1
|
Suzuki N, Hasegawa Y, Kadomatsu K, Yamakawa K, Sameshima M, Ando A, Horikoshi S. Microwave pre-stimulation methodology for plant growth promotion. Sci Rep 2025; 15:13903. [PMID: 40263396 PMCID: PMC12015513 DOI: 10.1038/s41598-025-90859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/17/2025] [Indexed: 04/24/2025] Open
Abstract
Although positive effects of microwave irradiation on plants have been reported, their underlying mechanisms remain unknown. In this study, we investigated the effects of low microwave irradiation on Arabidopsis thaliana. Interestingly, we found low output (23 W) with oscillating condition (not continuous irradiation) promoted plant growth. The microwave irradiation neither raised the plants' temperature nor induced heat responsive gene expression. Furthermore, overall transcriptome profile in microwave irradiation treated plants were significantly different from heat treated plants, suggesting that growth promotion might be attributed to non-thermal effects of microwave. Transcriptome and metabolome analysis indicated that microwave irradiation altered circadian clock as well as hormonal response especially in auxin and gibberellin, which promoted plant growth by inducing amino acid biosynthesis and stress tolerance, and reducing cell wall thickness. This finding potentially contributes to develop new approach to increase food production through accelerating crop yield in environmentally friendly way.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Yasuhiko Hasegawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Kanae Kadomatsu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Kazuha Yamakawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Miori Sameshima
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan
| | - Atsumi Ando
- Sumitomo Chemical Co., Ltd, 2-1 Takatsukasa 4-chome, Takarazuka, Hyogo, 665-8555, Japan
| | - Satoshi Horikoshi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan.
| |
Collapse
|
2
|
Bychkov I, Doroshenko A, Kudryakova N, Kusnetsov V. Photoreceptors Are Involved in Antioxidant Effects of Melatonin Under High Light in Arabidopsis. Antioxidants (Basel) 2025; 14:458. [PMID: 40298793 DOI: 10.3390/antiox14040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
The beneficial role of melatonin (MT) as a potent broad-spectrum antioxidant and hormone-like regulator in plant protection against adverse environmental conditions is indisputable. However, the molecular networks underlying its unique scavenging capabilities are still far from understood. Herein, we show the ability of MT to maintain physiological functions under high light stress (HL) is mediated by photoreceptors. Melatonin treatment (50 μM) of the photoreceptor mutants phyA/B and cry1/2 augmented the deleterious effects of excess light (600 μmol m-2 s-1, 24 h), as evidenced by increased TBARs levels and electrolyte leakage, as well as decreased photosynthetic efficiency, in contrast to their parental form, Landsberg erecta, in which these parameters were significantly improved. The reduced stress resistance of the mutants was also confirmed by analysis of the transcript accumulation of ROS markers and enzymatic scavengers. Moreover, the increase in melatonin content in the mutants exposed to HL + MT contributed to increased ROS accumulation; therefore, the deleterious effect of MT could not be explained by an imbalance in ROS production below the cytostatic level. We hypothesize that the light-sensitive phenotypes of photoreceptor mutants under MT treatment may be due to the misregulation of stress-related genes that are targets for melatonin action.
Collapse
Affiliation(s)
- Ivan Bychkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 127276 Moscow, Russia
| | - Anastasia Doroshenko
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 127276 Moscow, Russia
| | - Natalia Kudryakova
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 127276 Moscow, Russia
| | - Victor Kusnetsov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 127276 Moscow, Russia
| |
Collapse
|
3
|
Xu L, Liu H, Mittler R, Shabala S. Useful or merely convenient: can enzymatic antioxidant activity be used as a proxy for abiotic stress tolerance? JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1524-1533. [PMID: 39731752 DOI: 10.1093/jxb/erae524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024]
Abstract
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AOs have often been advocated as suitable proxies for stress tolerance as well as potential targets for improving tolerance traits. However, there are a growing number of reports showing either no changes or even down-regulation of AO systems in stressed plants. Moreover, ROS are recognized now as important second messengers operating in both local and systemic signalling, synergistically interacting with the primary stressor, to regulate gene expression needed for optimal acclimatization. This work critically assesses the suitability of using enzymatic AOs as a proxy for stress tolerance or as a target for crop genetic improvement. It is concluded that constitutively higher AO activity may interfere with stress-induced ROS signalling and be a disadvantage for plant stress tolerance.
Collapse
Affiliation(s)
- Le Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025China
| | - Huaqiong Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025China
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Sergey Shabala
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
4
|
Sha H, Yu Y, Han Y, Liu J, Han Z, Zhao Y, Huo C, Chang H, Zhang F, Wang J, Fang J. Combination of maleic hydrazide and coumarin inhibits rice seed germination involving reactive oxygen species accumulation, ABA metabolism and starch degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109202. [PMID: 39437670 DOI: 10.1016/j.plaphy.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Pre-harvest sprouting (PHS) in cereal crops is a prevalent phenomenon that impacts grain yield and quality. Several PHS inhibitory compounds were screened and identified in previous studies, such as eugenol (EUG), maleic hydrazide (MH), coumarin (COU), etc. However, few studies have focused on the combination of PHS inhibitors, and the inhibitory mechanism remains unclear. Here, through combination tests of EUG, MH, and COU, the optimal combination of PHS inhibitors was selected as MH 20 mg L-1 + COU 100 mg L-1, which presented the lowest germination percentages. The optimal combination treatment significantly decreased the germination rate, α-amylase activity, content of soluble sugar and soluble protein, enhanced ABA content and the activity of superoxide dismutase (SOD) and peroxidase (POD), inhibited the production of superoxide anion (O2-) and hydrogen peroxide, and reduced the content of malondialdehyde (MDA); conversely, this trend is precisely the opposite in normal germination. Furthermore, gene expression analysis revealed that the optimal combination of MH and COU significantly decreased the expression level of OsAmy1A and OsAmy3D at 12 and 48 h after imbibition (HAI); and promoted the expression of OsRbohs (OsRbohA, OsRbohC, OsRbohD, OsRbohE, OsRbohH) and ABA biosynthetic genes OsNCED1, OsNCED2, and OsNCED5, especially OsNCED2 at 12 HAI, but down-regulated expression of OsRbohs and ABA catabolic genes OsABA8ox1-3 at 48 HAI. These results demonstrated that the delay in seed germination induced by MH and COU involved in ROS, ABA, and sugars; the optimal combination of MH and COU inhibited the germination process by promoting ABA biosynthesis and reducing ABA catabolism, and restraining the α-amylase activity to lower soluble sugar content. Intriguingly, although the expression of OsRbohs, which play a crucial role in generating ROS, increased in early imbibition (12h), the activity of the antioxidant enzymes SOD and POD also increased with the optimal combination treatment of MH and COU, which lead to the delay in ROS accumulation and inhibition of germination. These results have deepened our understanding of the regulatory mechanism of PHS inhibitors and provided theoretical support for the application of MH and COU in preventing sprouting before crop harvesting.
Collapse
Affiliation(s)
- Hanjing Sha
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China; Rice Research Institute, Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, 152052, China
| | - Yue Yu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yunfei Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhongmin Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yubing Zhao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Chunran Huo
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Huilin Chang
- Rice Research Institute, Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, 152052, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
5
|
Iglesias MJ, Costigliolo Rojas C, Bianchimano L, Legris M, Schön J, Gergoff Grozeff GE, Bartoli CG, Blázquez MA, Alabadí D, Zurbriggen MD, Casal JJ. Shade-induced ROS/NO reinforce COP1-mediated diffuse cell growth. Proc Natl Acad Sci U S A 2024; 121:e2320187121. [PMID: 39382994 PMCID: PMC11494356 DOI: 10.1073/pnas.2320187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/08/2024] [Indexed: 10/11/2024] Open
Abstract
Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.
Collapse
Affiliation(s)
- María José Iglesias
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular and Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Cecilia Costigliolo Rojas
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Jonas Schön
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Gustavo Esteban Gergoff Grozeff
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Carlos Guillermo Bartoli
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Miguel A. Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - David Alabadí
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Jorge J. Casal
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Facultad de Agronomía, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Universidad de Buenos Aires, Buenos Aires1417, Argentina
| |
Collapse
|
6
|
Ding M, Zhou Y, Becker D, Yang S, Krischke M, Scherzer S, Yu-Strzelczyk J, Mueller MJ, Hedrich R, Nagel G, Gao S, Konrad KR. Probing plant signal processing optogenetically by two channelrhodopsins. Nature 2024; 633:872-877. [PMID: 39198644 PMCID: PMC11424491 DOI: 10.1038/s41586-024-07884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.
Collapse
Affiliation(s)
- Meiqi Ding
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Yang Zhou
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Shang Yang
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Myers RJ, Peláez-Vico MÁ, Fichman Y. Functional analysis of reactive oxygen species-driven stress systemic signalling, interplay and acclimation. PLANT, CELL & ENVIRONMENT 2024; 47:2842-2851. [PMID: 38515255 DOI: 10.1111/pce.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Reactive oxygen species (ROS) play a critical role in plant development and stress responses, acting as key components in rapid signalling pathways. The 'ROS wave' triggers essential acclimation processes, ultimately ensuring plant survival under diverse challenges. This review explores recent advances in understanding the composition and functionality of the ROS wave within plant cells. During their initiation and propagation, ROS waves interact with other rapid signalling pathways, hormones and various molecular compounds. Recent research sheds light on the intriguing lack of a rigid hierarchy governing these interactions, highlighting a complex interplay between diverse signals. Notably, ROS waves culminate in systemic acclimation, a crucial outcome for enhanced stress tolerance. This review emphasizes the versatility of ROS, which act as flexible players within a network of short- and long-term factors contributing to plant stress resilience. Unveiling the intricacies of these interactions between ROS and various signalling molecules holds immense potential for developing strategies to augment plant stress tolerance, contributing to improved agricultural practices and overall ecosystem well-being.
Collapse
Affiliation(s)
- Ronald J Myers
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Plskova Z, Van Breusegem F, Kerchev P. Redox regulation of chromatin remodelling in plants. PLANT, CELL & ENVIRONMENT 2024; 47:2780-2792. [PMID: 38311877 DOI: 10.1111/pce.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Changes in the cellular redox balance that occur during plant responses to unfavourable environmental conditions significantly affect a myriad of redox-sensitive processes, including those that impact on the epigenetic state of the chromatin. Various epigenetic factors, like histone modifying enzymes, chromatin remodelers, and DNA methyltransferases can be targeted by oxidative posttranslational modifications. As their combined action affects the epigenetic regulation of gene expression, they form an integral part of plant responses to (a)biotic stress. Epigenetic changes triggered by unfavourable environmental conditions are intrinsically linked with primary metabolism that supplies intermediates and donors, such acetyl-CoA and S-adenosyl-methionine, that are critical for the epigenetic decoration of histones and DNA. Here, we review the recent advances in our understanding of redox regulation of chromatin remodelling, dynamics of epigenetic marks, and the interplay between epigenetic control of gene expression, redox signalling and primary metabolism within an (a)biotic stress context.
Collapse
Affiliation(s)
- Zuzana Plskova
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Ghent, Belgium
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
9
|
Peláez-Vico MÁ, Fichman Y, Zandalinas SI, Foyer CH, Mittler R. ROS are universal cell-to-cell stress signals. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102540. [PMID: 38643747 DOI: 10.1016/j.pbi.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
The interplay between reactive oxygen species (ROS) and the redox state of cells is deeply rooted in the biology of almost all organisms, regulating development, growth, and responses to the environment. Recent studies revealed that the ROS levels and redox state of one cell can be transmitted, as an information 'state' or 'currency', to other cells and spread by cell-to-cell communication within an entire community of cells or an organism. Here, we discuss the different pathways that mediate cell-to-cell signaling in plants, their hierarchy, and the different mechanisms that transmit ROS/redox signaling between different cells. We further hypothesize that ROS/redox signaling between different organisms could play a key role within the 'one world' principle, impacting human health and our future.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, Christopher S. Bond Life Sciences Center, 1201 Rollins St., University of Missouri, Columbia, MO 65211, USA
| | - Yosef Fichman
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I. Av. de Vicent Sos Baynat, s/n, Castelló de la Plana 12071, Spain
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, Christopher S. Bond Life Sciences Center, 1201 Rollins St., University of Missouri, Columbia, MO 65211, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, 1201 Rollins St., University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
10
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
11
|
Zhu Y, Su H, Liu XX, Sun JF, Xiang L, Liu YJ, Hu ZW, Xiong XY, Yang XM, Bhutto SH, Li GB, Peng YY, Wang H, Shen X, Zhao ZX, Zhang JW, Huang YY, Fan J, Wang WM, Li Y. Identification of NADPH Oxidase Genes Crucial for Rice Multiple Disease Resistance and Yield Traits. RICE (NEW YORK, N.Y.) 2024; 17:1. [PMID: 38170415 PMCID: PMC10764683 DOI: 10.1186/s12284-023-00678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.
Collapse
Affiliation(s)
- Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Fen Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Jing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang-Wei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sadam Hussain Bhutto
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan-Ying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Vigneron N, Grimplet J, Remolif E, Rienth M. Unravelling molecular mechanisms involved in resistance priming against downy mildew (Plasmopara viticola) in grapevine (Vitis vinifera L.). Sci Rep 2023; 13:14664. [PMID: 37674030 PMCID: PMC10482922 DOI: 10.1038/s41598-023-41981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023] Open
Abstract
Downy mildew (DM; Plasmopara viticola) is amongst the most severe fungal diseases in viticulture and the reason for the majority of fungicide applications. To reduce synthetic and copper-based fungicides, there is an urgent need for natural alternatives, which are being increasingly tested by the industry and the research community. However, their mode of action remains unclear. Therefore, our study aimed to investigate the transcriptomic changes induced by oregano essential oil vapour (OEOV) in DM-infected grapevines. OEOV was applied at different time points before and after DM infection to differentiate between a priming effect and a direct effect. Both pre-DM treatment with OEOV and post-infection treatment resulted in a significant reduction in DM sporulation. RNA-seq, followed by differential gene expression and weighted gene co-expression network analysis, identified co-expressed gene modules associated with secondary metabolism, pathogen recognition and response. Surprisingly, the molecular mechanisms underlying the efficiency of OEOV against DM appear to be independent of stilbene synthesis, and instead involve genes from a putative signalling pathway that has yet to be characterized. This study enhances our understanding of the molecular regulation of innate plant immunity and provides new insights into the mode of action of alternative natural antifungal agents.
Collapse
Affiliation(s)
- Nicolas Vigneron
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 60, 1260, Nyon, Switzerland
| | - Jérôme Grimplet
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Avda. Montanaña 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013, Zaragoza, Spain
| | - Eric Remolif
- Agroscope, Plant Protection, Mycology, Route de Duillier 60, 1260, Nyon, Switzerland
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 60, 1260, Nyon, Switzerland.
| |
Collapse
|
13
|
Qiu X, Sun G, Liu F, Hu W. Functions of Plant Phytochrome Signaling Pathways in Adaptation to Diverse Stresses. Int J Mol Sci 2023; 24:13201. [PMID: 37686008 PMCID: PMC10487518 DOI: 10.3390/ijms241713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Phytochromes are receptors for red light (R)/far-red light (FR), which are not only involved in regulating the growth and development of plants but also in mediated resistance to various stresses. Studies have revealed that phytochrome signaling pathways play a crucial role in enabling plants to cope with abiotic stresses such as high/low temperatures, drought, high-intensity light, and salinity. Phytochromes and their components in light signaling pathways can also respond to biotic stresses caused by insect pests and microbial pathogens, thereby inducing plant resistance against them. Given that, this paper reviews recent advances in understanding the mechanisms of action of phytochromes in plant resistance to adversity and discusses the importance of modulating the genes involved in phytochrome signaling pathways to coordinate plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xue Qiu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guanghua Sun
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| |
Collapse
|
14
|
Shen Y, Liu Y, Liang M, Zhang X, Chen Z, Shen Y. Genome-Wide Identification and Characterization of the Phytochrome Gene Family in Peanut. Genes (Basel) 2023; 14:1478. [PMID: 37510382 PMCID: PMC10378891 DOI: 10.3390/genes14071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the potential role of phytochrome (PHY) in peanut growth and its response to environmental fluctuations, eight candidate AhPHY genes were identified via genome-wide analysis of cultivated peanut. These AhPHY polypeptides were determined to possess acidic and hydrophilic physiochemical properties and exhibit subcellular localization patterns consistent with residence in the nucleus and cytoplasm. Phylogenetic analysis revealed that the AhPHY gene family members were classified into three subgroups homologous to the PHYA/B/E progenitors of Arabidopsis. AhPHY genes within the same clade largely displayed analogous gene structure, conserved motifs, and phosphorylation sites. AhPHY exhibited symmetrical distribution across peanut chromosomes, with 7 intraspecific syntenic gene pairs in peanut, as well as 4 and 20 interspecific PHY syntenic gene pairs in Arabidopsis and soybean, respectively. A total of 42 cis-elements were predicted in AhPHY promoters, including elements implicated in phytohormone regulation, stress induction, physiology, and photoresponse, suggesting putative fundamental roles across diverse biological processes. Moreover, spatiotemporal transcript profiling of AhPHY genes in various peanut tissues revealed distinct expression patterns for each member, alluding to putative functional specialization. This study contributes novel insights into the classification, structure, molecular evolution, and expression profiles of the peanut phytochrome gene family, and also provides phototransduction gene resources for further mechanistic characterization.
Collapse
Affiliation(s)
- Yue Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yonghui Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Man Liang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuyao Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhide Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
15
|
Trivellini A, Toscano S, Romano D, Ferrante A. The Role of Blue and Red Light in the Orchestration of Secondary Metabolites, Nutrient Transport and Plant Quality. PLANTS (BASEL, SWITZERLAND) 2023; 12:2026. [PMID: 37653943 PMCID: PMC10223693 DOI: 10.3390/plants12102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 07/30/2023]
Abstract
Light is a fundamental environmental parameter for plant growth and development because it provides an energy source for carbon fixation during photosynthesis and regulates many other physiological processes through its signaling. In indoor horticultural cultivation systems, sole-source light-emitting diodes (LEDs) have shown great potential for optimizing growth and producing high-quality products. Light is also a regulator of flowering, acting on phytochromes and inducing or inhibiting photoperiodic plants. Plants respond to light quality through several light receptors that can absorb light at different wavelengths. This review summarizes recent progress in our understanding of the role of blue and red light in the modulation of important plant quality traits, nutrient absorption and assimilation, as well as secondary metabolites, and includes the dynamic signaling networks that are orchestrated by blue and red wavelengths with a focus on transcriptional and metabolic reprogramming, plant productivity, and the nutritional quality of products. Moreover, it highlights future lines of research that should increase our knowledge to develop tailored light recipes to shape the plant characteristics and the nutritional and nutraceutical value of horticultural products.
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Stefania Toscano
- Department of Science Veterinary, Università degli Studi di Messina, 98168 Messina, Italy;
| | - Daniela Romano
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
16
|
Gulyás Z, Székely A, Kulman K, Kocsy G. Light-Dependent Regulatory Interactions between the Redox System and miRNAs and Their Biochemical and Physiological Effects in Plants. Int J Mol Sci 2023; 24:8323. [PMID: 37176028 PMCID: PMC10179207 DOI: 10.3390/ijms24098323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Light intensity and spectrum play a major role in the regulation of the growth, development, and stress response of plants. Changes in the light conditions affect the formation of reactive oxygen species, the activity of the antioxidants, and, consequently, the redox environment in the plant tissues. Many metabolic processes, thus the biogenesis and function of miRNAs, are redox-responsive. The miRNAs, in turn, can modulate various components of the redox system, and this process is also associated with the alteration in the intensity and spectrum of the light. In this review, we would like to summarise the possible regulatory mechanisms by which the alterations in the light conditions can influence miRNAs in a redox-dependent manner. Daily and seasonal fluctuations in the intensity and spectral composition of the light can affect the expression of miRNAs, which can fine-tune the various physiological and biochemical processes due to their effect on their target genes. The interactions between the redox system and miRNAs may be modulated by light conditions, and the proposed function of this regulatory network and its effect on the various biochemical and physiological processes will be introduced in plants.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - András Székely
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| |
Collapse
|
17
|
Hendrix S, Dard A, Meyer AJ, Reichheld JP. Redox-mediated responses to high temperature in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2489-2507. [PMID: 36794477 DOI: 10.1093/jxb/erad053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
As sessile organisms, plants are particularly affected by climate change and will face more frequent and extreme temperature variations in the future. Plants have developed a diverse range of mechanisms allowing them to perceive and respond to these environmental constraints, which requires sophisticated signalling mechanisms. Reactive oxygen species (ROS) are generated in plants exposed to various stress conditions including high temperatures and are presumed to be involved in stress response reactions. The diversity of ROS-generating pathways and the ability of ROS to propagate from cell to cell and to diffuse through cellular compartments and even across membranes between subcellular compartments put them at the centre of signalling pathways. In addition, their capacity to modify the cellular redox status and to modulate functions of target proteins, notably through cysteine oxidation, show their involvement in major stress response transduction pathways. ROS scavenging and thiol reductase systems also participate in the transmission of oxidation-dependent stress signals. In this review, we summarize current knowledge on the functions of ROS and oxidoreductase systems in integrating high temperature signals, towards the activation of stress responses and developmental acclimation mechanisms.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
18
|
Singiri JR, Priyanka G, Trishla VS, Adler-Agmon Z, Grafi G. Moonlight Is Perceived as a Signal Promoting Genome Reorganization, Changes in Protein and Metabolite Profiles and Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:1121. [PMID: 36903981 PMCID: PMC10004791 DOI: 10.3390/plants12051121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Rhythmic exposure to moonlight has been shown to affect animal behavior, but its effects on plants, often observed in lunar agriculture, have been doubted and often regarded as myth. Consequently, lunar farming practices are not well scientifically supported, and the influence of this conspicuous environmental factor, the moon, on plant cell biology has hardly been investigated. We studied the effect of full moonlight (FML) on plant cell biology and examined changes in genome organization, protein and primary metabolite profiles in tobacco and mustard plants and the effect of FML on the post-germination growth of mustard seedlings. Exposure to FML was accompanied by a significant increase in nuclear size, changes in DNA methylation and cleavage of the histone H3 C-terminal region. Primary metabolites associated with stress were significantly increased along with the expression of stress-associated proteins and the photoreceptors phytochrome B and phototropin 2; new moon experiments disproved the light pollution effect. Exposure of mustard seedlings to FML enhanced growth. Thus, our data show that despite the low-intensity light emitted by the moon, it is an important environmental factor perceived by plants as a signal, leading to alteration in cellular activities and enhancement of plant growth.
Collapse
|