1
|
Wood JD, Detto M, Browne M, Kraft NJB, Konings AG, Fisher JB, Quetin GR, Trugman AT, Magney TS, Medeiros CD, Vinod N, Buckley TN, Sack L. The Ecosystem as Super-Organ/ism, Revisited: Scaling Hydraulics to Forests under Climate Change. Integr Comp Biol 2024; 64:424-440. [PMID: 38886119 DOI: 10.1093/icb/icae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.
Collapse
Affiliation(s)
- Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Browne
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Gregory R Quetin
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Troy S Magney
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Camila D Medeiros
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Nidhi Vinod
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Li C, Han J, Liu Z, Tu Z, Yang H. A harmonized global gridded transpiration product based on collocation analysis. Sci Data 2024; 11:604. [PMID: 38849375 PMCID: PMC11161592 DOI: 10.1038/s41597-024-03425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Transpiration (T) is pivotal in the global water cycle, responding to soil moisture, atmospheric stress, climate changes, and human impacts. Therefore, establishing a reliable global transpiration dataset is essential. Collocation analysis methods have been proven effective for assessing the errors in these products, which can subsequently be used for multisource fusion. However, previous results did not consider error cross-correlation, rendering the results less reliable. In this study, we employ collocation analysis, taking error cross-correlation into account, to effectively analyze the errors in multiple transpiration products and merge them to obtain a more reliable dataset. The results demonstrate its superior reliability. The outcome is a long-term daily global transpiration dataset at 0.1°from 2000 to 2020. Using the transpiration after partitioning at FLUXNET sites as a reference, we compare the performance of the merged product with inputs. The merged dataset performs well across various vegetation types and is validated against in-situ observations. Incorporating non-zero ECC considerations represents a significant theoretical and proven enhancement over previous methodologies that neglected such conditions, highlighting its reliability in enhancing our understanding of transpiration dynamics in a changing world.
Collapse
Affiliation(s)
- Changming Li
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
| | - Juntai Han
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziwei Liu
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhuoyi Tu
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China
| | - Hanbo Yang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Bachofen C, Tumber-Dávila SJ, Mackay DS, McDowell NG, Carminati A, Klein T, Stocker BD, Mencuccini M, Grossiord C. Tree water uptake patterns across the globe. THE NEW PHYTOLOGIST 2024; 242:1891-1910. [PMID: 38649790 DOI: 10.1111/nph.19762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.
Collapse
Affiliation(s)
- Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
- Harvard Forest, Harvard University, Petersham, MA, 01316, USA
| | - D Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, 14261, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Benjamin D Stocker
- Institute of Geography, University of Bern, Bern, 3013, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, 3013, Bern, Switzerland
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, 1015, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Mencuccini M, Anderegg WRL, Binks O, Knipfer T, Konings AG, Novick K, Poyatos R, Martínez-Vilalta J. A new empirical framework to quantify the hydraulic effects of soil and atmospheric drivers on plant water status. GLOBAL CHANGE BIOLOGY 2024; 30:e17222. [PMID: 38450813 DOI: 10.1111/gcb.17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Metrics to quantify regulation of plant water status at the daily as opposed to the seasonal scale do not presently exist. This gap is significant since plants are hypothesised to regulate their water potential not only with respect to slowly changing soil drought but also with respect to faster changes in air vapour pressure deficit (VPD), a variable whose importance for plant physiology is expected to grow because of higher temperatures in the coming decades. We present a metric, the stringency of water potential regulation, that can be employed at the daily scale and quantifies the effects exerted on plants by the separate and combined effect of soil and atmospheric drought. We test our theory using datasets from two experiments where air temperature and VPD were experimentally manipulated. In contrast to existing metrics based on soil drought that can only be applied at the seasonal scale, our metric successfully detects the impact of atmospheric warming on the regulation of plant water status. We show that the thermodynamic effect of VPD on plant water status can be isolated and compared against that exerted by soil drought and the covariation between VPD and soil drought. Furthermore, in three of three cases, VPD accounted for more than 5 MPa of potential effect on leaf water potential. We explore the significance of our findings in the context of potential future applications of this metric from plant to ecosystem scale.
Collapse
Affiliation(s)
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Thorsten Knipfer
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kim Novick
- University of Indiana, Bloomington, Indiana, USA
| | | | | |
Collapse
|
5
|
Binks O, Cernusak LA, Liddell M, Bradford M, Coughlin I, Bryant C, Palma AC, Hoffmann L, Alam I, Carle HJ, Rowland L, Oliveira RS, Laurance SGW, Mencuccini M, Meir P. Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply. THE NEW PHYTOLOGIST 2023; 240:1405-1420. [PMID: 37705460 DOI: 10.1111/nph.19257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.
Collapse
Affiliation(s)
- Oliver Binks
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Michael Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Matt Bradford
- CSIRO Land and Water, Atherton, 4883, Qld, Australia
| | - Ingrid Coughlin
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Callum Bryant
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Ana C Palma
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Luke Hoffmann
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Iftakharul Alam
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Hannah J Carle
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucy Rowland
- Geography, Faculty of Environment Science and Economy, University of Exeter, Laver Building, Exeter, EX4 4QE, UK
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | | | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
6
|
Van Stan JT, Allen ST, Aubrey DP, Berry ZC, Biddick M, Coenders-Gerrits MAMJ, Giordani P, Gotsch SG, Gutmann ED, Kuzyakov Y, Magyar D, Mella VSA, Mueller KE, Ponette-González AG, Porada P, Rosenfeld CE, Simmons J, Sridhar KR, Stubbins A, Swanson T. Shower thoughts: why scientists should spend more time in the rain. Bioscience 2023; 73:441-452. [PMID: 37397836 PMCID: PMC10308363 DOI: 10.1093/biosci/biad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists' human sensory and cognitive systems during storms.
Collapse
Affiliation(s)
| | - Scott T Allen
- Department of Natural Resources and Environmental Science at the University of Nevada-Reno, Reno, Nevada, United States
| | - Douglas P Aubrey
- Savannah River Ecology Lab and with the Warnell School of Forestry at the University of Georgia, Athens, Georgia, United States
| | - Z Carter Berry
- Department of Biology at Wake Forest University, Winston-Salem, North Carolina, United States
| | - Matthew Biddick
- Terrestrial Ecology Research Group at the Technical University of Munich, Freising, Germany
| | | | - Paolo Giordani
- Dipartimento di Farmacia at the University of Genoa, Genoa, Italy
| | - Sybil G Gotsch
- Department of Forestry and Natural Resources at the University of Kentucky, Lexington, Kentucky, United States
| | - Ethan D Gutmann
- Research Applications Laboratory, at the National Center for Atmospheric Research, Boulder, Colorado, United States
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Systems, Agricultural Soil Science, at Georg-August-Universität, Göttingen, Germany
- Peoples Friendship University of Russia, Moscow, Russia
| | - Donát Magyar
- National Public Health Center, Budapest, Hungary
| | - Valentina S A Mella
- Sydney School of Veterinary Science, at the University of Sydney, Sydney, New South Wales, Australia
| | - Kevin E Mueller
- Department of Biological, Geological, and Environmental Sciences at Cleveland State University, Cleveland, Ohio, United States
| | - Alexandra G Ponette-González
- Department of City and Metropolitan Planning and with the Natural History Museum of Utah at the University of Utah, Salt Lake City, Utah, United States
| | - Philipp Porada
- Department of Biology at Universität Hamburg, Hamburg, Germany
| | - Carla E Rosenfeld
- Department of Minerals and Earth Sciences at the Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States
| | - Jack Simmons
- Department of Philosophy and Religious Studies at Georgia Southern University, Statesboro, Georgia, United States
| | - Kandikere R Sridhar
- Department of Biosciences at Mangalore University, Konaje, Mangaluru, Karnataka, India
| | - Aron Stubbins
- Departments of Marine and Environmental Science, Civil and Environmental Engineering, and Chemistry and Chemical Biology at Northeastern University, Boston, Massachusetts, United States
| | | |
Collapse
|
7
|
Johnson DM, Katul G, Domec J. Catastrophic hydraulic failure and tipping points in plants. PLANT, CELL & ENVIRONMENT 2022; 45:2231-2266. [PMID: 35394656 PMCID: PMC9544843 DOI: 10.1111/pce.14327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/12/2023]
Abstract
Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and are caused by soil drying and/or cavitation-induced xylem embolism. Xylem embolism and plant hydraulic failure share several analogies to 'catastrophe theory' in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points when control variables exogenous (e.g., soil water potential) or endogenous (e.g., leaf water potential) to the plant are allowed to vary on time scales much longer than time scales associated with cavitation events. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion within a xylem conduit, organ-scale vulnerability to embolism, and whole-plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety-efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at fine scales such as pit membranes and cell-wall mechanics, intermediate scales such as xylem network properties and at larger scales such as soil-tree hydraulic pathways are discussed. Understudied areas in plant hydraulics are also flagged where progress is urgently needed.
Collapse
Affiliation(s)
- Daniel M. Johnson
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Gabriel Katul
- Department of Civil and Environmental EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
| | - Jean‐Christophe Domec
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- Department of ForestryBordeaux Sciences Agro, UMR INRAE‐ISPA 1391GradignanFrance
| |
Collapse
|