nanning Normal University, P. R. China
| |
Collapse
|
9
|
Browne M, Bartlett MK, Henry C, Jarrahi M, John G, Scoffoni C, Yardimci NT, Sack L. Low baseline intraspecific variation in leaf pressure-volume traits: Biophysical basis and implications for spectroscopic sensing. PHYSIOLOGIA PLANTARUM 2023; 175:e13974. [PMID: 37403811 DOI: 10.1111/ppl.13974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/06/2023]
Abstract
Intra-specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline "reference ITV" (ITVref ) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well-watered conditions, representing the conservative sampling design commonly used for species-level ecophysiological traits. We hypothesized that PV parameters would show low ITVref relative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVref for PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVref enables the use of species-mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.
Collapse
Affiliation(s)
- Marvin Browne
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Megan K Bartlett
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Christian Henry
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Mona Jarrahi
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Grace John
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, California, Los Angeles, USA
| | - Nezih Tolga Yardimci
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Mohanbabu N, Veldhuis MP, Jung D, Ritchie ME. Integrating defense and leaf economic spectrum traits in a tropical savanna plant. FRONTIERS IN PLANT SCIENCE 2023; 14:1185616. [PMID: 37342149 PMCID: PMC10277734 DOI: 10.3389/fpls.2023.1185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023]
Abstract
Introduction Allocation to plant defense traits likely depends on resource supply, herbivory, and other plant functional traits such as the leaf economic spectrum (LES) traits. Yet, attempts to integrate defense and resource acquisitive traits remain elusive. Methods We assessed intraspecific covariation between different defense and LES traits in a widely distributed tropical savanna herb, Solanum incanum, a unique model species for studying allocations to physical, chemical, and structural defenses to mammalian herbivory. Results We found that in a multivariate trait space, the structural defenses - lignin and cellulose - were positively related to the resource conservative traits - low SLA and low leaf N. Phenolic content, a chemical defense, was positively associated with resource acquisitive traits - high SLA and high leaf N - while also being associated with an independent third component axis. Both principal components 1 and 3 were not associated with resource supply and herbivory intensity. In contrast, spine density - a physical defense - was orthogonal to the LES axis and positively associated with soil P and herbivory intensity. Discussion These results suggest a hypothesized "pyramid" of trade-offs in allocation to defense along the LES and herbivory intensity axes. Therefore, future attempts to integrate defense traits with the broader plant functional trait framework, such as the LES, needs a multifaceted approach that accounts for unique influences of resource acquisitive traits and herbivory risk.
Collapse
Affiliation(s)
- Neha Mohanbabu
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Michiel P. Veldhuis
- Institute of Environmental Sciences, Universiteit Leiden, Leiden, The Netherlands
| | - Dana Jung
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Mark E. Ritchie
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
11
|
|
12
|
Impact of Selected Environmental Factors on Variation in Leaf and Branch Traits on Endangered Karst Woody Plants of Southwest China. FORESTS 2022. [DOI: 10.3390/f13071080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We explored the adaptability of endangered plants in degraded karst habitats through functional trait variation, using three endangered woody plants (E. cavaleriei, H. bodinieri and K. septentrionalis) in karst peak-cluster depression. We investigated the variation decomposition and correlation analysis of 13 branch and leaf functional traits using a mixed linear model, variance decomposition, Pearson’s correlation analysis, random forest regression, and generalized linear regression. The degree of variation in phosphorus concentration in the branches was the highest, while that in the carbon concentration in the leaves was the smallest. The variation in the carbon concentration in the branches and leaves, and the dry matter concentration in the leaves was mainly within species, while the variation in other functional traits was mainly between species. We found significant correlations among leaf traits, branch traits, and leaf–branch traits to different degrees; however, there were no significant correlations among branch traits in H. bodinieri. The significant correlations were higher in E. cavaleriei and K. septentrionalis than in H. bodinieri. Plant functional traits were influenced by soil and topographic factors, and the relationship between them varied by species. Our findings will enhance our understanding of the variation in leaf and branch traits in karst endangered plants and the adaptative strategies of endangered plants in degraded habitat, and will provide a scientific basis for vegetation conservation in the karst region of southwest China.
Collapse
|