1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Beckers A, Mamiya A, Furutani M, Bennett MJ, Fukaki H, Sawa S, Gantet P, Laplaze L, Guyomarc'h S. Multiple layers of regulators emerge in the network controlling lateral root organogenesis. TRENDS IN PLANT SCIENCE 2025; 30:499-514. [PMID: 39455398 DOI: 10.1016/j.tplants.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.
Collapse
Affiliation(s)
- Antoine Beckers
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Akihito Mamiya
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiko Furutani
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan; Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shinichiro Sawa
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto, Japan; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Soazig Guyomarc'h
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| |
Collapse
|
3
|
Wu J, He D, Wang Y, Liu S, Du Y, Wang H, Tan S, Zhang D, Xie J. An integrated transcriptome, metabolome, and microbiome dataset of Populus under nutrient-poor conditions. Sci Data 2025; 12:717. [PMID: 40307287 PMCID: PMC12043821 DOI: 10.1038/s41597-025-05029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
The rhizosphere microbiota recruited by plants contributes significantly to maintaining host productivity and resisting stress. However, the genetic mechanisms by which plants regulate this recruitment process remain largely unclear. Here, we generated a comprehensive dataset, including 27 root transcriptomes, 27 root metabolomes, and 54 bulk or rhizosphere soil 16S rRNA amplicons across nine poplar species from four sections grown in nutrient-poor natural soil, along with eleven growth phenotype data. We provided a thorough description of this dataset, followed by a comprehensive co-expression network analysis example that broke down the wall of the four-way relationship between plant gene-metabolite-microbe-phenotype, thus identifying the links between plant gene expression, metabolite accumulation, growth behavior, and rhizosphere microbiome variation under nutrient-poor conditions. Overall, this dataset enhances our understanding of plant and microbe interactions, offering valuable strategies and novel insights for resolving how plants regulate rhizosphere microbial compositions and functions, thereby improving host fitness, which will benefit future research.
Collapse
Affiliation(s)
- Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Dongyan He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Yue Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Yuxin Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Haofei Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Shuxian Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
4
|
Mahmood T, Moosa A, Zulfiqar F, Aslam MN, Zhao H, Mohammadi M, İzgü T, Bozkurt T, Ahmed T, Darwish DBE. Comparative Effects of Bacillus strains applied Via Seed Biopriming and Soil Drenching Applications on the Morpho-Physiological and Transcriptional Aspects of Cotton. J Basic Microbiol 2025; 65:e2400665. [PMID: 39916338 DOI: 10.1002/jobm.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 01/11/2025] [Indexed: 04/08/2025]
Abstract
Biofertilizers are considered as a sustainable solution for promoting the growth and productivity of crops while reducing the dependence on chemical fertilizers. There is a growing need for the sustainable agricultural solutions to lessen the reliance on chemical fertilizers; thus, evaluating Bacillus strains as biofertilizers for cotton growth promotion can support eco-friendly and economically viable crop production. Therefore, the growth promoting potential of endophytic Bacillus altitudinis strain TM22 and B. atrophaeus strain MCM61 applied as soil drenching or seed treatment, was evaluated on cotton cv. 'SS32'. In vitro, the qualitative assay both TM22 and MCM61 showed proteolytic, amylolytic, lipolytic, cellulolytic, and chitinolytic activity. TM22 and MCM61 strains also demonstrated the ability to produce siderophores, indole 3-acetic acid (IAA), and phosphate solubilization. In the pot experiment, seed biopriming with TM22 and MCM61 had better performance regarding plant growth and biomass, photosynthetic pigments, stomatal conductance, and relative leaf water contents than the soil drenching application. The gene expression analysis of growth hormones-related genes demonstrated that TM22 and MCM61 showed an upregulated expression of ARF1, ARF18, EXP6, IAA9, GIB1b, and CKX6 while ERF and ERF17 genes were downregulated. Overall, these findings suggest that seed biopriming with B. altitudinis TM22 and B. atrophaeus MCM61 is an effective method with the potential to enhance the biomass of cotton.
Collapse
Affiliation(s)
- Tahir Mahmood
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meisam Mohammadi
- Department of Horticulture, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Tolga İzgü
- Institute for BioEconomy (IBE), National Research Council (CNR), Sesto Fiorentino, Florence, Italy
| | - Taner Bozkurt
- Department of Plant Biotechnology, Korea Universtiy, South Korea
| | - Temoor Ahmed
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- Advanced Research Centre European University of Lefke Lefke, Northern Cyprus, Mersin, Turkey
| | | |
Collapse
|
5
|
Cheng X, Yan Z, Li Q, Schmitz L, Yan J, Ge Y, Lan Y, Zhao Y, Wang Y, Li G, Liu Y, Schneijderberg M, Yang L, Bian H, van Dijk ADJ, Qin L, Cao Q, Bisseling T. Chinese chestnut did not induce negative plant soil feedback during centuries of growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178883. [PMID: 40043655 DOI: 10.1016/j.scitotenv.2025.178883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 03/17/2025]
Abstract
Certain tree species can reach ages of centuries, whereas lifespan of species like apple are markedly shorter. The latter is caused by negative plant-soil feedback that results in microbiome changes. We hypothesized that tree species with a long lifespan will be able to avoid such negative feedback and their root-associated microbiomes will be similar in trees of different ages. To test this, we used Chinese chestnut (Castanea mollissima) trees, ranging from 8 to 830 years old from a Ming orchard at the Great Wall. Their root-associated microbiomes were analysed by using meta-amplicon sequencing analysis. Their root-associated bacterial microbiomes were rather similar although based on linear regression models we cannot exclude that age has a weak correlation with microbiome compositions. When chestnut seedlings were grown for 3 months in soil associated with young or old trees, the plants were healthy and their growth was similar. This strongly supported that negative feedback had not occurred. Pseudomonas OTU1, a member of the core microbiome and representing >50 % of the rhizosphere community, strongly inhibited growth of chestnut pathogens and stimulated plant growth. Such properties of the microbiome, in combination with a high number of resistance genes can contribute to longevity of chestnut.
Collapse
Affiliation(s)
- Xu Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China; Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhichun Yan
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Qian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Lucas Schmitz
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Jundi Yan
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands; Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Yueyang Ge
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands; Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Yanping Lan
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China
| | - Yaceng Zhao
- Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Yiyang Wang
- Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Guangdong Li
- Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Yang Liu
- Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Martinus Schneijderberg
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| | - Liu Yang
- Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Huihui Bian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China; Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands; Swammerdam Institute for the Life Sciences, University of Amsterdam, the Netherlands
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China; Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China; Beijing Key Laboratory of New Technology and Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China.
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beinong Rd. #7, Beijing 102206, China; Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| |
Collapse
|
6
|
Fu Y, Wang J, Su Z, Chen Q, Li J, Zhao J, Xuan W, Miao Y, Zhang J, Zhang R. Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth. THE NEW PHYTOLOGIST 2025; 245:2016-2037. [PMID: 39722601 DOI: 10.1111/nph.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear. By using soil systems, we studied the growth-promoting effects of Sinomonas gamaensis NEAU-HV1 on various plants. Through a combination of phenotypic analyses and microscopic observations, the effects of NEAU-HV1 on root development were evaluated. We subsequently conducted molecular and genetic experiments to reveal the mechanism promoting lateral root (LR) development. We demonstrated that NEAU-HV1 significantly promoted the growth of lettuce, wheat, maize, peanut and Arabidopsis. This effect was associated with multiple beneficial traits, including phosphate solubilization, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase production and survival ability in the rhizosphere and within the inner tissue of roots. In addition, NEAU-HV1 could secrete metabolites to promote LR development by affecting auxin transport and signaling. Importantly, we found that the influence of auxin signaling may be attributed to the remodeling interaction between SOLITARY-ROOT (SLR)/IAA14 and ARF7/19, occurring independently of the auxin receptor TIR1/AFB2. Our results indicate that NEAU-HV1-induced LR formation is dependent on direct remodeling interactions between transcription factors, providing novel insights into plant-microbe interactions.
Collapse
Affiliation(s)
- Yansong Fu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Juexuan Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwei Su
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Qinyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxin Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Ruifu Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Zhang H, Ma LJ, Liao DX, Tang RL, Hang XN, Lu WC. Complete genome sequence of Pseudomonas sp. HT11 isolated from broad bean (Vicia faba L.). Curr Genet 2025; 71:6. [PMID: 39937297 DOI: 10.1007/s00294-025-01310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
The bacterial strain HT11 isolated from broad bean (Vicia faba L.) exhibited strong antifungal activity against Botrytis fabiopsis, the causative agent of red spot disease in broad bean. To gain insights into the secondary metabolites produced by HT11,its entire genome was sequenced and subjected to comprehensive analysis. The genome comprised a single circular chromosome of 6,335,588 base pairs (bp) in length. Comparative analysis of the 16 S rRNA gene and the average nucleotide identity (ANI) confirmed the HT11 strain as a new Pseudomonas strain. The complete genome encoded 5,366 predicted open reading frames (ORFs), 66 tRNA genes and 16 rRNA genes. The total length of the annotated genes accounted for 82.93% (5,254,103/6,335,588 bp) of the complete genome. Functional categorization of the predicted ORFs revealed 24 Clusters of Orthologous Groups of proteins (COG). Fourteen gene clusters were identified with in the genome, associated with the biosynthesis of pyochelin, pyocyanin, viscosin, and tolaasin I/tolaasin F. Additionally, three gene clusters were implicated in the biosynthesis of unknown metabolites. These findings establish a foundational basis for further investigations into the interactions between Pseudomonas sp. HT11 and the pathogenic fungus Botrytis fabiopsis.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Lian-Jie Ma
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Dun-Xiu Liao
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Rong-Li Tang
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Xiao-Ning Hang
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Wen-Cai Lu
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| |
Collapse
|
8
|
Wu J, Liu S, Zhang H, Chen S, Si J, Liu L, Wang Y, Tan S, Du Y, Jin Z, Xie J, Zhang D. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus. Nat Commun 2025; 16:1461. [PMID: 39920117 PMCID: PMC11805958 DOI: 10.1038/s41467-025-56226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Plant growth behavior is a function of genetic network architecture. The importance of root microbiome variation driving plant functional traits is increasingly recognized, but the genetic mechanisms governing this variation are less studied. Here, we collect roots and rhizosphere soils from nine Populus species belonging to four sections (Leuce, Aigeiros, Tacamahaca, and Turanga), generate metabolite and transcription data for roots and microbiota data for rhizospheres, and conduct comprehensive multi-omics analyses. We demonstrate that the roots of vigorous Leuce poplar enrich more Pseudomonas, compared with the poorly performing poplar. Moreover, we confirm that Pseudomonas is strongly associated with tricin and apigenin biosynthesis and identify that gene GLABRA3 (GL3) is critical for tricin secretion. The elevated tricin secretion via constitutive transcription of PopGL3 and Chalcone synthase (PopCHS4) can drive Pseudomonas colonization in the rhizosphere and further enhance poplar growth, nitrogen acquisition, and secondary root development in nitrogen-poor soil. This study reveals that plant-metabolite-microbe regulation patterns contribute to the poplar fitness and thoroughly decodes the key regulatory mechanisms of tricin, and provides insights into the interactions of the plant's key metabolites with its transcriptome and rhizosphere microbes.
Collapse
Affiliation(s)
- Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Haoyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Sisi Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Jingna Si
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Lin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Yue Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Shuxian Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Yuxin Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Zhelun Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China.
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China.
| |
Collapse
|
9
|
Li C, Sun L, Jia Z, Tang Y, Liu X, Zhang J, Müller C. Microbial Inoculants Drive Changes in Soil and Plant Microbiomes and Improve Plant Functions in Abandoned Mine Restoration. PLANT, CELL & ENVIRONMENT 2025; 48:1162-1178. [PMID: 39420635 DOI: 10.1111/pce.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The application of microbial inoculants holds promise for the sustainable restoration of abandoned mine sites by affecting soil nutrients and microbial communities. However, the responses of plant microbial communities to microbial inoculants in mine restoration remain largely unknown. To bridge this knowledge gap, we conducted a 4-year field experiment at an abandoned carbonate mine site to assess the impacts of microbial inoculants on the soil-plant microbiome. Our findings revealed that microbial inoculants significantly changed roots, fine root bacterial and fungal communities. Further, no significant correlations were observed between the soil-plant nutrient content (Z-score) and microbial alpha diversity. However, a significantly positive correlation was found between the relative abundance of the keystone ecological cluster (Module #1) and soil-plant nutrient content. The application of microbial inoculants also increased complexity, albeit decreased stability of plant microbiome networks, alongside a reduction in stochastic assembly. Conversely, they decreased the complexity but increased the stability of soil microbiome networks, accompanied by an increase in stochastic assembly. Notably, the number of specifically enriched microbiome functional traits of roots and root nodules under the microbial inoculant treatments surpassed that of the control. In summary, our findings underscored the potential of microbial inoculants to enhance soil-plant functionality at abandoned mine restoration sites.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Lianhao Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | | | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Gießen, Germany
| |
Collapse
|
10
|
Wu X, Liu Y, Jia B, Tao L, Li H, Wang J, Yuan Z, Sun X, Yao Y. Four Decades of Bacillus Biofertilizers: Advances and Future Prospects in Agriculture. Microorganisms 2025; 13:187. [PMID: 39858955 PMCID: PMC11767708 DOI: 10.3390/microorganisms13010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Over the past four decades, Bacillus biofertilizers, which are microbial formulations based on Bacillus species, have significantly contributed to sustainable agriculture by enhancing crop growth, improving soil health, and reducing the dependency on chemical fertilizers. Bacillus species, particularly known for their ability to promote plant growth, fix nitrogen, solubilize phosphorus, and produce growth-promoting substances such as phytohormones and antibiotics, have emerged as key players in the development of eco-friendly agricultural solutions. This research utilizes bibliometric analysis based on 3,242 documents sourced from the Web of Science database to map the development, key contributions, and innovation within the field from 1985 to 2023. This study identifies exponential growth in research output, particularly from 2003 onwards, indicating a robust interest and expanding research base predominantly in China, India, and the United States. We segmented the research timeline into three distinct phases, each marked by varying growth rates and research foci. This paper presents novel insights into the geographical and institutional distributions of research, highlighting the predominant role of developing countries in advancing Bacillus-based technologies. Key research hotspots have evolved from basic applications to complex interactions involving synthetic microbial communities and advanced multi-omics techniques. Our findings demonstrate a trend towards more strategic and technologically integrated approaches to developing Bacillus biofertilizers, reflecting broader shifts towards more sustainable agricultural systems. This study not only charts historical progress, but also proposes future research trajectories aimed at enhancing the application and effectiveness of microbial fertilizers across diverse ecosystems.
Collapse
Affiliation(s)
- Xinmai Wu
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Yan Liu
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Nanjing Agricultural University, Nanjing 210095, China;
| | - Baolei Jia
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Lili Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Nanjing Agricultural University, Nanjing 210095, China;
| | - Han Li
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Jingbang Wang
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Ziqi Yuan
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Xiaobao Sun
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
11
|
Bao XG, Chong PF, He C, Lu XM, Wang XY, Zhang F, Tan BB, Yang JL, Gao LL. Enterobacter-inoculation altered the C, N contents and regulated biomass allocation in Reaumuria soongorica to promote plant growth and improve salt stress tolerance. FRONTIERS IN PLANT SCIENCE 2025; 15:1502659. [PMID: 39830945 PMCID: PMC11739099 DOI: 10.3389/fpls.2024.1502659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
Soil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones. However, the mechanisms through which PGPR regulate the contents of carbon (C) and nitrogen (N), and biomass allocation of desert plant in response to salt stress is still unclear. This study explores the impact of PGPR on biomass allocation, C, and N contents of R. soongorica seedlings through a pot experiment. Strains P6, N20, and N21, identified as Enterobacter, were isolated from the rhizosphere of R. soongorica, and they exhibited various beneficial traits such as indole-3-acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, and tolerance to up to 8% NaCl stress. We found that under NaCl stress, R. soongorica seedlings exhibit significant reductions in plant height, basal diameter, and root surface area (P<0.05). However, inoculation with strains P6, N20, and N21 reverses these trends. Compared to NaCl treatment alone, co-treatment with these strains significantly increases the biomass of roots, stems, and leaves, particularly root biomass, which increases by 99.88%, 85.55%, and 141.76%, respectively (P<0.05). Moreover, N contents decrease significantly in the roots, stems and leaves, C contents increase significantly in the roots and leaves compared to NaCl treatment (P<0.05). Specifically, N contents in roots decrease by 14.50%, 12.47%, and 8.60%, while C contents in leaves increase by 4.96%, 4.45%, and 4.94%, respectively (P<0.05). Additionally, stem and leaf biomasses exhibit a significant positive correlation with C contents and a significant negative correlation with N contents in these tissues. In conclusion, inoculation of Enterobacter strains enhanced the biomass of R. soongorica seedlings, regulated the biomass distribution, and modifies C and N contents to promote plant growth and improve salt stress tolerance. This study provides a novel adaptive strategy for the integrated use of PGPR and halophytes in saline-alkali soil improvement and vegetation restoration efforts.
Collapse
Affiliation(s)
- Xin-Guang Bao
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Pei-Fang Chong
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Cai He
- Institute for Desertification Control and Prevention, Wuwei Academy of Forestry, Wuwei, China
| | - Xue-Mei Lu
- Minqin County Liangucheng Psammophytes Nature Reserve Management Station, Wuwei, China
| | - Xue-Ying Wang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Feng Zhang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Bing-Bing Tan
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Jia-Li Yang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Li-Li Gao
- College of Forest of Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
12
|
Marasco R, Mosqueira MJ, Seferji KA, Al Romaih SM, Michoud G, Xu J, Bez C, Castillo Hernandez T, Venturi V, Blilou I, Daffonchio D. Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress. Microb Biotechnol 2024; 17:e70043. [PMID: 39692704 PMCID: PMC11653947 DOI: 10.1111/1751-7915.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sarah M. Al Romaih
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jian Xu
- Plant Systems PhysiologyRadboud UniversityNijmegenThe Netherlands
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Tatiana Castillo Hernandez
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome CenterUniversity Mohammed VI PolytechnicBen GuerirMorocco
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
13
|
Zhao H, Sun N, Xu J, Li Y, Lin X, Sun C, Zhu Y. Pseudomonas chlororaphis subsp. aurantiaca Stimulates Lateral Root Development by Integrating Auxin and Reactive Oxygen Species Signaling in Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23776-23789. [PMID: 39415482 DOI: 10.1021/acs.jafc.4c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can promote lateral root formation, while the underlying mechanisms are not fully understood. Here, we found that Pseudomonas chlororaphis subsp. aurantiaca inoculation enhanced auxin accumulation in lateral root primordia (LRP). Upon reaching LRPs, auxin activated the AUXIN RESPONSE FACTOR 7 and 19 (ARF7/19) and promoted lateral root formation in Arabidopsis. Moreover, we found that reactive oxygen species (ROS) is required for auxin-dependent lateral root emergence, and P. chlororaphis upregulated the expression of RESPIRATORY BURST OXIDASE D and F (RBOHD/F), leading to the accumulation of ROS in LRP. Although scavenging ROS or rbohd/f mutants exhibited decreased lateral roots after P. chlororaphis inoculation, the bacteria-triggered auxin signals were not altered. Conversely, the application of auxin or mutants defective in auxin signaling disturbed P. chlororaphis-derived ROS accumulation in lateral roots. Collectively, these results suggest that ARF7/19-dependent auxin signaling activates RBOHD/F to produce ROS, coordinately facilitating lateral root development after P. chlororaphis treatment.
Collapse
Affiliation(s)
- Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongguan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Guo S, Liu Y, Yin Y, Chen Y, Jia S, Wu T, Liao J, Jiang X, Kareem HA, Li X, Pan J, Wang Y, Shen X. Unveiling the multifaceted potential of Pseudomonas khavaziana strain SR9: a promising biocontrol agent for wheat crown rot. Microbiol Spectr 2024; 12:e0071224. [PMID: 39162535 PMCID: PMC11448100 DOI: 10.1128/spectrum.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Fusarium pseudograminearum, a soil-borne fungus, is the cause of the devastating wheat disease known as wheat crown rot (WCR). The persistence of this pathogen in the soil and crop residues contributes to the increased occurrence and severity of WCR. Therefore, developing effective strategies to prevent and manage WCR is of great importance. In this study, we isolated a bacterial strain, designated as SR9, from the stem of wheat, that exhibited potent antagonistic effects against F. pseudograminearum, as well as the biocontrol efficacy of SR9 on WCR was quantified at 83.99% ± 0.11%. We identified SR9 as Pseudomonas khavaziana and demonstrated its potential as a plant probiotic. SR9 displayed broad-spectrum antagonism against other fungal pathogens, including Neurospora dictyophora, Botrytis californica, and Botryosphaeria dothidea. Whole-genome sequencing analysis revealed that SR9 harbored genes encoding various cell wall-degrading enzymes, cellulases, and lipases, along with antifungal metabolites, which are responsible for its antagonistic activity. Gene knockout and quantitative PCR analyses reveal that phenazine is the essential factor for antagonism. SR9 possessed genes related to auxin synthesis, flagellar biosynthesis, biofilm adhesion, and the chemotaxis system, which play pivotal roles in plant colonization and growth promotion; we also evaluated the effects of SR9 on plant growth in wheat and Arabidopsis. Our findings strongly suggest that SR9 holds great promise as a biocontrol agent for WCR in sustainable agriculture.IMPORTANCEThe escalating prevalence of wheat crown rot, primarily attributed to Fusarium pseudograminearum, necessitates the development of cost-effective and eco-friendly biocontrol strategies. While plant endophytes are recognized for their biocontrol potential, reports on effective strains targeting wheat crown rot are sparse. This study introduces the Pseudomonas khavaziana SR9 strain as an efficacious antagonist to the wheat crown rot pathogen Fusarium pseudograminearum. Demonstrating a significant reduction in wheat crown rot incidence and notable plant growth promotion, SR9 emerges as a key contributor to plant health and agricultural sustainability. Our study outlines a biological approach to tackle wheat crown rot, establishing a groundwork for innovative sustainable agricultural practices.
Collapse
Affiliation(s)
- Shengzhi Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| | - Yating Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Siyu Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tong Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jun Liao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xinyan Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Hafiz Abdul Kareem
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xuejun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Xianyang, Shaanxi, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| |
Collapse
|
15
|
Wang F, Jia M, Li K, Cui Y, An L, Sheng H. Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome. Microbiol Res 2024; 287:127852. [PMID: 39084119 DOI: 10.1016/j.micres.2024.127852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Drought significantly affects crop productivity and poses a considerable threat to agricultural ecosystems. Plant growth-promoting bacteria (PGPB) and plant microbiome play important roles in improving drought resistance and plant performance. However, the response of the rhizosphere microbiota to PGPB during the development of plants and the interaction between inoculum, microbiota, and plants under drought stress remain to be explored. In the present study, we used culturomic, microbiomic, and metabonomic analyses to uncover the mechanisms by which Sphingomonas sp. Hbc-6, a PGPB, promotes Arabidopsis growth and enhances drought resistance. We found that the rhizosphere microbiome assembly was interactively influenced by developmental stage, Hbc-6, and drought; the bacterial composition exhibited three patterns of shifts with developmental stage: resilience, increase, and decrease. Drought diminished microbial diversity and richness, whereas Hbc-6 increased microbial diversity and helped plants recruit specific beneficial bacterial taxa at each developmental stage, particularly during the bolting stage. Some microorganisms enriched by Hbc-6 had the potential to promote carbon and nitrogen cycling processes, and 86.79 % of the isolated strains exhibited PGP characteristics (for example Pseudomonas sp. TA9). They jointly regulated plant physiological metabolism (i.e., upregulated drought resistant-facilitating substances and reduced harmful substances), thereby stimulating the growth of Arabidopsis and increasing plant biomass under drought stress conditions. Collectively, these results indicate that Hbc-6 mediates plant growth and drought resistance by affecting the microbiome. The study thus provides novel insights and strain resources for drought-resistant, high-yielding crop cultivation and breeding.
Collapse
Affiliation(s)
- Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingyue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yafang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; The College of Forestry, Beijing Forestry University, Beijing, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Ng CWW, Yan WH, Xia YT, Tsim KWK, To JCT. Plant growth-promoting rhizobacteria enhance active ingredient accumulation in medicinal plants at elevated CO 2 and are associated with indigenous microbiome. Front Microbiol 2024; 15:1426893. [PMID: 39252828 PMCID: PMC11381388 DOI: 10.3389/fmicb.2024.1426893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Plant growth-promoting rhizobacteria (PGPR) and elevated CO2 (eCO2) have demonstrated their individual potential to enhance plant yield and quality through close interaction with rhizosphere microorganisms and plant growth. However, the efficacy of PGPR under eCO2 on rhizosphere microbiome and, ultimately, plant yield and active ingredient accumulation are not yet fully understood. Methods This study investigated how the medicinal plant Pseudostellaria heterophylla (P. heterophylla) and its rhizosphere microbes respond to PGPR (Bacillus subtilis and Pseudomonas fluorescens) at eCO2 (1,000 ppm). Results and Discussion It was found that the yield and active ingredient polysaccharides accumulation in the tuber of P. heterophylla were significantly increased by 38 and 253%, respectively. This promotion has been associated with increased root development and changes in the indigenous microbial community. Metagenomics analysis revealed a significant reduction in pathogenic Fusarium abundance in the rhizosphere. Potential biocontrol bacteria Actinobacteria and Proteobacteria were enriched, especially the genera Bradyrhizobium and Rhodanobacter. The reshaping of the rhizosphere microbiome was accompanied by the upregulation of biological pathways related to metabolite biosynthesis in the rhizosphere. These modifications were related to the promotion of the growth and productivity of P. heterophylla. Our findings highlighted the significant role played by PGPR in medicinal plant yield and active ingredient accumulation when exposed to eCO2.
Collapse
Affiliation(s)
- Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Wen Hui Yan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Teng Xia
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Justin Chun Ting To
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Li C, Chen X, Jia Z, Zhai L, Zhang B, Grüters U, Ma S, Qian J, Liu X, Zhang J, Müller C. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nat Ecol Evol 2024; 8:1270-1284. [PMID: 38849504 DOI: 10.1038/s41559-024-02437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024]
Abstract
Microbial inoculation involves transplanting microorganisms from their natural habitat to new plants or soils to improve plant performance, and it is being increasingly used in agriculture and ecological restoration. However, microbial inoculants can invade and alter the composition of native microbial communities; thus, a comprehensive analysis is urgently needed to understand the overall impact of microbial inoculants on the biomass, diversity, structure and network complexity of native communities. Here we provide a meta-analysis of 335 studies revealing a positive effect of microbial inoculants on soil microbial biomass. This positive effect was weakened by environmental stress and enhanced by the use of fertilizers and native inoculants. Although microbial inoculants did not alter microbial diversity, they induced major changes in the structure and bacterial composition of soil microbial communities, reducing the complexity of bacterial networks and increasing network stability. Finally, higher initial levels of soil nutrients amplified the positive impact of microbial inoculants on fungal biomass, actinobacterial biomass, microbial biomass carbon and microbial biomass nitrogen. Together, our results highlight the positive effects of microbial inoculants on soil microbial biomass, emphasizing the benefits of native inoculants and the important regulatory roles of soil nutrient levels and environmental stress.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Uwe Grüters
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Jing Qian
- Yangzhou China Grand Canal Museum, Yangzhou, China
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
- Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
18
|
Tinoco-Tafolla HA, López-Hernández J, Ortiz-Castro R, López-Bucio J, Reyes de la Cruz H, Campos-García J, López-Bucio JS. Sucrose supplements modulate the Pseudomonas chlororaphis-Arabidopsis thaliana interaction via decreasing the production of phenazines and enhancing the root auxin response. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154259. [PMID: 38705079 DOI: 10.1016/j.jplph.2024.154259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.
Collapse
Affiliation(s)
- Hugo Alejandro Tinoco-Tafolla
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - José López-Hernández
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, Carretera Antigua a Coatepec 351, El Haya, A.C 91073 Veracruz, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- Catedrático (IXM) CONAHCYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
19
|
Bao X, Chong P, He C, Wang X, Zhang F. Mechanism on the promotion of host growth and enhancement of salt tolerance by Bacillaceae isolated from the rhizosphere of Reaumuria soongorica. Front Microbiol 2024; 15:1408622. [PMID: 38881656 PMCID: PMC11176432 DOI: 10.3389/fmicb.2024.1408622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Salt stress is a major abiotic stress that affects the growth of Reaumuria soongorica and many psammophytes in the desert areas of Northwest China. However, various Plant Growth-Promoting Rhizobacteria (PGPR) have been known to play an important role in promoting plant growth and alleviating the damaging effects of salt stress. In this study, three PGPR strains belonging to Bacillaceae were isolated from the rhizosphere of Reaumuria soongorica by morphological and molecular identification. All isolated strains exhibited capabilities of producing IAA, solubilizing phosphate, and fixing nitrogen, and were able to tolerate high levels of NaCl stress, up to 8-12%. The results of the pot-based experiment showed that salt (400 mM NaCl) stress inhibited Reaumuria soongorica seedlings' growth performance as well as biomass production, but after inoculation with strains P2, S37, and S40, the plant's height significantly increased by 26.87, 17.59, and 13.36%, respectively (p < 0.05), and both aboveground and root fresh weight significantly increased by more than 2 times compared to NaCl treatment. Additionally, inoculation with P2, S37, and S40 strains increased the content of photosynthetic pigments, proline, and soluble protein in Reaumuria soongorica seedlings under NaCl stress, while reducing the content of malondialdehyde and soluble sugars. Metabolomic analysis showed that strain S40 induces Reaumuria soongorica seedling leaves metabolome reprogramming to regulate cell metabolism, including plant hormone signal transduction and phenylalanine, tyrosine, and tryptophan biosynthesis pathways. Under NaCl stress, inoculation with strain S40 upregulated differential metabolites in plant hormone signal transduction pathways including plant hormones such as auxins (IAA), cytokinins, and jasmonic acid. The results indicate that inoculation with Bacillaceae can promote the growth of Reaumuria soongorica seedlings under NaCl stress and enhance salt tolerance by increasing the content of photosynthetic pigments, accumulating osmoregulatory substances, regulating plant hormone levels This study contributes to the enrichment of PGPR strains capable of promoting the growth of desert plants and has significant implications for the psammophytes growth and development in desert regions, as well as the effective utilization and transformation of saline-alkali lands.
Collapse
Affiliation(s)
- Xinguang Bao
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Peifang Chong
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Cai He
- Wuwei Academy of Forestry, Wuwei, China
| | - Xueying Wang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Feng Zhang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
20
|
Jiang Y, Zhang Y, Liu Y, Zhang J, Jiang M, Nong C, Chen J, Hou K, Chen Y, Wu W. Plant Growth-Promoting Rhizobacteria Are Key to Promoting the Growth and Furanocoumarin Synthesis of Angelica dahurica var. formosana under Low-Nitrogen Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6964-6978. [PMID: 38525888 DOI: 10.1021/acs.jafc.3c09655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Microbiomes are the most important members involved in the regulation of soil nitrogen metabolism. Beneficial interactions between plants and microbiomes contribute to improving the nitrogen utilization efficiency. In this study, we investigated the Apiaceae medicinal plant Angelica dahurica var. formosana. We found that under a low-nitrogen treatment, the abundance of carbon metabolites in the rhizosphere secretions of A. dahurica var. formosana significantly increased, thereby promoting the ratio of C to N in rhizosphere and nonrhizosphere soils, increasing carbon sequestration, and shaping the microbial community composition, thus promoting a higher yield and furanocoumarin synthesis. Confirmation through the construction of a synthetic microbial community and feedback experiments indicated that beneficial plant growth-promoting rhizobacteria play a crucial role in improving nitrogen utilization efficiency and selectively regulating the synthesis of target furanocoumarins under low nitrogen conditions. These findings may contribute additional theoretical evidence for understanding the mechanisms of interaction between medicinal plants and rhizosphere microorganisms.
Collapse
Affiliation(s)
- Yijie Jiang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Yunxin Zhang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Yanan Liu
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Jiaheng Zhang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Meiyan Jiang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Changguo Nong
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Jinsong Chen
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Kai Hou
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| |
Collapse
|
21
|
Grosu E, Singh Rathore D, Garcia Cabellos G, Enright AM, Mullins E. Ensifer adhaerens strain OV14 seed application enhances Triticum aestivum L. and Brassica napus L. development. Heliyon 2024; 10:e27142. [PMID: 38495150 PMCID: PMC10943344 DOI: 10.1016/j.heliyon.2024.e27142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Given the challenges imposed by climate change and societal challenges, the European Union established ambitious goals as part of its Farm to Fork (F2F) strategy. Focussed on accelerating the transition to systems of sustainable food production, processing and consumption, a key element of F2F is to reduce the use of fertilisers by at least 20% and plant protection products by up to 50% by 2030. In recent years, a substantial body of research has highlighted the potential impact of microbial-based applications to support crop production practices through both biotic/abiotic stresses via maintaining or even improving yields and reducing reliance on intensive chemical inputs. Here, we have characterised the ability of a new soil-borne free-living bacterium strain Ensifer adhaerens OV14 (EaOV14) to significantly enhance crop vigour index by up to 50% for monocot (wheat, Triticum aestivum L., p < 0.0001) and by up to 40% for dicot (oilseed rape, Brassica napus L., p < 0.0001) species under in-vitro conditions (n = 360 seedlings/treatment). The beneficial effect was further studied under controlled glasshouse growing conditions (n = 60 plants/treatment) where EaOV14 induced significantly increased seed yield of spring oilseed rape compared to the controls (p < 0.0001). Moreover, using bespoke rhizoboxes, enhanced root architecture (density, roots orientation, roots thickness etc.) was observed for spring oilseed rape and winter wheat, with the median number of roots 55% and 33% higher for oilseed rape and wheat respectively, following EaOV14 seed treatment compared to the control. In addition, EaOV14 treatment increased root tip formation and root volume, suggesting the formation of a more robust root system architecture post-seed treatment. However, like other microbial formulations, the trade-offs associated with field translation, such as loss or limited functionality due to inoculum formulation or environmental distress, need further investigation. Moreover, the delivery method requires further optimisation to identify the optimal inoculum formulation that will maximise the expected beneficial impact on yield under field growing conditions.
Collapse
Affiliation(s)
- Elena Grosu
- Crop Science Department, Teagasc, Oak Park, Carlow, Ireland
- EnviroCORE, South East Technological University Carlow, Kilkenny Road, Carlow, Ireland
| | | | | | - Anne-Marie Enright
- EnviroCORE, South East Technological University Carlow, Kilkenny Road, Carlow, Ireland
| | - Ewen Mullins
- Crop Science Department, Teagasc, Oak Park, Carlow, Ireland
| |
Collapse
|
22
|
Xing W, Gai X, Xue L, Chen G. Evaluating the role of rhizosphere microbial home-field advantage in Betula luminifera adaptation to antimony mining areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169009. [PMID: 38040368 DOI: 10.1016/j.scitotenv.2023.169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
It has been established that the coevolution of plants and the rhizosphere microbiome in response to abiotic stress can result in the recruitment of specific functional microbiomes. However, the potential of inoculated rhizosphere microbiomes to enhance plant fitness and the inheritance of adaptive traits in subsequent generations remains unclear. In this study, cross-inoculation trials were conducted using seeds, rhizosphere microbiome, and in situ soil collected from areas of Betula luminifera grown in both antimony mining and control sites. Compared to the control site, plants originating from mining areas exhibited stronger adaptive traits, specifically manifested as significant increases in hundred-seed weight, specific surface area, and germination rate, as well as markedly enhanced seedling survival rate and biomass. Inoculation with mining microbiomes could enhance the fitness of plants in mining sites through a "home-field advantage" while also improving the fitness of plants originating from control sites. During the initial phase of seedling development, bacteria play a crucial role in promoting growth, primarily due to their mechanisms of metal resistance and nutrient cycling. This study provided evidence that the outcomes of long-term coevolution between plants and the rhizosphere microbiome in mining areas can be passed on to future generations. Moreover, it has been demonstrated that transgenerational inheritance and rhizosphere microbiome inoculation are important factors in improving the adaptability of plants in mining areas. The findings have important implications for vegetation restoration and ecological environment improvement in mining areas.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; Nanjing Forestry University, Nanjing 210037, China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
23
|
Guo S, Geisen S, Mo Y, Yan X, Huang R, Liu H, Gao Z, Tao C, Deng X, Xiong W, Shen Q, Kowalchuk GA, Li R. Predatory protists impact plant performance by promoting plant growth-promoting rhizobacterial consortia. THE ISME JOURNAL 2024; 18:wrae180. [PMID: 39312488 PMCID: PMC11459550 DOI: 10.1093/ismejo/wrae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Plant performance is impacted by rhizosphere bacteria. These bacteria are subjected to both bottom-up control by root exudates as well as top-down control by predators, particularly protists. Protists stimulate plant growth-promoting microbes resulting in improved plant performance. However, knowledge of the mechanisms that determine the interconnections within such tripartite protist-bacteria-plant interactions remains limited. We conducted experiments examining the effects of different densities of the predatory protist Cercomonas lenta on rhizosphere bacterial communities, specifically zooming on interactions between Cercomonas lenta and key bacterial taxa, as well as interactions among key bacterial taxa. We tracked rhizosphere bacterial community composition, potential microbial interactions, and plant performance. We found that Cercomonas lenta inoculation led to an average increase in plant biomass of 92.0%. This effect was linked to an increase in plant growth-promoting rhizobacteria (Pseudomonas and Sphingomonas) and a decrease in bacteria (Chitinophaga) that negatively impact on plant growth-promoting rhizobacteria. We also found evidence for cooperative enhancements in biofilm formation within the plant growth-promoting rhizobacterial consortium. Cercomonas lenta enhanced a plant growth-promoting rhizobacterial consortium colonization by promoting its cooperative biofilm formation in the rhizosphere, leading to a 14.5% increase in phosphate solubilization that benefits plant growth. Taken together, we provide mechanistic insights into how the predatory protist Cercomonas lenta impacts plant growth, namely by stimulating plant beneficial microbes and enhancing their interactive activities such as biofilm formation. Predatory protists may therefore represent promising biological agents that can contribute to sustainable agricultural practices by promoting interactions between the plant and its microbiome.
Collapse
Affiliation(s)
- Sai Guo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Yani Mo
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xinyue Yan
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Ruoling Huang
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Zhilei Gao
- Department of Research and Innovation, EUROstyle BV, Ecomunitypark 1, Oosterwolde 8431 SM, the Netherlands
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Wu Xiong
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Provice 210095, P. R. China
| |
Collapse
|
24
|
Peng H, Wu H, Gu W, Lu Y, Qin H, You Y, Zhou D, Wang D, Sun L, Zhou C, Zheng Y. Exploring the Application Potential of Aquaculture Sewage Treatment of Pseudomonas chengduensis Strain WD211 Based on Its Complete Genome. Genes (Basel) 2023; 14:2107. [PMID: 38136929 PMCID: PMC10743257 DOI: 10.3390/genes14122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Pseudomonas chengduensis is a new species of Pseudomonas discovered in 2014, and currently, there is a scarcity of research on this bacterium. The P. chengduensis strain WD211 was isolated from a fish pond. This study investigated the purification capability and environmental adaptability of strain WD211 in wastewater and described the basic features and functional genes of its complete genome. According to the results, the sewage treated with strain WD211 showed a decrease in concentration of 18.12% in total nitrogen, 89.39% in NH4+, 62.16% in NO3-, 79.97% in total phosphorus, and 71.41% in COD after 24 h. Strain WD211 is able to survive in a pH range of 6-11. It shows resistance to 7% sodium chloride and different types of antibiotics. Genomic analysis showed that strain WD211 may remove nitrogen and phosphorus through the metabolic pathway of nitrogen assimilation and phosphorus accumulation, and that it can promote organic decomposition through oxygenase. Strain WD211 possesses genes for producing betaine, trehalose, and sodium ion transport, which provide it with salt tolerance. It also has genes for antibiotic efflux and multiple oxidases, which give it antibiotic resistance. This study contributes to the understanding of the sewage treatment ability and potential applications of P. chengduensis.
Collapse
Affiliation(s)
- Huanlong Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Hangtao Wu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yi You
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Donglai Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Lili Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| | - Yanling Zheng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Key Laboratory of Nutrient Cycling and Farmland Conservation of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
25
|
Oliveira TJSS, Oliveira CEDS, Jalal A, Gato IMB, Rauf K, Moreira VDA, de Lima BH, Vitória LS, Giolo VM, Teixeira Filho MCM. Inoculation reduces nitrate accumulation and increases growth and nutrient accumulation in hydroponic arugula. SCIENTIA HORTICULTURAE 2023; 320:112213. [DOI: 10.1016/j.scienta.2023.112213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
|
26
|
Zhang SC, Zhang YL, Guo XJ, Luo M, Li SD, Guo RJ. Combination of Bacillus and Low Fertigation Input Promoted the Growth and Productivity of Chinese Cabbage and Enriched Beneficial Rhizosphere Bacteria Lechevalieria. BIOLOGY 2023; 12:1130. [PMID: 37627014 PMCID: PMC10452305 DOI: 10.3390/biology12081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Long-term overfertilization increases soil salinity and disease occurrence and reduces crop yield. Integrated application of microbial agents with low fertigation input might be a sustainable and cost-effective strategy. Herein, the promoting effects of Bacillus velezensis B006 on the growth of Chinese cabbage under different fertigation conditions in field trials were studied and the underlying mechanisms were revealed. In comparison with normal fertigation (water potential of -30 kPa and soluble N, P, K of 29.75, 8.26, 21.48 Kg hm-2) without B006 application, the combination of B. velezensis B006 and reduced fertigation input (-50 kPa and N, P, K of 11.75, 3.26, 6.48 Kg hm-2) promoted cabbage growth and root development, restrained the occurrence of soft rot disease, and improved the yield. High-performance liquid chromatography (HPLC) analyses indicated that B006 application promoted the production of indole-3-acetic acid and salicylic acid in cabbage roots, which are closely related to plant growth. Rhizosphere microbiota analyses indicated that the combination of low fertigation input and B006 application promoted the enrichment of Streptomyces, Lechevalieria, Promicromonospora, and Aeromicrobium and the abundance of Lechevalieria was positively correlated with the root length and vitality. This suggested that the integrated application of reduced fertigation and Bacillus is highly efficient to improve soil ecology and productivity and will benefit the sustainable development of crop cultivation in a cost-effective way.
Collapse
Affiliation(s)
- Shi-Chang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yu-Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiao-Jing Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Luo
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shi-Dong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rong-Jun Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Raj Y, Kumar A, Kumari S, Kumar R, Kumar R. Comparative Genomics and Physiological Investigations Supported Multifaceted Plant Growth-Promoting Activities in Two Hypericum perforatum L.-Associated Plant Growth-Promoting Rhizobacteria for Microbe-Assisted Cultivation. Microbiol Spectr 2023; 11:e0060723. [PMID: 37199656 PMCID: PMC10269543 DOI: 10.1128/spectrum.00607-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 μg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 μg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.
Collapse
Affiliation(s)
- Yog Raj
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sareeka Kumari
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
28
|
Ravelo-Ortega G, Raya-González J, López-Bucio J. Compounds from rhizosphere microbes that promote plant growth. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102336. [PMID: 36716513 DOI: 10.1016/j.pbi.2023.102336] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 06/10/2023]
Abstract
The rhizosphere is the soil-plant interface colonized by bacterial and fungal species that exert growth-promoting and adaptive benefits. The plant-bacteria relationships rely upon the perception of volatile organic compounds (VOCs), canonical phytohormones such as auxins and cytokinins, and the bacterial quorum sensing-related N-acyl-L-homoserine lactones and cyclodipeptides. On the other hand, plant-beneficial Trichoderma fungi emit highly active VOCs, including 6-pentyl-2H-pyran-2-one (6-PP), and β-caryophyllene, which contribute to plant morphogenesis, but also into how these microbes spread over roots or live as endophytes. Here, we describe recent findings concerning how compounds from beneficial bacteria and fungi affect root architecture and advance into the signaling events that mediate microbial recognition.
Collapse
Affiliation(s)
- Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, C. P. 58240, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
29
|
Zhang D, He J, Cheng P, Zhang Y, Khan A, Wang S, Li Z, Zhao S, Zhan X, Ma F, Li X, Guan Q. 4-methylumbelliferone (4-MU) enhances drought tolerance of apple by regulating rhizosphere microbial diversity and root architecture. HORTICULTURE RESEARCH 2023; 10:uhad099. [PMID: 37427035 PMCID: PMC10327542 DOI: 10.1093/hr/uhad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
The dwarfing rootstocks-mediated high-density apple orchard is becoming the main practice management. Currently, dwarfing rootstocks are widely used worldwide, but their shallow root system and drought sensitivity necessitate high irrigation requirements. Here, the root transcriptome and metabolome of dwarfing (M9-T337, a drought-sensitive rootstock) and vigorous rootstocks (Malus sieversii, a drought-tolerant species, is commonly used as a rootstock) showed that a coumarin derivative, 4-Methylumbelliferon (4-MU), was found to accumulate significantly in the roots of vigorous rootstock under drought condition. When exogenous 4-MU was applied to the roots of dwarfing rootstock under drought treatment, the plants displayed increased root biomass, higher root-to-shoot ratio, greater photosynthesis, and elevated water use efficiency. In addition, diversity and structure analysis of the rhizosphere soil microbial community demonstrated that 4-MU treatment increased the relative abundance of putatively beneficial bacteria and fungi. Of these, Pseudomonas, Bacillus, Streptomyces, and Chryseolinea bacterial strains and Acremonium, Trichoderma, and Phoma fungal strains known for root growth, or systemic resistance against drought stress, were significantly accumulated in the roots of dwarfing rootstock after 4-MU treatment under drought stress condition. Taken together, we identified a promising compound-4-MU, as a useful tool, to strengthen the drought tolerance of apple dwarfing rootstock.
Collapse
Affiliation(s)
- Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yutian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
30
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
31
|
Wang J, Zhao S, Xu S, Zhao W, Zhang X, Lei Y, Zhai H, Huang Z. Co-inoculation of antagonistic Bacillus velezensis FH-1 and Brevundimonas diminuta NYM3 promotes rice growth by regulating the structure and nitrification function of rhizosphere microbiome. Front Microbiol 2023; 14:1101773. [PMID: 36846752 PMCID: PMC9948033 DOI: 10.3389/fmicb.2023.1101773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Microbial inoculation with plant growth-promoting microorganisms (PGPMs) is one of the most promising technologies to solve the current global challenges. Co-inoculants is more efficient and stable than mono-inoculants. However, the growth promoting mechanism of co-inoculants in complex soil system is still poorly understood. In this study, the effects on rice, soil and the microbiome of the mono-inoculant Bacillus velezensis FH-1 (F) and Brevundimonas diminuta NYM3 (N) and the co-inoculant FN obtained in previous works were compared. Correlation analysis and PLS-PM were used to explore the primary mechanism of different inoculants promoting rice growth. We hypothesized that inoculants promoted plant growth (i) by themselves, (ii) by improving soil nutrient availability or (iii) by regulating the rhizosphere microbiome in complex soil system. We also assumed that different inoculants had different ways of promoting plant growth. The results showed that FN significantly promoted rice growth and nitrogen absorption and slightly increased soil total nitrogen and microbial network complexity compared with F, N and the control (CK). B. velezensis FH-1 and B. diminuta NYM3 interfered with each other's colonization in FN. FN increased the complexity of the microbial network compared to F and N. The bacterial community of FN was quite different from CK and N, while the fungal community was not significantly different from other treatments. The species and functions enriched or inhibited by FN are part of F. The correlation analysis and PLS-PM results showed that inoculants (F/N/FN) promoted the growth of rice mainly by regulating the rhizosphere microbiome rather than by themselves or by improving soil nutrient availability. Co-inoculant FN promotes rice growth specifically by enhancing microbial nitrification function through enriching related species compared with F or N. This may provide theoretical guidance for the construction and application of co-inoculants in the future.
Collapse
Affiliation(s)
- Jingjing Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,*Correspondence: Jingjing Wang, ✉
| | - Siqi Zhao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Song Xu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wei Zhao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yu Lei
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,Core Facility, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huanhuan Zhai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,Core Facility, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Huang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,Zhiyong Huang, ✉
| |
Collapse
|