1
|
Nathaniel Street. THE NEW PHYTOLOGIST 2025; 246:876-878. [PMID: 40007171 DOI: 10.1111/nph.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
|
2
|
Hopkins JR, Bennett AE, McKenna TP. Fire Frequency Driven Increases in Burn Heterogeneity Promote Microbial Beta Diversity: A Test of the Pyrodiversity-Biodiversity Hypothesis. Mol Ecol 2025; 34:e17756. [PMID: 40186548 PMCID: PMC12051778 DOI: 10.1111/mec.17756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Fire is a common ecological disturbance that structures terrestrial ecosystems and biological communities. The ability of fires to contribute to ecosystem heterogeneity has been termed pyrodiversity and has been directly linked to biodiversity (i.e., the pyrodiversity-biodiversity hypothesis). Since climate change models predict increases in fire frequency, understanding how fire pyrodiversity influences soil microbes is important for predicting how ecosystems will respond to fire regime changes. Here we tested how fire frequency-driven changes in burn patterns (i.e., pyrodiversity) influenced soil microbial communities and diversity. We assessed pyrodiversity effects on soil microbes by manipulating fire frequency (annual vs. biennial fires) in a tallgrass prairie restoration and evaluating how changes in burn patterns influenced microbial communities (bacteria and fungi). Annual burns produced more heterogeneous burn patterns (higher pyrodiversity) that were linked to shifts in fungal and bacterial community composition. While fire frequency did not influence microbial (bacteria and fungi) alpha diversity, beta diversity did increase with pyrodiversity. Changes in fungal community composition were not linked to burn patterns, suggesting that pyrodiversity effects on other ecosystem components (e.g., plants and soil characteristics) influenced fungal community dynamics and the greater beta diversity observed in the annually burned plots. Shifts in bacterial community composition were linked to variation in higher severity burn pattern components (grey and white ash), suggesting that thermotolerance contributed to the observed changes in bacterial community composition and lower beta diversity in the biennially burned plots. This demonstrates that fire frequency-driven increases in pyrodiversity augment biodiversity and may influence productivity in fire-prone ecosystems.
Collapse
Affiliation(s)
- Jacob R. Hopkins
- Evolution, Ecology, & Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Alison E. Bennett
- Evolution, Ecology, & Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Thomas P. McKenna
- Kansas Biological Survey and Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
3
|
Vázquez-Santos Y, Castillo-Argüero S, Espinosa-García FJ, Montaño NM, Martínez-Orea Y, Hernández-Cuevas LV. Ecological filters shape arbuscular mycorrhizal fungal communities in the rhizosphere of secondary vegetation species in a temperate forest. PLoS One 2025; 20:e0313948. [PMID: 39869612 PMCID: PMC11771869 DOI: 10.1371/journal.pone.0313948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/03/2024] [Indexed: 01/29/2025] Open
Abstract
The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site. Soil rhizosphere samples were collected from each SV plant species, during the rainy and dry seasons. Soil samples from the rhizosphere of each plant species were analyzed for AMF spores, organic matter (OM), pH, soil moisture, and available phosphorus, and nitrogen. Three ecological filters influenced the AMF community assembly: host plant identity, abiotic factors, and AMF species co-occurrence. This assembly consisted of 61 AMF species, with different β-diversity values among plant species across seasons and altitudes. Canonical correspondence analysis revealed that AMF community composition is linked to OM and available P and N, with only a few AMF species co-occurring, while most do not. Our study highlights how ecological filters shape AMF structure, which is essential for understanding how soil and environmental factors affect AMF in SV plant species across seasons and altitudes.
Collapse
Affiliation(s)
- Yasmin Vázquez-Santos
- Posgrado en Ciencias Biológicas, Universidad NacionalAutónoma de México, Unidad de Posgrado, Circuito de Posgrados, Coyoacán, Mexico City, Mexico
- Facultad de Ciencias, Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Investigación Científica, Coyoacán, Mexico City, Mexico
| | - Silvia Castillo-Argüero
- Facultad de Ciencias, Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Investigación Científica, Coyoacán, Mexico City, Mexico
| | - Francisco Javier Espinosa-García
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Patzcuaro, Morelia, Michoacán, Mexico
| | - Noé Manuel Montaño
- Departamento de Biología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana unidad Iztapalapa, Iztapalapa, Mexico City, Mexico
| | - Yuriana Martínez-Orea
- Facultad de Ciencias, Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Investigación Científica, Coyoacán, Mexico City, Mexico
| | - Laura V. Hernández-Cuevas
- Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico
| |
Collapse
|
4
|
El Amrani B. Insights into the Biotic Factors Shaping Ectomycorrhizal Associations. BIOLOGY 2024; 13:1044. [PMID: 39765711 PMCID: PMC11673544 DOI: 10.3390/biology13121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Ectomycorrhizal (EM) associations are essential symbiotic relationships that contribute significantly to the health and functioning of forest ecosystems. This review examines the biotic factors that influence EM associations, focusing on plant and fungal diversity, host specificity, and microbial interactions. Firstly, the diversity of host plants and ectomycorrhizal fungi (EMF) is discussed, highlighting how the richness of these organisms affects the formation and success of EM symbioses. Next, host specificity is explored, with a focus on the complex relationships between EMF and their host plants. Microbial interactions are examined in depth, with sections on both positive and negative influences of bacteria and different fungal groups on EM formation. Overall, this review provides a comprehensive overview of the biotic factors that shape EM associations, offering insights into the mechanisms that underpin these critical ecological interactions and their broader implications for ecosystem management and restoration.
Collapse
Affiliation(s)
- Belkacem El Amrani
- Lumbricidae, Improving Soil Productivity and Environment Unit (LAPSE), Higher Normal School (ENS), Mohammed V University in Rabat, Rabat P.O. Box 554, Morocco
| |
Collapse
|
5
|
Kou Y, Ding J, Yin H. Temperature governs the community assembly of root-associated ectomycorrhizal fungi in alpine forests on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176820. [PMID: 39396791 DOI: 10.1016/j.scitotenv.2024.176820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Unraveling the assembly processes of ectomycorrhizal (ECM) fungal communities in changing environments is crucial for forecasting the impacts of climate change on forests. However, the assembly processes and key drivers of root-associated ECM fungal communities in alpine coniferous forests remain poorly understood. To address this knowledge gap, we conducted sampling in 65 monodominant alpine coniferous forests, which encompass 11 plant species belonging to three genera (Abies, Pinus, and Picea) within the Pinaceae family, all located on the Qinghai-Tibetan Plateau. We employed a combination of null model and multivariate analyses to elucidate the drivers and assembly processes of ECM fungal communities. Our results revealed significant variation in the composition and diversity of root-associated ECM fungal communities among Abies, Pinus, and Picea, indicating specific preferences for ECM fungi among Pinaceae genera. Importantly, mean annual temperature (MAT) emerged as the primary driver of these variations and regulated the assembly processes within the community of root-associated ECM fungi. As MAT temperature, the α-diversity of these fungi significantly decreased, suggesting that increased temperature may reduce the species diversity of root-associated ECM fungi in alpine forests. Furthermore, stochastic processes, such as dispersal limitation and drift, became more influential as MAT increased. Conversely, the role of deterministic processes, particularly heterogeneous selection, in shaping the ECM fungal community assembly weakened with increasing MAT. This study provides novel theoretical insights into the processes of ECM fungal community assembly in alpine forests, emphasizing the pivotal role of temperature in regulating the assembly processes and compositional dynamics of root-associated ECM fungal communities in these unique environments.
Collapse
Affiliation(s)
- Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Junxiang Ding
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Deng Y, Xiao W, Xiong Z, Sha A, Luo Y, Chen X, Li Q. Assembly Mechanism of Rhizosphere Fungi in Plant Restoration in Lead Zinc Mining Areas. Genes (Basel) 2024; 15:1398. [PMID: 39596598 PMCID: PMC11593579 DOI: 10.3390/genes15111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND So far, the assembly and response mechanism of soil fungi in the ecological restoration process of lead zinc mines is still unclear. METHODS In this study, we selected three plants for the ecological restoration of abandoned lead zinc mining areas and explored the community assembly mechanism by which soil fungi assist plants in adapting to the environment during the ecological restoration process. RESULTS The results revealed that the mining of lead zinc mines led to a significant decrease in soil fungal diversity, whereas the planting of three plants significantly increased the diversity of rhizosphere fungi. Mining activities significantly reduced the abundance of soil Fusarium, Macroventuria, Cladosporium, and Solicocozyma and increased the abundance of soil Helvella. After three ecologically restored plants were planted, the abundances of Fusarium and Cladosporium increased significantly, whereas the abundance of Helvella decreased significantly. In addition, Capronia was significantly enriched in the rhizosphere soils of three plant species in the mining area. β diversity and fungal guild analysis revealed that mining activities had a great impact on fungal communities and guilds. The ecological restoration of plants changed the guilds of rhizosphere fungi, making them closer to those of the control sample. In addition, the endophyte guild was significantly enriched in the rhizosphere soil of three ecologically restored plants, increasing their adaptability. CONCLUSIONS The results provide a reference for screening lead zinc mine bioremediation strains and developing fungal plant joint remediation strategies.
Collapse
Affiliation(s)
- Yue Deng
- School of China Alcoholic Drinks, Luzhou Vocational and Technology College, Luzhou 646000, China;
| | - Wenqi Xiao
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Zhuang Xiong
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Ajia Sha
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Yingyong Luo
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Xiaodie Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| |
Collapse
|
7
|
Lin QC, Cen YQ, Xu M, Jiang DD, Zhang J. Effects of urban green space habitats and tree species on ectomycorrhizal fungal diversity. Sci Rep 2024; 14:25369. [PMID: 39455594 PMCID: PMC11511879 DOI: 10.1038/s41598-024-74448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Ectomycorrhizal fungi (EMF) are key symbiotic microbial components for the growth and health of trees in urban greenspace habitats (UGSHs). However, the current understanding of EMF diversity in UGSHs remains poor. Therefore, in this study, using morphological classification and molecular identification, we aimed to investigate EMF diversity in three EMF host plants: Cedrus deodara in the roadside green belt, and C. deodara, Pinus massoniana, and Salix babylonica in the park roadside green belt, in Guiyang, China. A total of 62 EMF Operational Taxonomic Units (OTUs) were identified, including 13 EMF OTUs in the C. deodara roadside green belt, and 23, 31, and 9 EMF OTUs in the park green belts. C. deodara, P. massoniana, and S. babylonica were respectively identified in park green belts. Ascomycota and Basidiomycota were the dominant phylum in the EMF communities in roadside and park green habitat, respectively. The Shannon and Simpson indexes of the C. deodara EMF community in the park green belt were higher than those in the roadside green belt. EMF diversity of the tree species in the park green belt was P. massoniana > C. deodara > S. babylonica. Differences in EMF community diversity was observed among the different greening tree species in the UGSHs. UGSHs with different disturbance gradients had a significant impact on the EMF diversity of the same greening tree species. These results can be used as a scientific reference for optimizing the design and scientific management of UGSHs.
Collapse
Affiliation(s)
- Qian-Cai Lin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Ying-Qing Cen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Ming Xu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Dan-Dan Jiang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Jian Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
8
|
Kohout P, Sudová R, Odriozola I, Kvasničková J, Petružálková M, Hadincová V, Krahulec F, Pecháčková S, Skálová H, Herben T. Accumulation of pathogens in soil microbiome can explain long-term fluctuations of legumes in a grassland community. THE NEW PHYTOLOGIST 2024; 244:235-248. [PMID: 39101271 DOI: 10.1111/nph.20031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
All plant populations fluctuate in time. Apart from the dynamics imposed by external forces such as climate, these fluctuations can be driven by endogenous processes taking place within the community. In this study, we aimed to identify potential role of soil-borne microbial communities in driving endogenous fluctuations of plant populations. We combined a unique, 35-yr long abundance data of 11 common plant species from a species-rich mountain meadow with development of their soil microbiome (pathogenic fungi, arbuscular mycorrhizal fungi and oomycetes) observed during 4 yr of experimental cultivation in monocultures. Plant species which abundance fluctuated highly in the field (particularly legumes) accumulated plant pathogens in their soil mycobiome. We also identified increasing proportion of mycoparasitic fungi under highly fluctuating legume species, which may indicate an adaptation of these species to mitigate the detrimental effects of pathogens. Our study documented that long-term fluctuations in the abundance of plant species in grassland communities can be explained by the accumulation of plant pathogens in plant-soil microbiome. By contrast, we found little evidence of the role of mutualists in plant population fluctuations. These findings offer new insights for understanding mechanisms driving both long-term vegetation dynamics and patterns of species coexistence and richness.
Collapse
Affiliation(s)
- Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Faculty of Science, Charles University in Prague, Albertov 6, 128 00, Prague, Czechia
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Markéta Petružálková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Věroslava Hadincová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - František Krahulec
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Sylvie Pecháčková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Hana Skálová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Tomáš Herben
- Faculty of Science, Charles University in Prague, Albertov 6, 128 00, Prague, Czechia
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| |
Collapse
|
9
|
Le Noir de Carlan C, Kaarlejärvi E, De Tender C, Heinecke T, Eskelinen A, Verbruggen E. Shifts in mycorrhizal types of fungi and plants in response to fertilisation, warming and herbivory in a tundra grassland. THE NEW PHYTOLOGIST 2024; 243:1190-1204. [PMID: 38742310 DOI: 10.1111/nph.19816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Climate warming is severely affecting high-latitude regions. In the Arctic tundra, it may lead to enhanced soil nutrient availability and interact with simultaneous changes in grazing pressure. It is presently unknown how these concurrently occurring global change drivers affect the root-associated fungal communities, particularly mycorrhizal fungi, and whether changes coincide with shifts in plant mycorrhizal types. We investigated changes in root-associated fungal communities and mycorrhizal types of the plant community in a 10-yr factorial experiment with warming, fertilisation and grazing exclusion in a Finnish tundra grassland. The strongest determinant of the root-associated fungal community was fertilisation, which consistently increased potential plant pathogen abundance and had contrasting effects on the different mycorrhizal fungal types, contingent on other treatments. Plant mycorrhizal types went through pronounced shifts, with warming favouring ecto- and ericoid mycorrhiza but not under fertilisation and grazing exclusion. Combination of all treatments resulted in dominance by arbuscular mycorrhizal plants. However, shifts in plant mycorrhizal types vs fungi were mostly but not always aligned in their magnitude and direction. Our results show that our ability to predict shifts in symbiotic and antagonistic fungal communities depend on simultaneous consideration of multiple global change factors that jointly alter plant and fungal communities.
Collapse
Affiliation(s)
- Coline Le Noir de Carlan
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Elina Kaarlejärvi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki, FI-00014, Finland
| | - Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 96-109, 9820, Merelbeke, Belgium
- Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Thilo Heinecke
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anu Eskelinen
- Ecology & Genetics, University of Oulu, PO Box 8000, FI-90014, Oulu, Finland
- Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Puschstraße 4, 04103, Leipzig, Germany
| | - Erik Verbruggen
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
10
|
Carteron A, Cantera I, Guerrieri A, Marta S, Bonin A, Ambrosini R, Anthelme F, Azzoni RS, Almond P, Alviz Gazitúa P, Cauvy-Fraunié S, Ceballos Lievano JL, Chand P, Chand Sharma M, Clague JJ, Cochachín Rapre JA, Compostella C, Cruz Encarnación R, Dangles O, Eger A, Erokhin S, Franzetti A, Gielly L, Gili F, Gobbi M, Hågvar S, Khedim N, Meneses RI, Peyre G, Pittino F, Rabatel A, Urseitova N, Yang Y, Zaginaev V, Zerboni A, Zimmer A, Taberlet P, Diolaiuti GA, Poulenard J, Thuiller W, Caccianiga M, Ficetola GF. Dynamics and drivers of mycorrhizal fungi after glacier retreat. THE NEW PHYTOLOGIST 2024; 242:1739-1752. [PMID: 38581206 DOI: 10.1111/nph.19682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/17/2023] [Indexed: 04/08/2024]
Abstract
The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.
Collapse
Affiliation(s)
- Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Université de Toulouse, Ecole d'Ingénieurs de PURPAN, UMR INRAE-INPT DYNAFOR, Toulouse, 31076, France
| | - Isabel Cantera
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Argaly, Bâtiment CleanSpace, 354 Voie Magellan, 73800, Sainte-Hélène-du-Lac, France
| | - Silvio Marta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Institute of Geosciences and Earth Resources, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Aurélie Bonin
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Argaly, Bâtiment CleanSpace, 354 Voie Magellan, 73800, Sainte-Hélène-du-Lac, France
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Fabien Anthelme
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, 34398, France
| | - Roberto Sergio Azzoni
- Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, Via L. Mangiagalli 34, 20133, Milano, Italy
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Pablo Alviz Gazitúa
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, CW76+76, Osorno, Chile
| | | | | | - Pritam Chand
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, Punjab, India
| | - Milap Chand Sharma
- Centre for the Study of Regional Development - School of Social Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067, New Delhi, India
| | - John J Clague
- Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | | | - Chiara Compostella
- Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, Via L. Mangiagalli 34, 20133, Milano, Italy
| | | | - Olivier Dangles
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, 34090, Montpellier, France
| | - Andre Eger
- Mannaki Whenua - Landcare Research, Soils and Landscapes, 54 Gerald St., Lincoln, 7608, New Zealand
| | - Sergey Erokhin
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Frunze, 533, 720033, Bishkek, Kyrgyzstan
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126, Milano, Italy
| | - Ludovic Gielly
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| | - Fabrizio Gili
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy
| | - Sigmund Hågvar
- Faculty of Environmental Sciences and Natural Resource Management (INA), Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, 9006, Norway
| | - Norine Khedim
- Université Savoie Mont Blanc, Université Grenoble Alpes, EDYTEM, F-73000, Chambéry, France
| | - Rosa Isela Meneses
- Herbario Nacional de Bolivia: La Paz, FW6J+RP2, La Paz, Bolivia
- Universidad Católica del Norte, 8HCR+94, Antofagasta, Chile
| | - Gwendolyn Peyre
- Department of Civil and Environmental Engineering, University of the Andes, 111711, Bogotá, Colombia
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126, Milano, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Antoine Rabatel
- Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), F-38000, Grenoble, France
| | - Nurai Urseitova
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Frunze, 533, 720033, Bishkek, Kyrgyzstan
| | - Yan Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Vitalii Zaginaev
- Mountain Societies Research Institute, University of Central Asia, Toktogula 125/1, 720001, Bishkek, Kyrgyzstan
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, Via L. Mangiagalli 34, 20133, Milano, Italy
| | - Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, 78712, USA
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, 9006, Norway
| | - Guglielmina Adele Diolaiuti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Jerome Poulenard
- Université Savoie Mont Blanc, Université Grenoble Alpes, EDYTEM, F-73000, Chambéry, France
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Universitá degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| |
Collapse
|
11
|
Ji C, Ge Y, Zhang H, Zhang Y, Xin Z, Li J, Zheng J, Liang Z, Cao H, Li K. Interactions between halotolerant nitrogen-fixing bacteria and arbuscular mycorrhizal fungi under saline stress. Front Microbiol 2024; 15:1288865. [PMID: 38633693 PMCID: PMC11022851 DOI: 10.3389/fmicb.2024.1288865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/23/2024] [Indexed: 04/19/2024] Open
Abstract
Background and aims Soil salinity negatively affects crop development. Halotolerant nitrogen-fixing bacteria (HNFB) and arbuscular mycorrhizal fungi (AMF) are essential microorganisms that enhance crop nutrient availability and salt tolerance in saline soils. Studying the impact of HNFB on AMF communities and using HNFB in biofertilizers can help in selecting the optimal HNFB-AMF combinations to improve crop productivity in saline soils. Methods We established three experimental groups comprising apple plants treated with low-nitrogen (0 mg N/kg, N0), normal-nitrogen (200 mg N/kg, N1), and high-nitrogen (300 mg N/kg, N2) fertilizer under salt stress without bacteria (CK, with the addition of 1,500 mL sterile water +2 g sterile diatomite), or with bacteria [BIO, with the addition of 1,500 mL sterile water +2 g mixed bacterial preparation (including Bacillus subtilis HG-15 and Bacillus velezensis JC-K3)]. Results HNFB inoculation significantly increased microbial biomass and the relative abundance of beta-glucosidase-related genes in the rhizosphere soil under identical nitrogen application levels (p < 0.05). High-nitrogen treatment significantly reduced AMF diversity and the relative abundance of beta-glucosidase, acid phosphatase, and urea-related genes. A two-way analysis of variance showed that combined nitrogen application and HNFB treatment could significantly affect soil physicochemical properties and rhizosphere AMF abundance (p < 0.05). Specifically, HNFB application resulted in a significantly higher relative abundance of Glomus-MO-G17-VTX00114 compared to that in the CK group at equal nitrogen levels. Conclusion The impact of HNFB on the AMF community in apple rhizospheres is influenced by soil nitrogen levels. The study reveals how varying nitrogen levels mediate the relationship between exogenous HNFB, soil properties, and rhizosphere microbes.
Collapse
Affiliation(s)
- Chao Ji
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
| | - Yuhan Ge
- College of Biology and Oceanography, Weifang University, Weifang, China
| | - Hua Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
| | - Yingxiang Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
| | - Zhiwen Xin
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
| | - Jian Li
- Shandong Institute of Pomology, Tai’an, China
| | - Jinghe Zheng
- College of Biology and Oceanography, Weifang University, Weifang, China
| | - Zengwen Liang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
| | - Hui Cao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, China
| | - Kun Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai’an, Shandong, China
- Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai’an, Shandong, China
| |
Collapse
|
12
|
David AS, Hernandez DJ, Menges ES, Sclater VL, Afkhami ME, Searcy CA. Heterogeneous landscape promotes distinct microbial communities in an imperiled scrub ecosystem. Mycologia 2023; 115:739-748. [PMID: 37812522 DOI: 10.1080/00275514.2023.2258268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza-dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments.
Collapse
Affiliation(s)
- Aaron S David
- Archbold Biological Station, 123 Main Drive, Venus, Florida 33960
| | - Damian J Hernandez
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Eric S Menges
- Archbold Biological Station, 123 Main Drive, Venus, Florida 33960
| | | | - Michelle E Afkhami
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Christopher A Searcy
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| |
Collapse
|
13
|
d’Entremont TW, Kivlin SN. Specificity in plant-mycorrhizal fungal relationships: prevalence, parameterization, and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1260286. [PMID: 37929168 PMCID: PMC10623146 DOI: 10.3389/fpls.2023.1260286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Species interactions exhibit varying degrees of specialization, ranging from generalist to specialist interactions. For many interactions (e.g., plant-microbiome) we lack standardized metrics of specialization, hindering our ability to apply comparative frameworks of specificity across niche axes and organismal groups. Here, we discuss the concept of plant host specificity of arbuscular mycorrhizal (AM) fungi and ectomycorrhizal (EM) fungi, including the predominant theories for their interactions: Passenger, Driver, and Habitat Hypotheses. We focus on five major areas of interest in advancing the field of plant-mycorrhizal fungal host specificity: phylogenetic specificity, host physiology specificity, functional specificity, habitat specificity, and mycorrhizal fungal-mediated plant rarity. Considering the need to elucidate foundational concepts of specificity in this globally important symbiosis, we propose standardized metrics and comparative studies to enhance our understanding. We also emphasize the importance of analyzing global mycorrhizal data holistically to draw meaningful conclusions and suggest a shift toward single-species analyses to unravel the complexities underlying these associations.
Collapse
Affiliation(s)
- Tyler W. d’Entremont
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| | | |
Collapse
|
14
|
Huang X, Zheng Y, Li P, Cui J, Sui P, Chen Y, Gao W. Organic management increases beneficial microorganisms and promotes the stability of microecological networks in tea plantation soil. Front Microbiol 2023; 14:1237842. [PMID: 37795307 PMCID: PMC10546928 DOI: 10.3389/fmicb.2023.1237842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Organic agriculture is highly regarded by people for its commitment to health, ecology, care, and fairness. The soil microbial community responds quickly to environmental changes and is a good indicator for evaluating soil microecology. Therefore, from the perspective of soil microbial communities, elucidating the impact of organic management on soil microecology in tea plantations has great significance for improving local tea plantation systems. Methods The study collected bulk soil from organic management (OM) and conventional management (CM) tea plantations in Pu'er City, a major tea-producing area in China, and analyzed their species diversity, structural composition, and co-occurrence networks using metagenomics technology. Results Compared with CM, the diversity index (Shannon) and evenness index (Heip) of soil fungi increased by 7.38% and 84.2% in OM tea plantations, respectively. The relative abundance of microorganisms related to the nitrogen cycle increased. Specifically, there was a significant increase in Rhodobiales, a 2-fold increase in Nitrospirae, and approximately 1.95 and 2.03 times increases in unclassified genera within Betaproteobacteria and Deltaproteobacteria, respectively. The relative abundance of plant residue degradation species, Gemmatimonadetes, Ascomycota, and Basidiomycota, increased by 2.8, 1, and 1.4 times, respectively. The OM was conducive to the establishment of collaborative relationships among bacterial species and increased the diversity and complexity of species relationships in fungal communities. The network stability of soil ecosystems was promoted. The organic tea plantations' keystone taxa contained mycorrhizal fungi (Pezoloma_ericae, Rhizophagus_irregularis, Rhizophagus_clarus), as well as species involved in soil nitrogen metabolism (Acidobacteria_bacterium, Acidobacteriia_bacterium_AA117, Sphingomonas_sp._URHD0007, Enhydrobacter_aerosaccus), pathogen (Erysiphe_pulchra), and parasites (Paramycosporidium saccamoeba). The partial least squares method (PLS-SEM) indicated that OM affected N-NH4 + negatively, increasing the abundance of fungi, and thereby positively affecting the Shannon index. Conclusion In brief, reasonable organic management can improve the diversity of soil microorganisms, increase the relative abundance of beneficial bacteria in tea plantation soil, and promote the stability of the soil microbial ecological network.
Collapse
Affiliation(s)
- Xinhui Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuting Zheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Panfeng Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Sui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanquan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wangsheng Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
In search of the phytohormone functions in Fungi:Cytokinins. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Hogan JA, Jusino MA, Smith ME, Corrales A, Song X, Hu YH, Yang J, Cao M, Valverde-Barrantes OJ, Baraloto C. Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. THE NEW PHYTOLOGIST 2023; 238:1849-1864. [PMID: 36808625 DOI: 10.1111/nph.18821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Forest fungal communities are shaped by the interactions between host tree root systems and the associated soil conditions. We investigated how the soil environment, root morphological traits, and root chemistry influence root-inhabiting fungal communities in three tropical forest sites of varying successional status in Xishuangbanna, China. For 150 trees of 66 species, we measured root morphology and tissue chemistry. Tree species identity was confirmed by sequencing rbcL, and root-associated fungal (RAF) communities were determined using high-throughput ITS2 sequencing. Using distance-based redundancy analysis and hierarchical variation partitioning, we quantified the relative importance of two soil variables (site average total phosphorus and available phosphorus), four root traits (dry matter content, tissue density, specific tip abundance, and forks), and three root tissue elemental concentrations (nitrogen, calcium, and manganese) on RAF community dissimilarity. The root and soil environment collectively explained 23% of RAF compositional variation. Soil phosphorus explained 76% of that variation. Twenty fungal taxa differentiated RAF communities among the three sites. Soil phosphorus most strongly affects RAF assemblages in this tropical forest. Variation in root calcium and manganese concentrations and root morphology among tree hosts, principally an architectural trade-off between dense, highly branched vs less-dense, herringbone-type root systems, are important secondary determinants.
Collapse
Affiliation(s)
- J Aaron Hogan
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI, 53726, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Yue-Hua Hu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
17
|
Zhu X, Zhang Z, Wang Q, Peñuelas J, Sardans J, Lambers H, Li N, Liu Q, Yin H, Liu Z. More soil organic carbon is sequestered through the mycelium pathway than through the root pathway under nitrogen enrichment in an alpine forest. GLOBAL CHANGE BIOLOGY 2022; 28:4947-4961. [PMID: 35582981 DOI: 10.1111/gcb.16263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Plant roots and associated mycorrhizae exert a large influence on soil carbon (C) cycling. Yet, little was known whether and how roots and ectomycorrhizal (ECM) extraradical mycelia differentially contribute to soil organic C (SOC) accumulation in alpine forests under increasing nitrogen (N) deposition. Using ingrowth cores, the relative contributions of the root pathway (RP; i.e., roots and rhizosphere processes) and mycelium pathway (MP; i.e., extraradical mycelia and hyphosphere processes) to SOC accumulation were distinguished and quantified in an ECM-dominated forest receiving chronic N addition (25 kg N ha-1 year-1 ). Under the non-N addition, the RP facilitated SOC accumulation, although the MP reduced SOC accumulation. Nitrogen addition enhanced the positive effect of RP on SOC accumulation from +18.02 to +20.55 mg C g-1 but counteracted the negative effect of MP on SOC accumulation from -5.62 to -0.57 mg C g-1 , compared with the non-N addition. Compared with the non-N addition, the N-induced SOC accumulation was 1.62-2.21 and 3.23-4.74 mg C g-1 , in the RP and the MP, respectively. The greater contribution of MP to SOC accumulation was mainly attributed to the higher microbial C pump (MCP) efficacy (the proportion of increased microbial residual C to the increased SOC under N addition) in the MP (72.5%) relative to the RP (57%). The higher MCP efficacy in the MP was mainly associated with the higher fungal metabolic activity (i.e., the greater fungal biomass and N-acetyl glucosidase activity) and greater binding efficiency of fungal residual C to mineral surfaces than those of RP. Collectively, our findings highlight the indispensable role of mycelia and hyphosphere processes in the formation and accumulation of stable SOC in the context of increasing N deposition.
Collapse
Affiliation(s)
- Xiaomin Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ziliang Zhang
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Qitong Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Valles, Catalonia, Spain
- CREAF, Cerdanyola del Valles, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Valles, Catalonia, Spain
- CREAF, Cerdanyola del Valles, Catalonia, Spain
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Na Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Ma K, Wang Y, Jin X, Zhao Y, Yan H, Zhang H, Zhou X, Lu G, Deng Y. Application of Organic Fertilizer Changes the Rhizosphere Microbial Communities of a Gramineous Grass on Qinghai-Tibet Plateau. Microorganisms 2022; 10:1148. [PMID: 35744666 PMCID: PMC9228633 DOI: 10.3390/microorganisms10061148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The effects of organic fertilizer application on the soil microbial community in grassland systems have been extensively studied. However, the effects of organic fertilizers on the structure of rhizosphere microbial communities are still limited. In this study, the diversity and composition of rhizosphere microbial communities of a gramineous grass Elymus nutans under organic fertilizer treatment were studied in an artificial pasture on Qinghai-Tibet Plateau. After a growing season, the application of organic fertilizer not only increased the height and biomass of Elymus nutans, but also changed the rhizosphere microbial compositions. In particular, organic fertilizer increased the diversity of rhizosphere bacterial community and inhibited the growth of pathogenic bacteria such as Acinetobacter, but the opposite trend was observed for the diversity of fungal community. The assembly process of fungal community was changed from a stochastic process to a deterministic process, indicating that selection was strengthened. Additionally, both the infection rate of arbuscular mycorrhizal fungi (AMF) toward host plants and the development of AMF-related structures were significantly increased after the application of organic fertilizer. Our study demonstrated that the addition of organic fertilizer to artificial pasture could improve the growth of grass through the alteration of the rhizosphere microbial communities. Organic fertilizer had a greater selectivity for the bacterial and the fungal communities that enhanced the niche filtration in this community, further benefiting the yield of forages.
Collapse
Affiliation(s)
- Kun Ma
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
| | - Yingcheng Wang
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
| | - Xin Jin
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
| | - Yangan Zhao
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
| | - Huilin Yan
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
| | - Haijuan Zhang
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
| | - Xueli Zhou
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
- Experimental Station of Grassland Improvement in Qinghai Province, Gonghe 813000, Qinghai, China
| | - Guangxin Lu
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (K.M.); (Y.W.); (X.J.); (Y.Z.); (H.Y.); (H.Z.); (X.Z.)
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Hacquard S, Wang E, Slater H, Martin F. Impact of global change on the plant microbiome. THE NEW PHYTOLOGIST 2022; 234:1907-1909. [PMID: 35599439 DOI: 10.1111/nph.18187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Holly Slater
- New Phytologist Central Office, Lancaster University, Bailrigg House, Lancaster, LA1 4YE, UK
| | - Francis Martin
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|