1
|
Greene DF, Kane JM, Pounden E, Michaletz ST. Cone allometry and seed protection from fire are similar in serotinous and nonserotinous conifers. THE NEW PHYTOLOGIST 2024; 242:93-106. [PMID: 38375897 DOI: 10.1111/nph.19578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Abstract
Serotiny is an adaptive trait that allows certain woody plants to persist in stand-replacing fire regimes. However, the mechanisms by which serotinous cones avoid seed necrosis and nonserotinous species persist in landscapes with short fire cycles and serotinous competitors remain poorly understood. To investigate whether ovulate cone traits that enhance seed survival differ between serotinous and nonserotinous species, we examined cone traits in 24 species within Pinaceae and Cupressaceae based on physical measurements and cone heating simulations using a computational fluid dynamics model. Fire-relevant cone traits were largely similar between cone types; those that differed (e.g. density and moisture) conferred little seed survival advantage under simulated fire. The most important traits influencing seed survival were cone size and seed depth within the cone, which was found to be an allometric function of cone mass for both cone types. Thus, nonserotinous cones should not suffer significantly greater seed necrosis than serotinous cones of equal size. Closed nonserotinous cones containing mature seeds may achieve substantial regeneration after fire if they are sufficiently large relative to fire duration and temperature. To our knowledge, this is the most comprehensive study of the effects of fire-relevant cone traits on conifer regeneration supported by physics-based fire simulation.
Collapse
Affiliation(s)
- David F Greene
- Department of Forestry, Fire, & Rangeland Management, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| | - Jeffrey M Kane
- Department of Forestry, Fire, & Rangeland Management, California State Polytechnic University, Humboldt, Arcata, CA, 95521, USA
| | - Edith Pounden
- Department of Biology, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Bison NN, Michaletz ST. Variation in leaf carbon economics, energy balance, and heat tolerance traits highlights differing timescales of adaptation and acclimation. THE NEW PHYTOLOGIST 2024. [PMID: 38532535 DOI: 10.1111/nph.19702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Multivariate leaf trait correlations are hypothesized to originate from natural selection on carbon economics traits that control lifetime leaf carbon gain, and energy balance traits governing leaf temperatures, physiological rates, and heat injury. However, it is unclear whether macroevolution of leaf traits primarily reflects selection for lifetime carbon gain or energy balance, and whether photosynthetic heat tolerance is coordinated along these axes. To evaluate these hypotheses, we measured carbon economics, energy balance, and photosynthetic heat tolerance traits for 177 species (157 families) in a common garden that minimizes co-variation of taxa and climate. We observed wide variation in carbon economics, energy balance, and heat tolerance traits. Carbon economics and energy balance (but not heat tolerance) traits were phylogenetically structured, suggesting macroevolution of leaf mass per area and leaf dry matter content reflects selection on carbon gain rather than energy balance. Carbon economics and energy balance traits varied along a common axis orthogonal to heat tolerance traits. Our results highlight a fundamental mismatch in the timescales over which morphological and heat tolerance traits respond to environmental variation. Whereas carbon economics and energy balance traits are constrained by species' evolutionary histories, photosynthetic heat tolerance traits are not and can acclimate readily to leaf microclimates.
Collapse
Affiliation(s)
- Nicole N Bison
- Department of Botany, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sean T Michaletz
- Department of Botany, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Reed CC, Hood SM. Nonstructural carbohydrates explain post-fire tree mortality and recovery patterns. TREE PHYSIOLOGY 2024; 44:tpad155. [PMID: 38123513 DOI: 10.1093/treephys/tpad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Trees use nonstructural carbohydrates (NSCs) to support many functions, including recovery from disturbances. However, NSC's importance for recovery following fire and whether NSC depletion contributes to post-fire delayed mortality are largely unknown. We investigated how fire affects NSCs based on fire-caused injury from a prescribed fire in a young Pinus ponderosa (Lawson & C. Lawson) stand. We assessed crown injury (needle scorch and bud kill) and measured NSCs of needles and inner bark (i.e., secondary phloem) of branches and main stems of trees subject to fire and at an adjacent unburned site. We measured NSCs pre-fire and at six timesteps post-fire (4 days-16 months). While all trees initially survived the fire, NSC concentrations declined quickly in burned trees relative to unburned controls over the same post-fire period. This decline was strongest for trees that eventually died, but those that survived recovered to unburned levels within 14 months post-fire. Two months post-fire, the relationship between crown scorch and NSCs of the main stem inner bark was strongly negative (Adj-R2 = 0.83). Our results support the importance of NSCs for tree survival and recovery post-fire and suggest that post-fire NSC depletion is in part related to reduced photosynthetic leaf area that subsequently limits carbohydrate availability for maintaining tree function. Crown scorch is a commonly measured metric of tree-level fire severity and is often linked to post-fire tree outcome (i.e., recovery or mortality). Thus, our finding that NSC depletion may be the mechanistic link between the fire-caused injury and tree outcome will help improve models of post-fire tree mortality and forest recovery.
Collapse
Affiliation(s)
- Charlotte C Reed
- USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, 5775 US Highway 10 W, Missoula, MT 59808, USA
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Sharon M Hood
- USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, 5775 US Highway 10 W, Missoula, MT 59808, USA
| |
Collapse
|
4
|
Sparks AM, Blanco AS, Wilson DR, Schwilk DW, Johnson DM, Adams HD, Bowman DMJS, Hardman DD, Smith AMS. Fire intensity impacts on physiological performance and mortality in Pinus monticola and Pseudotsuga menziesii saplings: a dose-response analysis. TREE PHYSIOLOGY 2023; 43:1365-1382. [PMID: 37073477 DOI: 10.1093/treephys/tpad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/22/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Fire is a major cause of tree injury and mortality worldwide, yet our current understanding of fire effects is largely based on ocular estimates of stem charring and foliage discoloration, which are error prone and provide little information on underlying tree function. Accurate quantification of physiological performance is a research and forest management need, given that declining performance could help identify mechanisms of-and serve as an early warning sign for-mortality. Many previous efforts have been hampered by the inability to quantify the heat flux that a tree experiences during a fire, given its highly variable nature in space and time. In this study, we used a dose-response approach to elucidate fire impacts by subjecting Pinus monticola var. minima Lemmon and Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco saplings to surface fires of varying intensity doses and measuring short-term post-fire physiological performance in photosynthetic rate and chlorophyll fluorescence. We also evaluated the ability of spectral reflectance indices to quantify change in physiological performance at the individual tree crown and stand scales. Although physiological performance in both P. monticola and P. menziesii declined with increasing fire intensity, P. monticola maintained a greater photosynthetic rate and higher chlorophyll fluorescence at higher doses, for longer after the fire. Pinus monticola also had complete survival at lower fire intensity doses, whereas P. menziesii had some mortality at all doses, implying higher fire resistance for P. monticola at this life stage. Generally, individual-scale spectral indices were more accurate at quantifying physiological performance than those acquired at the stand-scale. The Photochemical Reflectance Index outperformed other indices at quantifying photosynthesis and chlorophyll fluorescence, highlighting its potential use to quantify crown scale physiological performance. Spectral indices that incorporated near-infrared and shortwave infrared reflectance, such as the Normalized Burn Ratio, were accurate at characterizing stand-scale mortality. The results from this study were included in a conifer cross-comparison using physiology and mortality data from other dose-response studies. The comparison highlights the close evolutionary relationship between fire and species within the Pinus genus, assessed to date, given the high survivorship of Pinus species at lower fire intensities versus other conifers.
Collapse
Affiliation(s)
- Aaron M Sparks
- Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA
| | - Alexander S Blanco
- Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA
| | | | - Dylan W Schwilk
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| | - David M J S Bowman
- School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
| | - Douglas D Hardman
- Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA
| | - Alistair M S Smith
- Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA
- Department of Earth and Spatial Sciences, College of Science, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
5
|
Partelli-Feltrin R, Smith AMS, Adams HD, Thompson RA, Kolden CA, Yedinak KM, Johnson DM. Death from hunger or thirst? Phloem death, rather than xylem hydraulic failure, as a driver of fire-induced conifer mortality. THE NEW PHYTOLOGIST 2023; 237:1154-1163. [PMID: 36052762 DOI: 10.1111/nph.18454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Disruption of photosynthesis and carbon transport due to damage to the tree crown and stem cambial cells, respectively, can cause tree mortality. It has recently been proposed that fire-induced dysfunction of xylem plays an important role in tree mortality. Here, we simultaneously tested the impact of a lethal fire dose on nonstructural carbohydrates (NSCs) and xylem hydraulics in Pinus ponderosa saplings. Saplings were burned with a known lethal fire dose. Nonstructural carbohydrates were assessed in needles, main stems, roots and whole plants, and xylem hydraulic conductivity was measured in the main stems up to 29 d postfire. Photosynthesis and whole plant NSCs declined postfire. Additionally, all burned saplings showed 100% phloem/cambium necrosis, and roots of burned saplings had reduced NSCs compared to unburned and defoliated saplings. We further show that, contrary to patterns observed with NSCs, water transport was unchanged by fire and there was no evidence of xylem deformation in saplings that experienced a lethal dose of heat from fire. We conclude that phloem and cambium mortality, and not hydraulic failure, were probably the causes of death in these saplings. These findings advance our understanding of the physiological response to fire-induced injuries in conifer trees.
Collapse
Affiliation(s)
| | - Alistair M S Smith
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, ID, 83844, USA
- Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Henry D Adams
- School of Environment, Washington State University, Pullman, WA, 99164-2812, USA
| | - R Alex Thompson
- School of Environment, Washington State University, Pullman, WA, 99164-2812, USA
| | - Crystal A Kolden
- Gallo School of Management, University of California Merced, Merced, CA, 95343, USA
| | - Kara M Yedinak
- US Forest Service Research and Development, Madison, WI, 53726-2366, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
6
|
Ma X, Zhu X, Xie Q, Jin J, Zhou Y, Luo Y, Liu Y, Tian J, Zhao Y. Monitoring nature's calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications. GLOBAL CHANGE BIOLOGY 2022; 28:7186-7204. [PMID: 36114727 PMCID: PMC9827868 DOI: 10.1111/gcb.16436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Collapse
Affiliation(s)
- Xuanlong Ma
- College of Earth and Environmental Sciences, Lanzhou UniversityLanzhouChina
| | - Xiaolin Zhu
- Department of Land Surveying and Geo‐InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Qiaoyun Xie
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Jiaxin Jin
- College of Hydrology and Water Resources, Hohai UniversityNanjingChina
| | - Yuke Zhou
- Key Laboratory of Ecosystem Network Observation and ModellingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
| | - Yunpeng Luo
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental System ScienceETH ZurichZurichSwitzerland
| | - Yuxia Liu
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
- Geospatial Sciences Center of Excellence (GSCE)South Dakota State UniversityBrookingsSouth DakotaUSA
| | - Jiaqi Tian
- Department of Land Surveying and Geo‐InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
- Department of GeographyNational University of SingaporeSingaporeSingapore
| | - Yuhe Zhao
- College of Earth and Environmental Sciences, Lanzhou UniversityLanzhouChina
| |
Collapse
|