1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
Yu YH, Crosbie DB, Marín Arancibia M. Pseudomonas in the spotlight: emerging roles in the nodule microbiome. TRENDS IN PLANT SCIENCE 2025; 30:461-470. [PMID: 39788854 DOI: 10.1016/j.tplants.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
While rhizobia have long been recognised as the primary colonisers of legume nodules, microbiome studies have revealed the presence of other bacteria in these organs. This opinion delves into the factors shaping the nodule microbiome and explores the potential roles of non-rhizobial endophytes, focusing particularly on Pseudomonas as prominent players. We explore the mechanisms by which Pseudomonas colonise nodules, their interactions with rhizobia, and their remarkable potential to promote plant growth and protect against pathogens. Furthermore, we discuss the promising prospects of using Pseudomonas as inoculants alongside rhizobia to enhance crop growth and promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Yu-Hsiang Yu
- Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Munich, Germany; Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Duncan B Crosbie
- Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Munich, Germany
| | - Macarena Marín Arancibia
- Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Munich, Germany; Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Wei D, Zhang X, Guo Y, Saleem K, Jia J, Li M, Yu H, Hu Y, Yao X, Wang Y, Chang X, Song C. CuO nanoparticles facilitate soybean suppression of Fusarium root rot by regulating antioxidant enzymes, isoflavone genes, and rhizosphere microbiome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109788. [PMID: 40096759 DOI: 10.1016/j.plaphy.2025.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Fusarium root rot is a widespread soil-borne disease severely impacting soybean yield and quality. Compared to traditional fertilizers' biological and environmental toxicity, CuO nanoparticles (NPs) hold promise for disease control in a low dose and high efficiency manner. METHODS We conducted both greenhouse and field experiments, employing enzymatic assays, elemental analysis, qRT-PCR, and microbial sequencing (16S rRNA, ITS) to explore the potential of CuO NPs for sustainable controlling Fusarium-induced soybean disease. RESULTS Greenhouse experiments showed that foliar spraying of CuO NPs (10, 100, and 500 mg L-1) promoted soybean growth more effectively than EDTA-CuNa2 at the same dose, though 500 CuO NPs caused mild phytotoxicity. CuO NPs effectively controlled root rot, while EDTA-CuNa2 worsened the disease severity by 0.85-34.04 %. CuO NPs exhibited more substantial antimicrobial effects, inhibiting F. oxysporum mycelial growth and spore germination by 5.04-17.55 % and 10.24-14.41 %, respectively. 100 mg L-1 CuO NPs was the optimal concentration for balancing soybean growth and disease resistance. Additionally, CuO NPs boosted antioxidant enzyme activity (CAT, POD, and SOD) in leaves and roots, aiding in ROS clearance during pathogen invasion. Compared to the pathogen control, 100 mg L-1 CuO NPs upregulated the relative expression of seven isoflavone-related genes (Gm4CL, GmCHS8, GmCHR, GmCHI1a, GmIFS1, GmUGT1, and GmMYB176) by 1.18-4.51 fold, thereby enhancing soybean disease resistance in place of progesterone-receptor (PR) genes. Field trials revealed that CuO NPs' high leaf-to-root translocation modulated soybean rhizosphere microecology. Compared to the pathogen control, 100 mg L-1 CuO NPs increased nitrogen-fixing bacteria (Rhizobium, Azospirillum, Azotobacter) and restored disease-resistant bacteria (Pseudomonas, Burkholderia) and fungi (Trichoderma, Penicillium) to healthy levels. Furthermore, 100 mg L-1 CuO NPs increased beneficial bacteria (Pedosphaeraceae, Xanthobacteraceae, SCI84, etc.) and fungi (Trichoderma, Curvularia, Hypocreales, etc.), which negatively correlated with F. oxysporum, while recruiting functional microbes to enhance soybean yield. CONCLUSION 100 mg L-1 CuO NPs effectively promoting soybean growth and providing strong resistance against root rot disease by improving antioxidant enzyme activity, regulating the relative expression of isoflavone-related genes, increasing beneficial bacteria and fungi and restoring disease-resistant. Our findings suggest that CuO NPs offer an environmentally sustainable strategy for managing soybean disease, with great potential for green production.
Collapse
Affiliation(s)
- Dengqin Wei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyuan Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuantian Guo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Khansa Saleem
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juntao Jia
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengshuang Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanghang Yu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Yao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chun Song
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Weber SE, Bascompte J, Kahmen A, Niklaus PA. AMF diversity promotes plant community phosphorus acquisition and reduces carbon costs per unit of phosphorus. THE NEW PHYTOLOGIST 2025. [PMID: 40248851 DOI: 10.1111/nph.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Plants may benefit from more diverse communities of arbuscular mycorrhizal fungi (AMF), as functional complementarity of AMF may allow for increased resource acquisition, and because a high AMF diversity increases the probability of plants matching with an optimal AMF symbiont. We repeatedly radiolabeled plants and AMF in the glasshouse over c. 9 months to test how AMF species richness (SR) influences the exchange of plant C (14C) for AMF P (32P & 33P) and resulting shoot nutrients and mass from a biodiversity-ecosystem functioning perspective. Plant P acquisition via AMF increased with sown AMF SR, as did shoot biomass, shoot P, and shoot N. The rate of plant C transferred to AMF for this P (C:P) decreased with sown AMF SR. Plants in plant communities benefit from inoculation with a variety of AMF species via more favorable resource exchange. Surprisingly, this effect did not differ among functionally distinct communities comprised entirely of either legumes, nonlegume forbs, or C3 grasses.
Collapse
Affiliation(s)
- Sören Eliot Weber
- Institute for Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Jordi Bascompte
- Institute for Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Ansgar Kahmen
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
- Departement Umweltwissenschaften, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
| | - Pascal A Niklaus
- Institute for Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| |
Collapse
|
5
|
Yang J, Gao F, Pan H. Essential roles of nodule cysteine-rich peptides in maintaining the viability of terminally differentiated bacteroids in legume-rhizobia symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1077-1085. [PMID: 40105505 DOI: 10.1111/jipb.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Investigations into the nitrogen-fixing symbiosis between legumes and rhizobia can yield innovative strategies for sustainable agriculture. Legume species of the Inverted Repeat-Lacking Clade (IRLC) and the Dalbergioids, can utilize nodule cysteine-rich (NCR) peptides, a diverse family of peptides characterized by four or six highly conserved cysteine residues, to communicate with their microbial symbionts. These peptides, many of which exhibit antimicrobial properties, induce profound differentiation of bacteroids (semi-autonomous forms of bacteria) within nodule cells. This terminal differentiation endows the bacteroids with the ability to fix nitrogen, at the expense of their reproductive capacity. Notably, a significant number of NCR peptides is expressed in the nodule fixation zone, where the bacteroids have already reached terminal differentiation. Recent discoveries, through forward genetics approaches, have revealed that the functions of NCR peptides extend beyond antimicrobial effects and the promotion of differentiation. They also play a critical role in sustaining the viability of terminally differentiated bacteroids within nodule cells. These findings underscore the multifaceted functions of NCR peptides and highlight the importance of these peptides in mediating communications between host cells and the terminally differentiated bacteroids.
Collapse
Affiliation(s)
- Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Yang D, Wang L, Bai S. Enhancement of alfalfa growth resistance by arbuscular mycorrhiza and earthworm in molybdenum-contaminated soils: From the perspective of soil nutrient turnover. ENVIRONMENTAL RESEARCH 2025; 267:120714. [PMID: 39736438 DOI: 10.1016/j.envres.2024.120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Molybdenum (Mo) acts as a crucial nutrient for plant development, yet excessive soil exposure can cause detrimental effects. Molybdenosis symptoms remain subtle in many plants, largely due to the safeguarding functions of soil organisms, the fundamental biological mechanisms lack clarity. In this study, we explored the potential mechanisms for amending Mo-exposed soils with soil microbe-arbuscular mycorrhizal fungi (AMF) and soil fauna, specifically earthworms, to enhance model plant-alfalfa growth resistance through soil nutrient turnover perspectives. Our findings illustrated that excessive Mo exposure disrupted soil nutrient turnover, manifesting as exacerbated soil microbial C and N metabolic limitations. Consequently, this interference intensified nutrient competition between alfalfa and soil microbes, thereby impeding alfalfa nutrient accumulation and growth resistance. The synergistic application of AMF and earthworms alleviated microbial C (8.55%-28.23%) and N (11.14%-37.55%) metabolic limitations by modulating soil enzyme activities, particularly P-acquiring enzyme. This co-application facilitated enhanced C and N accumulation in alfalfa, thus improving its growth resistance (24.15%-123.74%) under Mo exposure. Furthermore, in contrast to singular treatments, the combination of AMF and earthworms enhanced mutual Mo tolerance, amplifying biological benefits for alfalfa growth. Earthworms promoted AMF colonization and the secretion of glomalin-related soil proteins (GRSP), while AMF alleviated Mo accumulation and oxidative stress in earthworms. Additionally, the AMF-induced regulation of gut metabolism reduced earthworm mortality and minimized weight loss. Our study underscores the necessity of maintaining soil biodiversity when utilizing Mo fertilizers to mitigate the potential risks of Mo over-exposure affecting soil nutrient turnover and plant growth.
Collapse
Affiliation(s)
- Dongguang Yang
- National Engineering Research Center for Safe Disposal, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Wang
- National Engineering Research Center for Safe Disposal, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shanshan Bai
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Yeremko L, Czopek K, Staniak M, Marenych M, Hanhur V. Role of Environmental Factors in Legume- Rhizobium Symbiosis: A Review. Biomolecules 2025; 15:118. [PMID: 39858512 PMCID: PMC11764364 DOI: 10.3390/biom15010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability. These factors affect key processes, including rhizobia survival, nodule formation, and nitrogenase activity, ultimately determining the growth and productivity of legumes. This review summarizes current knowledge on legume-rhizobia interactions under varying abiotic conditions. It highlights the impact of salinity and acidity in limiting nodule development, soil temperature in regulating microbial community dynamics, and moisture availability in modulating metabolic and hormonal responses during drought and waterlogging. Moreover, the role of essential nutrients, including nitrogen, phosphorus, potassium, and trace elements such as iron, molybdenum, and boron, in optimizing symbiosis is critically analyzed.
Collapse
Affiliation(s)
- Liudmyla Yeremko
- Department of Crop Production, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine; (L.Y.); (V.H.)
| | - Katarzyna Czopek
- Department of Crops and Yield Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, 8 Czartoryskich St., 24-100 Pulawy, Poland;
| | - Mariola Staniak
- Department of Crops and Yield Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, 8 Czartoryskich St., 24-100 Pulawy, Poland;
| | - Mykola Marenych
- Department of Breeding, Seed Production and Genetics, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine;
| | - Volodymyr Hanhur
- Department of Crop Production, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine; (L.Y.); (V.H.)
| |
Collapse
|
8
|
Isidra-Arellano MC, Valdés-López O. Understanding the Crucial Role of Phosphate and Iron Availability in Regulating Root Nodule Symbiosis. PLANT & CELL PHYSIOLOGY 2024; 65:1925-1936. [PMID: 39460549 DOI: 10.1093/pcp/pcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
The symbiosis between legumes and nitrogen-fixing bacteria (rhizobia) is instrumental in sustaining the nitrogen cycle and providing fixed nitrogen to the food chain. Both partners must maintain an efficient nutrient exchange to ensure a successful symbiosis. This mini-review highlights the intricate phosphate and iron uptake and homeostasis processes taking place in legumes during their interactions with rhizobia. The coordination of transport and homeostasis of these nutrients in host plants and rhizobia ensures an efficient nitrogen fixation process and nutrient use. We discuss the genetic machinery controlling the uptake and homeostasis of these nutrients in the absence of rhizobia and under symbiotic conditions with this soil bacterium. We also highlight the genetic impact of the availability of phosphate and iron to coordinate the activation of the genetic programs that allow legumes to engage in symbiosis with rhizobia. Finally, we discuss how the transcription factor phosphate starvation response might be a crucial genetic element to integrate the plant's needs of nitrogen, iron and phosphate while interacting with rhizobia. Understanding the coordination of the iron and phosphate uptake and homeostasis can lead us to better harness the ecological benefits of the legume-rhizobia symbiosis, even under adverse environmental conditions.
Collapse
Affiliation(s)
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Department of Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México
| |
Collapse
|
9
|
Basiru S, Ait Si Mhand K, Elfermi R, Khatour I, Errafii K, Legeay J, Hijri M. Enhancing chickpea growth through arbuscular mycorrhizal fungus inoculation: facilitating nutrient uptake and shifting potential pathogenic fungal communities. MYCORRHIZA 2024; 35:1. [PMID: 39656243 DOI: 10.1007/s00572-024-01174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/07/2024] [Indexed: 03/21/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are the most widespread plant symbionts associated with plant roots, and theyperform numerous functions that contribute to plants' health and physiology. However, there are many knowledge gaps in how the interactions between AMF and root mycobiomes influence the performance of the host plants. To this end, we inoculated a local chickpea cultivar grown in agricultural soil under semi-controlled conditions with Rhizophagus irregularis. In addition to examining mycorrhizal colonization, plant biomass, and mineral nutrition, we sequenced the ITS region of the rDNA to assess the chickpea mycobiome and identify key fungal taxa potentially responding to R. irregularis inoculation. Our results showed that inoculation had a positive effect on chickpea biomass and mineral nutrition, especially the total aboveground phosphorus, potassium and sodium contents. Fusarium, Sporomia, Alternaria, and unknown Pleosporales were the most abundant taxa in the roots, while Stachybotris, Penicillum, Fusarium, Ascobolus, an unknown Pleosporales and Acrophialophora were the most abundant in the rhizosphere. Among the ASVs that either were enriched or depleted in the rhizosphere and roots are potential plant pathogens from the genera Didymella, Fusarium, Neocosmospora, and Stagonosporopsis. This study highlights the relevance of AMF inoculation not only for enhancing chickpea growth and mineral nutrition in semi-arid conditions but also for influencing the composition of the plants' fungal community which contributes to improved plant performance and resilience against biotic and abiotic stress.
Collapse
Affiliation(s)
- Sulaimon Basiru
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Khadija Ait Si Mhand
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Rachid Elfermi
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Imad Khatour
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Khaoula Errafii
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Jean Legeay
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco.
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, H1X 2B2, Canada.
| |
Collapse
|
10
|
Shi C, Qiu T, Zhang Y, Ma Y, Li X, Dong S, Yuan X, Song X. Effects of different preceding crops on soil nutrients and foxtail millet productivity and quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1477756. [PMID: 39654962 PMCID: PMC11625555 DOI: 10.3389/fpls.2024.1477756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Crop rotation can affect crop productivity and soil characteristics; however, the impact of preceding crops on the yield and quality of foxtail millet and the relationship between these two factors have not been well characterised. To further investigate the effects of preceding crops on foxtail millet, this study cultivated maize, mung beans, soybeans, potatoes, and proso millet as the preceding crops and rotated them with Zhangzagu10 foxtail millet. A randomised complete block design was employed for the study, and soil and millet samples were collected after harvest. The performance of Zhangzagu10 foxtail millet grown with five different preceding crops was explored by measuring yield and quality indicators and comprehensively analysing various quality traits and their interrelationships. The physicochemical and nutritional characteristics of millet grains were significantly influenced by the preceding crop. The yield of Zhangzagu10 cultivated after mung bean was significantly higher (8277.47 kg/hm2) than that of millet cultivated after the other crops. Additionally, the colour characteristics (a*, b*, and △E values) were superior, with the rice exhibiting the strongest yellow colour. Foxtail millet preceded by soybean showed a significantly higher thousand-grain weight, indicating well-filled grains. Furthermore, this treatment had rich contents of carotenoids and polyphenols at 34.79 mg/kg and 76.27 mg/100 g, respectively, and significantly higher levels of minerals such as V, Cr, Fe, Co, Ni, Se, and Sn compared to the other treatments. Foxtail millet following mung bean and soybean demonstrated excellent grain quality, featuring high breakage values and gelatinisation, along with low cooking values and gelatinisation temperatures and moderately low setback values. Zhangzagu10 cultivated after potato exhibited a polyphenol content of 67.13 mg/100 g, showcasing strong antioxidant effects. In contrast, proso millet preceded by foxtail millet had relatively lower content levels across various substances, resulting in an overall subpar performance. In summary, selecting appropriate preceding crops can significantly enhance both the yield and quality of Zhangzagu millet. Moreover, soybeans, potatoes, and mung beans can be effectively incorporated into a sustainable crop rotation plan for millet. In the future, we aim to further explore the interaction mechanisms between preceding crops and millet to optimise rotation strategies and improve foxtail millet quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyang Yuan
- Key Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xi’e Song
- Key Laboratory of Crop Chemical Regulation and Chemical Weed Control, College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
11
|
Yang Y, Liang Y, Wang C, Wang Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. STRESS BIOLOGY 2024; 4:38. [PMID: 39264517 PMCID: PMC11393275 DOI: 10.1007/s44154-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/18/2024] [Indexed: 09/13/2024]
Abstract
Nitrogen (N) and phosphorus (Pi) are essential macronutrients that affect plant growth and development by influencing the molecular, metabolic, biochemical, and physiological responses at the local and whole levels in plants. N and Pi stresses suppress the physiological activities of plants, resulting in agricultural productivity losses and severely threatening food security. Accordingly, plants have elaborated diverse strategies to cope with N and Pi stresses through maintaining N and Pi homeostasis. MicroRNAs (miRNAs) as potent regulators fine-tune N and Pi signaling transduction that are distinct and indivisible from each other. Specific signals, such as noncoding RNAs (ncRNAs), interact with miRNAs and add to the complexity of regulation. Elucidation of the mechanisms by which miRNAs regulate N and Pi signaling transduction aids in the breeding of plants with strong tolerance to N and Pi stresses and high N and Pi use efficiency by fine-tuning MIR genes or miRNAs. However, to date, there has been no detailed and systematic introduction and comparison of the functions of miRNAs in N and Pi signaling transduction from the perspective of miRNAs and their applications. Here, we summarized and discussed current advances in the involvement of miRNAs in N and Pi signaling transduction and highlighted that fine-tuning the MIR genes or miRNAs involved in maintaining N and Pi homeostasis might provide valuable sights for sustainable agriculture.
Collapse
Affiliation(s)
- Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Han M, Zhang H, Liu M, Tang J, Guo X, Ren W, Zhao Y, Yang Q, Guo B, Han Q, Feng Y, Feng Z, Wu H, Yang X, Kong D. Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant. PLANT DIVERSITY 2024; 46:510-518. [PMID: 39280977 PMCID: PMC11390700 DOI: 10.1016/j.pld.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 09/18/2024]
Abstract
Suppression of roots and/or their symbiotic microorganisms, such as mycorrhizal fungi and rhizobia, is an effective way for alien plants to outcompete native plants. However, little is known about how invasive and native plants interact with the quantity and activity of nutrient-acquisition agents. Here a pot experiment was conducted with monoculture and mixed plantings of an invasive plant, Xanthium strumarium, and a common native legume, Glycine max. We measured traits related to root and nodule quantity and activity and mycorrhizal colonization. Compared to the monoculture, fine root quantity (biomass, surface area) and activity (root nitrogen (N) concentration, acid phosphatase activity) of G. max decreased in mixed plantings; nodule quantity (biomass) decreased by 45%, while nodule activity in N-fixing via rhizobium increased by 106%; mycorrhizal colonization was unaffected. Contribution of N fixation to leaf N content in G. max increased in the mixed plantings, and this increase was attributed to a decrease in the rhizosphere soil N of G. max in the mixed plantings. Increased root quantity and activity, along with a higher mycorrhizal association was observed in X. strumarium in the mixed compared to monoculture. Together, the invasive plant did not directly scavenge N from nodule-fixed N, but rather depleted the rhizosphere soil N of the legume, thereby stimulating the activity of N-fixation and increasing the dependence of the native legume on this N source. The quantity-activity framework holds promise for future studies on how native legumes respond to alien plant invasions.
Collapse
Affiliation(s)
- Meixu Han
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiyang Zhang
- College of Life Science, Hebei University, Baoding 071002, China
| | - Mingchao Liu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinqi Tang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaocheng Guo
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weizheng Ren
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingpei Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Binglin Guo
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qinwen Han
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhipei Feng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Honghui Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xitian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
13
|
Mani B, Maurya K, Kohli PS, Giri J. Chickpea (Cicer arietinum) PHO1 family members function redundantly in Pi transport and root nodulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108712. [PMID: 38733940 DOI: 10.1016/j.plaphy.2024.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Phosphorus (P), a macronutrient, plays key roles in plant growth, development, and yield. Phosphate (Pi) transporters (PHTs) and PHOSPHATE1 (PHO1) are central to Pi acquisition and distribution. Potentially, PHO1 is also involved in signal transduction under low P. The current study was designed to identify and functionally characterize the PHO1 gene family in chickpea (CaPHO1s). Five CaPHO1 genes were identified through a comprehensive genome-wide search. Phylogenetically, CaPHO1s formed two clades, and protein sequence analyses confirmed the presence of conserved domains. CaPHO1s are expressed in different plant organs including root nodules and are induced by Pi-limiting conditions. Functional complementation of atpho1 mutant with three CaPHO1 members, CaPHO1, CaPHO1;like, and CaPHO1;H1, independently demonstrated their role in root to shoot Pi transport, and their redundant functions. To further validate this, we raised independent RNA-interference (RNAi) lines of CaPHO1, CaPHO1;like, and CaPHO1;H1 along with triple mutant line in chickpea. While single gene RNAi lines behaved just like WT, triple knock-down RNAi lines (capho1/like/h1) showed reduced shoot growth and shoot Pi content. Lastly, we showed that CaPHO1s are involved in root nodule development and Pi content. Our findings suggest that CaPHO1 members function redundantly in root to shoot Pi export and root nodule development in chickpea.
Collapse
Affiliation(s)
- Balaji Mani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Lorenzo CD. Mining for phosphates: the Myb73-1-GDPD2-GA2ox1 module as a hub to improve phosphate deficiency tolerance in soybean. THE PLANT CELL 2024; 36:2055-2056. [PMID: 38378174 PMCID: PMC11132876 DOI: 10.1093/plcell/koae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Affiliation(s)
- Christian Damian Lorenzo
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
15
|
Liu J, Zhang W, Teng C, Pang Z, Peng Y, Qiu J, Lei J, Su X, Zhu W, Ding C. Intercropping changed the soil microbial community composition but no significant effect on alpha diversity. Front Microbiol 2024; 15:1370996. [PMID: 38572232 PMCID: PMC10988756 DOI: 10.3389/fmicb.2024.1370996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Enhancing the planning of the forest-agricultural composite model and increasing the efficiency with which forest land is utilized could benefit from a thorough understanding of the impacts of intercropping between forests and agriculture on soil physicochemical properties and microbial communities. Methods Populus cathayana × candansis cv. Xinlin No.1 and Glycine max intercrop soils, along with their corresponding monocrops, were used in this study's llumina high-throughput sequencing analysis to determine the composition and diversity of soil bacterial and fungal communities. Results The findings indicated that intercropping considerably raised the soil's total phosphorus content and significantly lowered the soil's carbon nitrogen ratio when compared to poplar single cropping. Furthermore, the total carbon and nitrogen content of soil was increased and the soil pH was decreased. The sequencing results showed that intercropping had no significant effect on soil alpha diversity. Intercropping could increase the composition of fungal community and decrease the composition of bacterial community in poplar soil. At the phylum level, intercropping significantly increased the relative abundance of four dominant phyla, i.e., Patescibacteria, Proteobacteria, Patescibacteria and Deinococcus-Thermus. And the relative abundances of only two dominant phyla were significantly increased. It was found that soil total phosphorus and available phosphorus content had the strongest correlation with soil bacterial community diversity, and soil pH had the strongest correlation with soil fungal community diversity. Discussion The results of this study were similar to those of previous studies. This study can serve as a theoretical foundation for the development of a poplar and black bean-based forest-agricultural complex management system in the future.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chao Teng
- Liaoning Non-Ferrous Geological Exploration and Research Institute Co., Ltd., Shenyang, China
| | | | | | - Jian Qiu
- State-owned Xinbin Manchu Autonomous County Douling Forest Farm, Fushun, China
| | - Jiawei Lei
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
16
|
Yao Y, Han B, Dong X, Zhong Y, Niu S, Chen X, Li Z. Disentangling the variability of symbiotic nitrogen fixation rate and the controlling factors. GLOBAL CHANGE BIOLOGY 2024; 30:e17206. [PMID: 38445332 DOI: 10.1111/gcb.17206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Symbiotic nitrogen (N) fixation (SNF), replenishing bioavailable N for terrestrial ecosystems, exerts decisive roles in N cycling and gross primary production. Nevertheless, it remains unclear what determines the variability of SNF rate, which retards the accurate prediction for global N fixation in earth system models. This study synthesized 1230 isotopic observations to elucidate the governing factors underlying the variability of SNF rate. The SNF rates varied significantly from 3.69 to 12.54 g N m-2 year-1 across host plant taxa. The traits of host plant (e.g. biomass characteristics and taxa) far outweighed soil properties and climatic factors in explaining the variations of SNF rate, accounting for 79.0% of total relative importance. Furthermore, annual SNF yield contributed to more than half of N uptake for host plants, which was consistent across different ecosystem types. This study highlights that the biotic factors, especially host plant traits (e.g. biomass characteristics and taxa), play overriding roles in determining SNF rate compared with soil properties. The suite of parameters for SNF lends support to improve N fixation module in earth system models that can provide more confidence in predicting bioavailable N changes in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yanzhong Yao
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Bingbing Han
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xunzhuo Dong
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yunyao Zhong
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xinping Chen
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhaolei Li
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Wang M, Ge AH, Ma X, Wang X, Xie Q, Wang L, Song X, Jiang M, Yang W, Murray JD, Wang Y, Liu H, Cao X, Wang E. Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nat Commun 2024; 15:1668. [PMID: 38395981 PMCID: PMC10891064 DOI: 10.1038/s41467-024-45925-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Root-associated microbiomes contribute to plant growth and health, and are dynamically affected by plant development and changes in the soil environment. However, how different fertilizer regimes affect quantitative changes in microbial assembly to effect plant growth remains obscure. Here, we explore the temporal dynamics of the root-associated bacteria of soybean using quantitative microbiome profiling (QMP) to examine its response to unbalanced fertilizer treatments (i.e., lacking either N, P or K) and its role in sustaining plant growth after four decades of unbalanced fertilization. We show that the root-associated bacteria exhibit strong succession during plant development, and bacterial loads largely increase at later stages, particularly for Bacteroidetes. Unbalanced fertilization has a significant effect on the assembly of the soybean rhizosphere bacteria, and in the absence of N fertilizer the bacterial community diverges from that of fertilized plants, while lacking P fertilizer impedes the total load and turnover of rhizosphere bacteria. Importantly, a SynCom derived from the low-nitrogen-enriched cluster is capable of stimulating plant growth, corresponding with the stabilized soybean productivity in the absence of N fertilizer. These findings provide new insights in the quantitative dynamics of the root-associated microbiome and highlight a key ecological cluster with prospects for sustainable agricultural management.
Collapse
Affiliation(s)
- Mingxing Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An-Hui Ge
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xingzhu Ma
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiujin Xie
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Like Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengchen Jiang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weibing Yang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jeremy D Murray
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
18
|
Wang Y, Yang Y, Zhao D, Li Z, Sui X, Zhang H, Liu J, Li Y, Zhang CS, Zheng Y. Ensifer sp. GMS14 enhances soybean salt tolerance for potential application in saline soil reclamation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119488. [PMID: 37939476 DOI: 10.1016/j.jenvman.2023.119488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Rhizosphere microbiomes play an important role in enhancing plant salt tolerance and are also commonly employed as bio-inoculants in soil remediation processes. Cultivated soybean (Glycine max) is one of the major oilseed crops with moderate salt tolerance. However, the response of rhizosphere microbes me to salt stress in soybean, as well as their potential application in saline soil reclamation, has been rarely reported. In this study, we first investigated the microbial communities of salt-treated and non-salt-treated soybean by 16S rRNA gene amplicon sequencing. Then, the potential mechanism of rhizosphere microbes in enhancing the salt tolerance of soybean was explored based on physiological analyses and transcriptomic sequencing. Our results suggested that Ensifer and Novosphingobium were biomarkers in salt-stressed soybean. One corresponding strain, Ensifer sp. GMS14, showed remarkable growth promoting characteristics. Pot experiments showed that GMS14 significantly improved the growth performance of soybean in saline soils. Strain GMS14 alleviated sodium ions (Na+) toxicity by maintaining low a Na+/K+ ratio and promoted nitrogen (N) and phosphorus (P) uptake by soybean in nutrient-deficient saline soils. Transcriptome analyses indicated that GMS14 improved plant salt tolerance mainly by ameliorating salt stress-mediated oxidative stress. Interestingly, GMS14 was evidenced to specifically suppress hydrogen peroxide (H2O2) production to maintain reactive oxygen species (ROS) homeostasis in plants under salt stress. Field experiments with GMS14 applications showed its great potential in saline soil reclamation, as evidenced by the increased biomass and nodulation capacity of GMS14-inoculated soybean. Overall, our findings provided valuable insights into the mechanisms underlying plant-microbes interactions, and highlighted the importance of microorganisms recruited by salt-stressed plant in the saline soil reclamation.
Collapse
Affiliation(s)
- Youqiang Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yanzhe Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Zhe Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaona Sui
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Han Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jin Liu
- Shandong Baiwo Bio-technology Co., Ltd., Linyi, 273423, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
19
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
20
|
Suárez JC, Urban MO, Anzola JA, Contreras AT, Vanegas JI, Beebe SE, Rao IM. Influence of Increase in Phosphorus Supply on Agronomic, Phenological, and Physiological Performance of Two Common Bean Breeding Lines Grown in Acidic Soil under High Temperature Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3277. [PMID: 37765443 PMCID: PMC10534644 DOI: 10.3390/plants12183277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Many common bean (Phaseolus vulgaris L.) plants cultivated in areas of the world with acidic soils exhibit difficulties adapting to low phosphorus (P) availability, along with aluminum (Al) toxicity, causing yield loss. The objective of this study was to evaluate the influence of an increase in P supply level on the agronomic, phenological, and physiological performance of two common bean breeding lines grown in acidic soil, with low fertility and under high temperature conditions, in a screenhouse. A randomized complete block (RCB) design was used under a factorial arrangement (five levels of P × 2 genotypes) for a total of 10 treatments with four replications. The factors considered in the experiment were: (i) five P supply levels (kg ha-1): four levels of P0, P15, P30, and P45 through the application of rock phosphate (RP), and one P level supplied through the application of organic matter (PSOM) corresponding to 25 kg P ha-1 (P25); and (ii) two advanced bean lines (BFS 10 and SEF10). Both bean lines were grown under the combined stress conditions of high temperatures (day and night maximum temperatures of 42.5 °C/31.1 °C, respectively) and acidic soil. By increasing the supply of P, a significant effect was found, indicating an increase in the growth and development of different vegetative organs, as well as physiological efficiency in photosynthesis and photosynthate remobilization, which resulted in higher grain yield in both bean lines evaluated (BFS 10 and SEF10). The adaptive responses of the two bean lines were found to be related to phenological adjustments (days to flowering and physiological maturity; stomatal development), as well as to heat dissipation strategies in the form of heat (NPQ) or unregulated energy (qN) that contributed to greater agronomic performance. We found that, to some extent, increased P supply alleviated the negative effects of high temperature on the growth and development of the reproductive organs of bean lines. Both bean lines (BFS 10 and SEF 10) showed adaptive attributes suited to the combined stress conditions of high temperature and acidic soil, and these two lines can serve as useful parents in a bean breeding program to develop multiple stress tolerant cultivars.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia 180001, Colombia
| | - Milan O. Urban
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (S.E.B.); (I.M.R.)
| | - José Alexander Anzola
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
| | - Amara Tatiana Contreras
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia 180001, Colombia
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - José Iván Vanegas
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia; (J.A.A.); (A.T.C.); (J.I.V.)
- Programa de Maestría en Sistemas Sostenibles de Producción, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - Stephen E. Beebe
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (S.E.B.); (I.M.R.)
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia; (M.O.U.); (S.E.B.); (I.M.R.)
| |
Collapse
|
21
|
Dwivedi SL, Chapman MA, Abberton MT, Akpojotor UL, Ortiz R. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front Genet 2023; 14:1193780. [PMID: 37396035 PMCID: PMC10311922 DOI: 10.3389/fgene.2023.1193780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low β-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.
Collapse
Affiliation(s)
| | - Mark A. Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
22
|
Huertas R, Torres-Jerez I, Curtin SJ, Scheible W, Udvardi M. Medicago truncatula PHO2 genes have distinct roles in phosphorus homeostasis and symbiotic nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2023; 14:1211107. [PMID: 37409286 PMCID: PMC10319397 DOI: 10.3389/fpls.2023.1211107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
Three PHO2-like genes encoding putative ubiquitin-conjugating E2 enzymes of Medicago truncatula were characterized for potential roles in phosphorous (P) homeostasis and symbiotic nitrogen fixation (SNF). All three genes, MtPHO2A, B and C, contain miR399-binding sites characteristic of PHO2 genes in other plant species. Distinct spatiotemporal expression patterns and responsiveness of gene expression to P- and N-deprivation in roots and shoots indicated potential roles, especially for MtPHO2B, in P and N homeostasis. Phenotypic analysis of pho2 mutants revealed that MtPHO2B is integral to Pi homeostasis, affecting Pi allocation during plant growth under nutrient-replete conditions, while MtPHO2C had a limited role in controlling Pi homeostasis. Genetic analysis also revealed a connection between Pi allocation, plant growth and SNF performance. Under N-limited, SNF conditions, Pi allocation to different organs was dependent on MtPHO2B and, to a lesser extent, MtPHO2C and MtPHO2A. MtPHO2A also affected Pi homeostasis associated with nodule formation. Thus, MtPHO2 genes play roles in systemic and localized, i.e., nodule, P homeostasis affecting SNF.
Collapse
Affiliation(s)
- Raul Huertas
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Shaun J. Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Wolf Scheible
- Noble Research Institute LLC, Ardmore, OK, United States
| | | |
Collapse
|
23
|
Chen Z, Wang L, Cardoso JA, Zhu S, Liu G, Rao IM, Lin Y. Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094157. [PMID: 36844096 PMCID: PMC9950756 DOI: 10.3389/fpls.2023.1094157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is one of the essential macronutrients for plant growth and development, and it is an integral part of the major organic components, including nucleic acids, proteins and phospholipids. Although total P is abundant in most soils, a large amount of P is not easily absorbed by plants. Inorganic phosphate (Pi) is the plant-available P, which is generally immobile and of low availability in soils. Hence, Pi starvation is a major constraint limiting plant growth and productivity. Enhancing plant P efficiency can be achieved by improving P acquisition efficiency (PAE) through modification of morpho-physiological and biochemical alteration in root traits that enable greater acquisition of external Pi from soils. Major advances have been made to dissect the mechanisms underlying plant adaptation to P deficiency, especially for legumes, which are considered important dietary sources for humans and livestock. This review aims to describe how legume root growth responds to Pi starvation, such as changes in the growth of primary root, lateral roots, root hairs and cluster roots. In particular, it summarizes the various strategies of legumes to confront P deficiency by regulating root traits that contribute towards improving PAE. Within these complex responses, a large number of Pi starvation-induced (PSI) genes and regulators involved in the developmental and biochemical alteration of root traits are highlighted. The involvement of key functional genes and regulators in remodeling root traits provides new opportunities for developing legume varieties with maximum PAE needed for regenerative agriculture.
Collapse
Affiliation(s)
- Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Yan Lin
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|