1
|
Negi P, Pandey M, Paladi RK, Majumdar A, Pandey SP, Barvkar VT, Devarumath R, Srivastava AK. Stomata-Photosynthesis Synergy Mediates Combined Heat and Salt Stress Tolerance in Sugarcane Mutant M4209. PLANT, CELL & ENVIRONMENT 2025; 48:4668-4684. [PMID: 40052246 PMCID: PMC12050391 DOI: 10.1111/pce.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 05/06/2025]
Abstract
Sugarcane (Saccharum officinarum L.) is an economically important long-duration crop which is currently facing concurrent heat waves and soil salinity. The present study evaluates an inducible salt-tolerant sugarcane mutant M4209, developed via radiation-induced mutagenesis of elite check variety Co 86032, under heat (42/30°C; day/night), NaCl (200 mM) or heat + NaCl (HS)-stress conditions. Though heat application significantly improved plant growth and biomass in both genotypes, this beneficial impact was partially diminished in Co 86032 under HS-stress conditions, coinciding with higher Na+ accumulation and lower triacylglycerol levels. Besides, heat broadly equalised the negative impact on NaCl stress in terms of various physiological and biochemical attributes in both the genotypes, indicating its spaciotemporal advantage. The simultaneous up- and downregulation of antagonistic regulators, epidermal patterning factor (EPF) 9 (SoEPF9) and SoEPF2, respectively attributed to the OSD (Open Small Dense) stomatal phenotype in M4209, which resulted into enhanced conductance, transpirational cooling and gaseous influx. This led to improved photoassimilation, which was supported by higher plastidic:nonplastidic lipid ratio, upregulation of SoRCA (Rubisco activase) and better source strength, resulting in overall plant growth enhancement across all the tested stress scenarios. Taken together, the present study emphasised the knowledge-driven harnessing of stomatal-photosynthetic synergy for ensuring global sugarcane productivity, especially under "salt-heat" coupled stress scenarios.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Radha K. Paladi
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Arnab Majumdar
- School of Environmental StudiesJadavpur UniversityKolkataIndia
| | | | | | | | - Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
2
|
Liu X, Zheng J, Feng X, Zhuang J, Fang Y, Qiu Z, Pan S, Tang X, Mo Z. Impact of Low Canopy, Root Temperature, and Drought at the Booting Stage on Yield, Grain Quality, Photosynthesis, and Antioxidant Responses in Rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70268. [PMID: 40394860 DOI: 10.1111/ppl.70268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Rice yield is significantly affected by low temperature and drought stress. This study investigated the effects of low canopy and root temperature and/or drought stress on yield, quality, biomass, photosynthesis, and antioxidant responses in different rice genotypes viz., Huahang 31 and Yuejingsimiao 2 at the booting stage. The experiment included eight treatments, that is, the natural growth condition (T0) as a control, canopy low-temperature (CL), root low-temperature (RL), root drought (RD), and a combination of stresses. The results revealed that the RL and combined stress (CL&RL, RL&RD, and CL&RL&RD) treatments significantly decreased the yield and quality, with the CL&RL&RD treatment significantly reducing the yields of Huahang 31 and Yuejingsimiao 2 by 75.49% and 65.25%, respectively. The RL and combined stress (CL&RL, RL&RD, and CL&RL&RD) treatments significantly affected the photosynthesis parameters and increased the stem sheath dry weight while decreasing the panicle dry weight, thereby affecting rice biomass accumulation. Additionally, the combined stress treatments significantly reduced the proline content and catalase activity, thereby affecting the antioxidant response of rice. Root low-temperature stress affects rice more than canopy low-temperature stress does, and drought stress exacerbates the negative effects of other stresses on rice. Overall, root low-temperature and combined stress treatments affect the antioxidant response, thereby influencing leaf stomatal conductance, photosynthetic traits, and ultimately affecting the yield, quality, and biomass of rice. Among the two varieties, Yuejingsimiao 2 showed stronger stress resistance than Huahang 31 did. Our study provides a reference for subsequent studies on the physiology of rice under adverse stress conditions.
Collapse
Affiliation(s)
- Xuexue Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinxi Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaolong Feng
- Agricultural Technology Extension Center in Bobai County, Yulin, China
| | - Jingna Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yilu Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zihang Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| |
Collapse
|
3
|
Javaid A, Pandey RK, Shah AH, Bakshi P, Nazki IT, Kaushal N, Chand G, Dogra S, Kumar R, Singh AK, Singh A. Response of Gladiolus grandiflorus varieties to planting date: effects on growth, flowering, and vase life. BMC PLANT BIOLOGY 2025; 25:481. [PMID: 40234773 PMCID: PMC11998143 DOI: 10.1186/s12870-025-06472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
Gladiolus, a bulbous plant native to South Africa, is known for its vibrant and diverse floral colours. To enhance the growth, flowering, and corm production of gladiolus, it is crucial to identify the optimal planting time suited to the climatic conditions of Jammu and Kashmir, India. The present study investigates the response of Gladiolus grandiflorus varieties to planting date: effects on growth, flowering, and vase life. In Experiment I, early planting on October 15 significantly improved vegetative traits, with the variety 'Oscar' showing superior performance in terms of plant height (129.78 cm), number of leaves per plant (8.96), number of florets per spike (15.22), spike length (93.44 cm), and spike weight. Oscar variety planted in October gave the tallest plant, highest leaf number, and corm yield. Additionally, chlorophyll content was highest in variety 'White Prosperity' (0.92 mg g⁻¹ fresh weight) when planted in October. Experiment II focused on postharvest management, demonstrating that specific holding solutions, particularly sucrose supplemented with acetic acid, significantly increased the vase life of cut spikes, with 'Oscar' achieving a vase life of 12.30 days. The highest water uptake (135.30 mg) was observed in spikes planted in October, and a strong positive correlation was noted between water uptake, electrical conductivity (EC) of the holding solution, and chlorophyll content. In conclusion, it is recommended to plant gladiolus varieties, particularly 'Oscar', in mid-October in Jammu and Kashmir to maximize growth and flowering, and to use sucrose supplemented with acetic acid as a holding solution to extend vase life and improve postharvest quality.
Collapse
Affiliation(s)
- Aquib Javaid
- Division of Floriculture and Landscaping, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, 180009, India
| | - Rajesh Kumar Pandey
- Division of Floriculture and Landscaping, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, 180009, India
| | - Ali Haidar Shah
- Department of Floriculture and Landscape Architecture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173 230, 173230, Himachal Pradesh, India.
| | - Parshant Bakshi
- Division of Floriculture and Landscaping, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, 180009, India
| | - Imtiyaz T Nazki
- Division of Floriculture and Landscape Architecture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu, 191202, Kashmir, India
| | - Nitesh Kaushal
- Department of Floriculture and Landscape Architecture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173 230, 173230, Himachal Pradesh, India.
| | - Gurudev Chand
- Division of Floriculture and Landscaping, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, 180009, India
| | - Sheetal Dogra
- Division of Floriculture and Landscaping, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, 180009, India
| | - Rakesh Kumar
- Division of Floriculture and Landscaping, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, 180009, India
| | - Ajay Kumar Singh
- Department of Floriculture and Landscape Architecture, College of Horticulture, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, India
| | - Anita Singh
- School of Agriculture, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Silva LOE, de Almeida RN, Feitoza RBB, Da Cunha M, Partelli FL. Modifications in Leaf Anatomical Traits of Coffea spp. Genotypes Induced by Management × Season Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:828. [PMID: 40094836 PMCID: PMC11902565 DOI: 10.3390/plants14050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Leaf anatomical traits are influenced by environmental and genetic factors; however, studies that investigate the genotype × environment interaction on these traits are scarce. This study hypothesized that (1) the leaf anatomy of Coffea spp. genotypes is varied, and (2) interactions between managements and seasons significantly influence leaf anatomical traits, inducing a clear adaptation to specific environments. Possible modifications of leaf anatomy in Coffea spp. genotypes were investigated under different managements: full-sun monoculture at low-altitude (MLA), full-sun monoculture at high altitude (MHA), and low-altitude agroforestry (AFS), in winter and summer. The genotype influenced all leaf anatomical traits investigated, contributing to 2.3-20.6% of variance. Genotype × environment interactions contributed to 2.3-95.8% of variance to key traits. The effects of genotype × management interactions were more intense than those of genotype × season interactions on traits such as leaf thickness, palisade parenchyma thickness, abaxial epidermis, and polar and equatorial diameter of the stomata. The management AFS was more effective in altering leaf anatomical traits than the altitude differences between MLA and MHA, regardless of the season. These findings provide valuable insights for future research and for the development of strategies to improve the adaptation of coffee plants to changing environmental conditions.
Collapse
Affiliation(s)
- Larícia Olária Emerick Silva
- Centro Universitário do Norte do Espírito Santo, Federal University of Espírito Santo, São Mateus 29932-900, ES, Brazil
| | - Rafael Nunes de Almeida
- Centro de Ciências e Tecnologias Agropecuárias, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Rodrigo Barbosa Braga Feitoza
- Centro Biociências e Biotecnologia, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Maura Da Cunha
- Centro Biociências e Biotecnologia, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Fábio Luiz Partelli
- Centro Universitário do Norte do Espírito Santo, Federal University of Espírito Santo, São Mateus 29932-900, ES, Brazil
| |
Collapse
|
5
|
Zuffa F, Jung M, Yates S, Quesada‐Traver C, Patocchi A, Studer B, Dow G. Interannual Variation of Stomatal Traits Impacts the Environmental Responses of Apple Trees. PLANT, CELL & ENVIRONMENT 2025; 48:2478-2491. [PMID: 39628004 PMCID: PMC11788966 DOI: 10.1111/pce.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025]
Abstract
Stomata are fundamental to plant-water relations and represent promising targets to enhance crop water-use efficiency and climate resilience. Here, we investigated stomatal density (SD) variation in 269 apple accessions across 3 years (2019-2021), which demonstrated significant differences between accessions but consistency over time. We selected 2 subsets of 20 accessions, each with contrasting SD: high stomatal density (HSD; 370-500 mm-2) and low stomatal density (LSD; 192-316 mm-2). SD groups were compared in stomatal function, leaf physiology and crop productivity across two seasons (2021-2022). LSD had lower stomatal conductance (gs) and higher intrinsic water-use efficiency in both years (p < 0.05). Hotter and drier conditions in 2022 reduced gs similarly in both groups (-22% HSD, -21% LSD), but also created a difference in net carbon assimilation (Anet) that was not present in 2021 (HSD + 1.7 μmol CO2 m-2 s-1, p < 0.05). LSD constraints on Anet were reflected in carbon isotope discrimination (δ13C, p < 0.001) and annual decline in fruit yield (-35%, p < 0.001). Our results demonstrate the suitability of SD as a trait to improve WUE, but also identifies a trade-off between water savings and productivity, which requires consideration for breeding.
Collapse
Affiliation(s)
- Francesca Zuffa
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Michaela Jung
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
- Fruit Breeding, Department of Plant BreedingAgroscopeWaedenswilSwitzerland
| | - Steven Yates
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Carles Quesada‐Traver
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Andrea Patocchi
- Fruit Breeding, Department of Plant BreedingAgroscopeWaedenswilSwitzerland
| | - Bruno Studer
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Graham Dow
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
- Crop Science and Production Systems, NIABCambridgeUK
| |
Collapse
|
6
|
Sun Y, Wang N, Chen X, Peng F, Zhang J, Song H, Meng Y, Liu M, Huang H, Fan Y, Wang L, Yang Z, Zhang M, Chen X, Zhao L, Guo L, Lu X, Wang J, Wang S, Jiang J, Ye W. GHCYP706A7 governs anthocyanin biosynthesis to mitigate ROS under alkali stress in cotton. PLANT CELL REPORTS 2025; 44:61. [PMID: 39985587 DOI: 10.1007/s00299-025-03453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
KEY MESSAGE Flavonoid 3'-hydroxylase synthesis gene-GHCYP706A7, enhanced cotton resistance to alkali stress by scavenging ROS to regulate anthocyanin synthesis. Anthocyanins are a class of flavonoids that play a significant role in mediating plant responses to adverse environmental conditions. Flavonoid 3'-hydroxylase (F3'H), a member of the cytochrome P-450 (CYP) family, is a pivotal enzyme involved in the biosynthesis of anthocyanins. The present study identified 398 CYPs in the Gossypium hirsutum genome, of which GHCYP706A7 was responsible for F3'H synthesis and its ability to respond to alkaline stress. GHCYP706A7 suppression through virus-induced gene silencing (VIGS) diminished tolerance to alkali stress in cotton, evidenced by significantly reduced anthocyanin synthesis, markedly decreased antioxidant capacity, notable increases in reactive oxygen species, severe cellular damage, and observably decreased stomatal opening. The cumulative effects of these physiological disruptions ultimately manifest in cotton wilting and fresh weight decline. These findings lay a foundation for further investigations into the role of CYPs in regulating anthocyanin synthesis and responding to alkali stress.
Collapse
Affiliation(s)
- Yuping Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, 415101, Hunan, China
| | - Junling Zhang
- Shawan City Xinyao Rural Property Rights Transfer Trading Center Co., LTD, Xinjiang, China
| | - Heling Song
- Shawan City Xinyao Rural Property Rights Transfer Trading Center Co., LTD, Xinjiang, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Xiao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Jing Jiang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China.
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
7
|
Zhou Y, Ma G, Li W, Xie L, Zhan S, Yao X, Zuo Z, Tian D. Analysis of Volatile Metabolome and Transcriptome in Sweet Basil Under Drought Stress. Curr Issues Mol Biol 2025; 47:117. [PMID: 39996838 PMCID: PMC11854773 DOI: 10.3390/cimb47020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Basil, renowned for its aromatic properties, exhibits commendable drought tolerance and holds significant value as an edible and medicinal plant. Recognizing the scarcity of studies addressing basil's response to drought stress, we performed physiological experiments and omics analyses of sweet basil across four distinct levels of drought stress. During drought stress, basil showed increased activity of antioxidant enzymes and accumulated more osmoregulatory compounds. Our metabolic analysis meticulously identified a total of 830 metabolites, among which, 215 were differentially accumulated. The differentially accumulated metabolites under drought stress were predominantly esters and terpenes; however, none were identified as the primary volatile compounds of basil. Transcriptome analyses highlighted the pivotal roles of phenylpropanoid and flavonoid biosynthesis and lipid metabolism in fortifying the resistance of sweet basil against drought stress. α-linolenic acid, lignin, flavonoid, and flavonol contents significantly increased under stress; the essential genes involved in the production of these compounds were confirmed through quantitative real-time PCR (qRT-PCR), and their variations aligned with the outcomes from sequencing. This holistic approach not only enriches our understanding of the molecular intricacies underpinning basil's drought resistance but also furnishes valuable insights for the molecular breeding of basil varieties endowed with enhanced drought tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Danqing Tian
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
| |
Collapse
|
8
|
Pesaresi P, Bono P, Corn S, Crosatti C, Daniotti S, Jensen JD, Frébort I, Groli E, Halpin C, Hansson M, Hensel G, Horner DS, Houston K, Jahoor A, Klíma M, Kollist H, Lacoste C, Laidoudi B, Larocca S, Marè C, Moigne NL, Mizzotti C, Morosinotto T, Oldach K, Rossini L, Raubach S, Sanchez‐Garcia M, Shaw PD, Sonnier R, Tondelli A, Waugh R, Weber AP, Yarmolinsky D, Zeni A, Cattivelli L. Boosting photosynthesis opens new opportunities for agriculture sustainability and circular economy: The BEST-CROP research and innovation action. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17264. [PMID: 39910851 PMCID: PMC11799749 DOI: 10.1111/tpj.17264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
There is a need for ground-breaking technologies to boost crop yield, both grains and biomass, and their processing into economically competitive materials. Novel cereals with enhanced photosynthesis and assimilation of greenhouse gasses, such as carbon dioxide and ozone, and tailored straw suitable for industrial manufacturing, open a new perspective for the circular economy. Here we describe the vision, strategies, and objectives of BEST-CROP, a Horizon-Europe and United Kingdom Research and Innovation (UKRI) funded project that relies on an alliance of academic plant scientists teaming up with plant breeding companies and straw processing companies to use the major advances in photosynthetic knowledge to improve barley biomass and to exploit the variability of barley straw quality and composition. We adopt the most promising strategies to improve the photosynthetic properties and ozone assimilation capacity of barley: (i) tuning leaf chlorophyll content and modifying canopy architecture; (ii) increasing the kinetics of photosynthetic responses to changes in irradiance; (iii) introducing photorespiration bypasses; (iv) modulating stomatal opening, thus increasing the rate of carbon dioxide fixation and ozone assimilation. We expect that by improving our targeted traits we will achieve increases in aboveground total biomass production without modification of the harvest index, with added benefits in sustainability via better resource-use efficiency of water and nitrogen. In parallel, the resulting barley straw is tailored to: (i) increase straw protein content to make it suitable for the development of alternative biolubricants and feed sources; (ii) control cellulose/lignin contents and lignin properties to develop straw-based construction panels and polymer composites. Overall, by exploiting natural- and induced-genetic variability as well as gene editing and transgenic engineering, BEST-CROP will lead to multi-purpose next generation barley cultivars supporting sustainable agriculture and capable of straw-based applications.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Department of BiosciencesUniversity of MilanMilan20133Italy
| | - Pierre Bono
- FRD‐CODEM (Fibres Recherche Développement‐Construction Durable et EcoMatériaux), Hôtel de BureauxTechnopole de l'Aube en Champagne2 rue Gustave Eiffel, CS 90601Troyes Cedex 910 901France
| | - Stephane Corn
- LMGC, IMT Mines AlesUniv Montpellier, CNRSAlèsFrance
| | - Cristina Crosatti
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Sara Daniotti
- Consorzio ItalbiotecPiazza della Trivulziana 4Milan20126Italy
| | | | - Ivo Frébort
- Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucŠlechtitelů 27Olomouc783 71Czech Republic
| | - Eder Groli
- S.I.S. Società Italiana Sementivia Mirandola di Sopra 5, 40068 S. Lazzaro di SBolognaItaly
| | - Claire Halpin
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeDD2 5DAUK
| | - Mats Hansson
- Department of BiologyLund UniversityLund22362Sweden
| | - Goetz Hensel
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow's Needs”Heinrich Heine University DüsseldorfDüsseldorfGermany
- Centre for Plant Genome EngineeringHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Kelly Houston
- Cell and Molecular SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD25DAUK
| | | | - Miloš Klíma
- Úsovsko a.s.Klopina 33Klopina789 73Czech Republic
| | - Hannes Kollist
- Institute of BioengineeringUniversity of TartuTartu50411Estonia
- Institute of Plant Sciences Paris‐Saclay (IPS2) Université Paris‐Saclay, CNRS, INRAEUniversité Evry, Université Paris CitéGif sur Yvette91190France
| | - Clément Lacoste
- Polymers, Composites and Hybrids (PCH)IMT Mines AlesAlesFrance
| | - Boubker Laidoudi
- FRD‐CODEM (Fibres Recherche Développement‐Construction Durable et EcoMatériaux), Hôtel de BureauxTechnopole de l'Aube en Champagne2 rue Gustave Eiffel, CS 90601Troyes Cedex 910 901France
| | | | - Caterina Marè
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | | | | | | | | | - Laura Rossini
- Department of Agricultural and Environmental Sciences–Production, Landscape, Agroenergy (DiSAA)University of MilanMilan20133Italy
| | - Sebastian Raubach
- Information and Computational SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Miguel Sanchez‐Garcia
- International Center for Agricultural Research in the Dry Areas (ICARDA)Rabat10100Morocco
| | - Paul D. Shaw
- Information and Computational SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | | | - Alessandro Tondelli
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Robbie Waugh
- Cell and Molecular SciencesJames Hutton InstituteErrol Road, InvergowrieDundeeDD25DAUK
| | - Andreas P.M. Weber
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow's Needs”Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute for Plant BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alessandro Zeni
- Consorzio ItalbiotecPiazza della Trivulziana 4Milan20126Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA) – Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| |
Collapse
|
9
|
Oner F. Effects of nitrogen doses on stomatal characteristics, chlorophyll content, and agronomic traits in wheat ( Triticum aestivum L.). PeerJ 2024; 12:e18792. [PMID: 39735566 PMCID: PMC11674246 DOI: 10.7717/peerj.18792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
It is very important to determine the chlorophyll content (SPAD) and nitrogen (N) requirement in order to increase the seed yield and nutritional quality of wheat. This research was carried out with three N doses (0, 50, 100 kg ha-1) and nine wheat cultivars (Alpu-2001, Soyer-02, Kate-A1, Bezostaja-1, Altay-2000, Müfitbey, Nacibey, Harmankaya-99 and Sönmez-2001) during 2-years field condition according to factorial randomized complete block design and three replications. In this study, with the increase of N dose (N50), seed yield increased by 13%, plant height by 10.8%, 1,000 seed weight by 10.5% compared to control plants (N0). The increase of N dose from 50 kg ha-1 to 100 kg gave lower increase rates in the same criteria (11.7%, 11.4%, 10.3%, respectively). However, the spike number per plant, spikelet number in spike, seed number in spike, spike length showed statistically significant differences between N doses and varieties. Boost of N doses caused a significant increase compared to plants without N application. The chlorophyll content and flag leaf area index were determined at three growth times (1st growth time; early, 2nd growth time; the middle and end of flowering, 3rd growth time; with a 10-day interval). Chlorophyll content was significantly (p < 0.01) affected by the N dose, variety and growth time. As N doses increased, chlorophyll content increased, and it was higher at both N doses compared with N0. The chlorophyll content had the highest rates (30.22%) at 1st growth time and it decreased as the growth period progressed. N doses, varieties and their interactions had significant effects on the flag leaf area index. The highest flag leaf area index (41.9 cm2) was determined from variety Bezostaja-1 and 100 kg ha-1 N dose treatment. The effect of N dose was found significantly on abaxial and adaxial stomata width-length and epidermal cells. The adaxial and abaxial stomata width were higher than N0 at both N levels. The highest adaxial and abaxial stomata width- length was obtained from 100 kg ha-1 N dose. As nitrogen concentration increased, both stomatal density and stomatal index increased. The stomatal index varied between 19% and 36%. The lowest stomata density had appeared in the 100 kg ha-1 N dose and Bezostaja-1 variety. As a result, stomatal characteristics, chlorophyll content, and agronomic traits of wheat were significantly affected by increasing N doses.
Collapse
Affiliation(s)
- Fatih Oner
- Field Crops/Agricultural Faculty, Ordu University, Ordu, Turkey
| |
Collapse
|
10
|
Karavolias NG, Patel‐Tupper D, Gallegos Cruz A, Litvak L, Lieberman SE, Tjahjadi M, Niyogi KK, Cho M, Staskawicz BJ. Engineering quantitative stomatal trait variation and local adaptation potential by cis-regulatory editing. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3442-3452. [PMID: 39425265 PMCID: PMC11606412 DOI: 10.1111/pbi.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 10/21/2024]
Abstract
Cis-regulatory element editing can generate quantitative trait variation that mitigates extreme phenotypes and harmful pleiotropy associated with coding sequence mutations. Here, we applied a multiplexed CRISPR/Cas9 approach, informed by bioinformatic datasets, to generate genotypic variation in the promoter of OsSTOMAGEN, a positive regulator of rice stomatal density. Engineered genotypic variation corresponded to broad and continuous variation in stomatal density, ranging from 70% to 120% of wild-type stomatal density. This panel of stomatal variants was leveraged in physiological assays to establish discrete relationships between stomatal morphological variation and stomatal conductance, carbon assimilation and intrinsic water use efficiency in steady-state and fluctuating light conditions. Additionally, promoter alleles were subjected to vegetative drought regimes to assay the effects of the edited alleles on developmental response to drought. Notably, the capacity for drought-responsive stomatal density reprogramming in stomagen and two cis-regulatory edited alleles was reduced. Collectively our data demonstrate that cis-regulatory element editing can generate near-isogenic trait variation that can be leveraged for establishing relationships between anatomy and physiology, providing a basis for optimizing traits across diverse environments.
Collapse
Affiliation(s)
- Nicholas G. Karavolias
- Innovative Genomics InstituteBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
| | - Dhruv Patel‐Tupper
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
| | | | | | | | | | - Krishna K. Niyogi
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Brian J. Staskawicz
- Innovative Genomics InstituteBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
11
|
Sugiura D, Mitsuya S, Takahashi H, Yamamoto R, Miyazawa Y. Microcontroller-based water control system for evaluating crop water use characteristics. PLANT METHODS 2024; 20:179. [PMID: 39582011 PMCID: PMC11585949 DOI: 10.1186/s13007-024-01305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Climate change and the growing demand for agricultural water threaten global food security. Understanding water use characteristics of major crops from leaf to field scale is critical, particularly for identifying crop varieties with enhanced water-use efficiency (WUE) and stress tolerance. Traditional methods to assess WUE are either by gas exchange measurements at the leaf level or labor-intensive manual pot weighing at the whole-plant level, both of which have limited throughput. RESULTS Here, we developed a microcontroller-based low-cost system that integrates pot weighing, automated water supply, and real-time monitoring of plant water consumption via Wi-Fi. We validated the system using major crops (rice soybean, maize) under diverse stress conditions (salt, waterlogging, drought). Salt-tolerant rice maintained higher water consumption and growth under salinity than salt-sensitive rice. Waterlogged soybean exhibited reduced water use and growth. Long-term experiments revealed significant WUE differences between rice varieties and morphological adaptations represented by altered shoot-to-root ratios under constant drought conditions in maize. CONCLUSIONS We demonstrate that the system can be used for varietal differences between major crops in their response to drought, waterlogging, and salinity stress. This system enables high-throughput, long-term evaluation of water use characteristics, facilitating the selection and development of water-saving and stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryo Yamamoto
- Graduate School of Engineering, Technical Office, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshiyuki Miyazawa
- Campus Planning Office, Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
12
|
Ma M, Gu J, Wang ZY. An optimization method for measuring the stomata in cassava ( Manihot esculenta Crantz) under multiple abiotic stresses. Open Life Sci 2024; 19:20220993. [PMID: 39533984 PMCID: PMC11554558 DOI: 10.1515/biol-2022-0993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
As a gateway for gas exchange, pores regulate the transport of air and water in carbon assimilation, respiration, and transpiration to quickly adapt to environmental changes. Therefore, the study of stomatal movement characteristics of plants is helpful to strengthen the understanding of the mechanism of plant response to multi-environmental stress, and can improve the function of plant resistance to stresses. The stomatal movement of Arabidopsis leaves was observed by staining the stomata with rhodamine 6G, but this method has not been reported in other plant leaf stomata studies. Taking cassava as an example, the correlation between cassava stomatal movement and cassava response to stress was observed by using and improving the staining method. Rhodamine 6G is a biological stain widely used in cell biology and molecular biology. It was found that 1 μM rhodamine 6G could stain the stomata of cassava without affecting stomatal movement (n = 109, p < 0.05). In addition, we proposed that stomata fixed with 4% concentration of formaldehyde after staining were closest to the stomatal morphology of cassava epidermis, so as to observe stomatal movement under different environmental stresses more accurately. Previous methods of measuring stomatal pore size by autofluorescence of cell wall needs to fix the cells for 6 h, but Rhodamine staining can only be observed in 2 min, which greatly improves the experimental efficiency. Compared with the traditional exfoliation method (e.g., Arabidopsis), this method can reduce the damage of the leaves and observe the stomata of the whole leaves more completely, so that the experimental results are more complete. In addition, the method enables continuous leaf processing and observation. Using this method, we further compared four different cassava varieties (i.e., KU50, SC16, SC8, and SC205) and found that there are differences in stomatal density (SD) among cassava varieties, and the difference in the SD directly affects the stress resistance of cassava (n = 107, p < 0.001). This finding has important implications for studying the mechanism of plant response to environmental stress through stomata.
Collapse
Affiliation(s)
- Muqing Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| |
Collapse
|
13
|
Petrík P, Petek-Petrík A, Lamarque LJ, Link RM, Waite PA, Ruehr NK, Schuldt B, Maire V. Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14619. [PMID: 39528910 DOI: 10.1111/ppl.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal morphology. However, the impact of stomatal morphology on WUE across different ontogenetic stages of tree species is not well-documented. Here, we investigated the relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and leaf carbon isotope ratio (δ13C). We sampled 190 individuals, including juvenile and mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA), iWUE and bulk leaf δ13C as a proxy for long-term WUE. Leaf δ13C correlated positively with iWUE across species in both juvenile and mature trees, while GCL showed a negative and SD a positive effect on iWUE and leaf δ13C. Within species, however, only GCL was significantly associated with iWUE and leaf δ13C. SLA had a minor negative influence on iWUE and leaf δ13C, but this effect was inconsistent between juvenile and mature trees. We conclude that GCL and SD can be considered functional morphological traits related to the iWUE and leaf δ13C of trees, highlighting their potential for rapid phenotyping approaches in ecological studies.
Collapse
Affiliation(s)
- Peter Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Anja Petek-Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Roman M Link
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Pierre-André Waite
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- French Agricultural Research Centre for International Development (CIRAD), UPR AIDA, Montpellier, France
- Agroecology and Sustainable Intensification of Annual Crops (AIDA), CIRAD, Université de Montpellier, Montpellier, France
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
14
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
15
|
Jia M, Wang Y, Jin H, Li J, Song T, Chen Y, Yuan Y, Hu H, Li R, Wu Z, Jiao P. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int J Mol Sci 2024; 25:10052. [PMID: 39337538 PMCID: PMC11432118 DOI: 10.3390/ijms251810052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Drought stress seriously threatens plant growth. The improvement of plant water use efficiency (WUE) and drought tolerance through stomatal regulation is an effective strategy for coping with water shortages. Epidermal patterning factor (EPF)/EPF-like (EPFL) family proteins regulate stomatal formation and development in plants and thus contribute to plant stress adaptation. Here, our analysis revealed the presence of 14 PeEPF members in the Populus euphratica genome, which exhibited a relatively conserved gene structure with 1-3 introns. Subcellular localisation prediction revealed that 9 PeEPF members were distributed in the chloroplasts of P. euphratica, and 5 were located extracellularly. Phylogenetic analysis indicated that PeEPFs can be divided into three clades, with genes within the same clade revealing a relatively conserved structure. Furthermore, we observed the evolutionary conservation of PeEPFs and AtEPF/EPFLs in certain domains, which suggests their conserved function. The analysis of cis-acting elements suggested the possible involvement of PeEPFs in plant response to multiple hormones. Transcriptomic analysis revealed considerable changes in the expression level of PeEPFs during treatment with polyethylene glycol and abscisic acid. The overexpression of PeEPF2 resulted in low stomatal density in transgenetic lines. These findings provide a basis for gaining insights into the function of PeEPFs in response to abiotic stress.
Collapse
Affiliation(s)
- Mingyu Jia
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Ying Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Hongyan Jin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Jing Li
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Tongrui Song
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peipei Jiao
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Kim JH, Cho AY, Lim SD, Jang CS. Mutation of a RING E3 ligase, OsDIRH2, enhances drought tolerance in rice with low stomata density. PHYSIOLOGIA PLANTARUM 2024; 176:e14565. [PMID: 39389922 DOI: 10.1111/ppl.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Drought is a major environmental stress factor that negatively affects rice growth and yield. From a forward genetic perspective, we selected a drought-insensitive TILLING line (ditl4) from a gamma-ray-induced core mutant population (M10). Under drought conditions, ditl4 exhibited greater fresh weight, survival rate, chlorophyll, proline, and soluble sugar contents, and lower H2O2 and MDA levels than wild-type (WT). In addition, the activities of antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase, were higher in ditl4 than in the WT. In the relative water loss assay, dilt4 showed significantly decreased leaf curling and water loss compared to WT. Also, the ratio of "closed" stomata aperture was increased in ditl4 under drought stress, suggesting reduced transpiration to prevent water loss. The ditl4 mutant showed decreased stomatal conductance, transpiration, and CO2 assimilation and increased water use efficiency due to the low density of stomata. Whole-genome resequencing analysis of dilt4 identified a single nucleotide polymorphism (SNP) in OsDIRH2 (LOC_Os11g39640), annotated as a RING-H2 type E3 ligase, resulting in a premature stop codon. CRISPR/Cas9-mediated knock-out mutants (OsDIRH2a and OsDIRH2b) enhanced drought tolerance by lowering stomatal density compared to empty vector control plants. These findings suggested that ditl4 with low stomatal density would be useful as a genetic resource for a drought-tolerant breeding program to improve water-use efficiency.
Collapse
Affiliation(s)
- Jong Ho Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - A Young Cho
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung Don Lim
- Molecular Plant Physiology Laboratory, Department of Plant Life & Resource Sciences, Sangji University, Wonju, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
17
|
Tulva I, Koolmeister K, Hõrak H. Low relative air humidity and increased stomatal density independently hamper growth in young Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2718-2736. [PMID: 39072887 DOI: 10.1111/tpj.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Stomatal pores in plant leaves mediate CO2 uptake for photosynthesis and water loss via transpiration. Altered stomatal density can affect plant photosynthetic capacity, water use efficiency, and growth, potentially providing either benefits or drawbacks depending on the environment. Here we explore, at different air humidity regimes, gas exchange, stomatal anatomy, and growth of Arabidopsis lines designed to combine increased stomatal density (epf1, epf2) with high stomatal sensitivity (ht1-2, cyp707a1/a3). We show that the stomatal density and sensitivity traits combine as expected: higher stomatal density increases stomatal conductance, whereas the effect is smaller in the high stomatal sensitivity mutant backgrounds than in the epf1epf2 double mutant. Growth under low air humidity increases plant stomatal ratio with relatively more stomata allocated to the adaxial epidermis. Low relative air humidity and high stomatal density both independently impair plant growth. Higher evaporative demand did not punish increased stomatal density, nor did inherently low stomatal conductance provide any protection against low relative humidity. We propose that the detrimental effects of high stomatal density on plant growth at a young age are related to the cost of producing stomata; future experiments need to test if high stomatal densities might pay off in later life stages.
Collapse
Affiliation(s)
- Ingmar Tulva
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Kaspar Koolmeister
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
18
|
Caine RS, Khan MS, Brench RA, Walker HJ, Croft HL. Inside-out: Synergising leaf biochemical traits with stomatal-regulated water fluxes to enhance transpiration modelling during abiotic stress. PLANT, CELL & ENVIRONMENT 2024; 47:3494-3513. [PMID: 38533601 DOI: 10.1111/pce.14892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
As the global climate continues to change, plants will increasingly experience abiotic stress(es). Stomata on leaf surfaces are the gatekeepers to plant interiors, regulating gaseous exchanges that are crucial for both photosynthesis and outward water release. To optimise future crop productivity, accurate modelling of how stomata govern plant-environment interactions will be crucial. Here, we synergise optical and thermal imaging data to improve modelled transpiration estimates during water and/or nutrient stress (where leaf N is reduced). By utilising hyperspectral data and partial least squares regression analysis of six plant traits and fluxes in wheat (Triticum aestivum), we develop a new spectral vegetation index; the Combined Nitrogen and Drought Index (CNDI), which can be used to detect both water stress and/or nitrogen deficiency. Upon full stomatal closure during drought, CNDI shows a strong relationship with leaf water content (r2 = 0.70), with confounding changes in leaf biochemistry. By incorporating CNDI transformed with a sigmoid function into thermal-based transpiration modelling, we have increased the accuracy of modelling water fluxes during abiotic stress. These findings demonstrate the potential of using combined optical and thermal remote sensing-based modelling approaches to dynamically model water fluxes to improve both agricultural water usage and yields.
Collapse
Affiliation(s)
- Robert S Caine
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
- School of Biosciences, Institute for Sustainable Food, University of Sheffield, South Yorkshire, UK
| | - Muhammad S Khan
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Robert A Brench
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Heather J Walker
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
- School of Biosciences, Institute for Sustainable Food, University of Sheffield, South Yorkshire, UK
- biOMICS Mass Spectrometry Facility, School of Biosciences, University of Sheffield, South Yorkshire, UK
| | - Holly L Croft
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, South Yorkshire, UK
- School of Biosciences, Institute for Sustainable Food, University of Sheffield, South Yorkshire, UK
| |
Collapse
|
19
|
Poudyal D, Krishna Joshi B, Chandra Dahal K. Insights into the responses of Akabare chili landraces to drought, heat, and their combined stress during pre-flowering and fruiting stages. Heliyon 2024; 10:e36239. [PMID: 39253214 PMCID: PMC11382091 DOI: 10.1016/j.heliyon.2024.e36239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Drought, heat, and their combined stress have increasingly become common phenomena in horticulture, significantly reducing chili production worldwide. The current study aimed to phenotype Akabare chili landraces (Capsicum spp.) in climate chambers subjected to drought and heat treatments during their early generative stage, focusing on PSII efficacy (Fv/Fm), net photosynthetic rate (P N), stomatal conductance (g s), leaf cooling, and biomass production. Six landraces were examined under heat and control conditions at 40/32 °C for 4 days and at 30/22 °C under drought and control conditions followed by a 5-day recovery under control conditions (30/22 °C, irrigated). Two landraces with higher (>0.77) and two with lower (<0.763) Fv/Fm during the stress treatments were later evaluated in the field under 55-day-long drought stress at the fruiting stage. In both treatments, stress-tolerant landraces maintained high Fv/Fm, P N, and better leaf cooling leading to improved biomass compared to the sensitive landraces. Agro-morpho-physiological responses of the tolerant and sensitive landraces during the early generative stage echoed those during the fruiting stage in the field. A climate chamber experiment revealed a 13.9 % decrease in total biomass under heat stress, a further 21.5 % reduction under drought stress, and a substantial 38.7 % decline under combine stress. In field conditions, drought stress reduced total biomass by 28.1 % and total fruit dry weight by 26.2 %. Tolerant landraces showed higher Fv/Fm, demonstrated better wilting scores, displayed a higher chlorophyll content index (CCI), and accumulated more biomass. This study validated lab-based results through field trials and identified two landraces, C44 and DKT77, as potential stress-tolerant genotypes. It recommends Fv/Fm, P N, and CCI as physiological markers for the early detection of stress tolerance.
Collapse
Affiliation(s)
- Damodar Poudyal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618, Kathmandu, Nepal
| | - Bal Krishna Joshi
- National Agriculture Genetic Resources Center, Nepal Agricultural Research Council, 44700, Khumaltar, Lalitpur, Nepal
| | - Kishor Chandra Dahal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618, Kathmandu, Nepal
| |
Collapse
|
20
|
Prakash J, Agrawal SB, Agrawal M. Unraveling the underlying mechanisms of biochemical, physiological, and growth responses of two pea ( Pisum sativum L.) cultivars under simulated acid rain-induced oxidative stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1329-1351. [PMID: 39184554 PMCID: PMC11341807 DOI: 10.1007/s12298-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
The current experiment was designed to evaluate the ramifications of simulated acid rain (SAR) on two pea (Pisum sativum L.) cultivars, Kashi Samridhi (Samridhi) and Kashi Nandini (Nandini), to decipher the intraspecific variations in defence mechanism considering the current scenario of rapid anthropogenic activities leading to increase in rain acidity. The pea cultivars were subjected to SAR of pH 7 (Control), 5.6, 5.0, and 4.5 under field conditions. SAR increased active oxygen species and malondialdehyde content due to increased lipid peroxidation in both cultivars; however, the increment intensity was more remarkable in Samridhi at the later growth stage. Ascorbic acid, thiol, and flavonoids were significantly increased in cultivar Nandini, along with increased peroxidase and superoxide dismutase activities. Total phenolics, glutathione reductase, and ascorbate peroxidase activities were enhanced considerably in Samridhi than in Nandini under SAR treatments. Higher stomatal density and stomatal size in Samridhi prompted greater acidic particles influx which further damaged the chloroplast and mitochondria. The present study concludes that cultivar Nandini is more proficient in inducing defence responses by elevating non-enzymatic antioxidants than Samridhi. Non-enzymatic linked defence mechanisms are more metabolically expensive, leading to less biomass accumulation in Nandini. The study depicted that innate defence responses, particularly the role of non-enzymatic antioxidants, governed the sensitivity level of cultivars towards SAR stress. Further, findings also contribute to bridging the knowledge gap regarding the responses of tropical and subtropical crops to acid rain. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01494-x.
Collapse
Affiliation(s)
- Jigyasa Prakash
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
21
|
Yu S, Li T, Teng X, Yang F, Ma X, Han J, Zhou L, Bian Z, Wei H, Deng H, Zhu Y, Yu X. Autotetraploidy of rice does not potentiate the tolerance to drought stress in the seedling stage. RICE (NEW YORK, N.Y.) 2024; 17:40. [PMID: 38888627 PMCID: PMC11189374 DOI: 10.1186/s12284-024-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Polyploid is considered an advantage that has evolved to be more environmentally adaptable than its diploid. To understand if doubled chromosome of diploid rice can improve drought tolerance, we evaluated the diploid (2X) and autotetraploid (4X) plants of three indica and three japonica varieties. Drought stress in the plastic bucket of four-leaf stage revealed that the drought tolerance of 4X plants was lower than that of its diploid donor plants. The assay of photosynthetic rate of all varieties showed that all 4X varieties had lower rates than their diploid donors. The capacity for reactive oxygen species production and scavenging varied among different 2X and 4X varieties. Further, transcriptomic analysis of 2X and 4X plants of four varieties under normal and drought condition showed that the wide variation of gene expression was caused by difference of varieties, not by chromosome ploidy. However, weighted gene co-expression network analysis (WGCNA) revealed that the severe interference of photosynthesis-related genes in tetraploid plants under drought stress is the primary reason for the decrease of drought tolerance in autotetraploid lines. Consistently, new transcripts analysis in autotetraploid revealed that the gene transcription related with mitochondrion and plastid of cell component was influenced most significantly. The results indicated that chromosome doubling of diploid rice weakened their drought tolerance, primarily due to disorder of photosynthesis-related genes in tetraploid plants under drought stress. Maintain tetraploid drought tolerance through chromosome doubling breeding in rice needs to start with the selection of parental varieties and more efforts.
Collapse
Affiliation(s)
- Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Xiaoying Teng
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Jing Han
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Li Zhou
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Zhijuan Bian
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Haibin Wei
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Hui Deng
- Institute of Crop Sciences, Wuhan Acadamy of Agricultual Sciences, Wuhan, 430345, China
| | - Yongsheng Zhu
- Institute of Crop Sciences, Wuhan Acadamy of Agricultual Sciences, Wuhan, 430345, China.
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China.
| |
Collapse
|
22
|
Guo S, Hu X, Yu F, Mu L. Heat Waves Coupled with Nanoparticles Induce Yield and Nutritional Losses in Rice by Regulating Stomatal Closure. ACS NANO 2024; 18:14276-14289. [PMID: 38781572 DOI: 10.1021/acsnano.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The frequency, duration, and intensity of heat waves (HWs) within terrestrial ecosystems are increasing, posing potential risks to agricultural production. Cerium dioxide nanoparticles (CeO2 NPs) are garnering increasing attention in the field of agriculture because of their potential to enhance photosynthesis and improve stress tolerance. In the present study, CeO2 NPs decreased the grain yield, grain protein content, and amino acid content by 16.2, 23.9, and 10.4%, respectively, under HW conditions. Individually, neither the CeO2 NPs nor HWs alone negatively affected rice production or triggered stomatal closure. However, under HW conditions, CeO2 NPs decreased the stomatal conductance and net photosynthetic rate by 67.6 and 33.5%, respectively. Moreover, stomatal closure in the presence of HWs and CeO2 NPs triggered reactive oxygen species (ROS) accumulation (increased by 32.3-57.1%), resulting in chloroplast distortion and reduced photosystem II activity (decreased by 9.4-36.4%). Metabolic, transcriptomic, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed that, under HW conditions, CeO2 NPs activated a stomatal closure pathway mediated by abscisic acid (ABA) and ROS by regulating gene expression (PP2C, NCED4, HPCA1, and RBOHD were upregulated, while CYP707A and ALMT9 were downregulated) and metabolite levels (the content of γ-aminobutyric acid (GABA) increased while that of gallic acid decreased). These findings elucidate the mechanism underlying the yield and nutritional losses induced by stomatal closure in the presence of CeO2 NPs and HWs and thus highlight the potential threat posed by CeO2 NPs to rice production during HWs.
Collapse
Affiliation(s)
- Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
23
|
Gray J, Dunn J. Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change. Cold Spring Harb Perspect Biol 2024; 16:a041672. [PMID: 37923396 PMCID: PMC11146307 DOI: 10.1101/cshperspect.a041672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These "water-saver" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO2/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.
Collapse
Affiliation(s)
- Julie Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jessica Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
24
|
Wang L, Chang C. Stomatal improvement for crop stress resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1823-1833. [PMID: 38006251 DOI: 10.1093/jxb/erad477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
The growth and yield of crop plants are threatened by environmental challenges such as water deficit, soil flooding, high salinity, and extreme temperatures, which are becoming increasingly severe under climate change. Stomata contribute greatly to plant adaptation to stressful environments by governing transpirational water loss and photosynthetic gas exchange. Increasing evidence has revealed that stomata formation is shaped by transcription factors, signaling peptides, and protein kinases, which could be exploited to improve crop stress resistance. The past decades have seen unprecedented progress in our understanding of stomata formation, but most of these advances have come from research on model plants. This review highlights recent research in stomata formation in crops and its multifaceted functions in abiotic stress tolerance. Current strategies, limitations, and future directions for harnessing stomatal development to improve crop stress resistance are discussed.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, Qingdao University, Qingdao, Shandong, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
25
|
Pardo-Hernández M, Arbona V, Simón I, Rivero RM. Specific ABA-independent tomato transcriptome reprogramming under abiotic stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1746-1763. [PMID: 38284474 DOI: 10.1111/tpj.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Crops often have to face several abiotic stresses simultaneously, and under these conditions, the plant's response significantly differs from that observed under a single stress. However, up to the present, most of the molecular markers identified for increasing plant stress tolerance have been characterized under single abiotic stresses, which explains the unexpected results found when plants are tested under real field conditions. One important regulator of the plant's responses to abiotic stresses is abscisic acid (ABA). The ABA signaling system engages many stress-responsive genes, but many others do not respond to ABA treatments. Thus, the ABA-independent pathway, which is still largely unknown, involves multiple signaling pathways and important molecular components necessary for the plant's adaptation to climate change. In the present study, ABA-deficient tomato mutants (flacca, flc) were subjected to salinity, heat, or their combination. An in-depth RNA-seq analysis revealed that the combination of salinity and heat led to a strong reprogramming of the tomato transcriptome. Thus, of the 685 genes that were specifically regulated under this combination in our flc mutants, 463 genes were regulated by ABA-independent systems. Among these genes, we identified six transcription factors (TFs) that were significantly regulated, belonging to the R2R3-MYB family. A protein-protein interaction network showed that the TFs SlMYB50 and SlMYB86 were directly involved in the upregulation of the flavonol biosynthetic pathway-related genes. One of the most novel findings of the study is the identification of the involvement of some important ABA-independent TFs in the specific plant response to abiotic stress combination. Considering that ABA levels dramatically change in response to environmental factors, the study of ABA-independent genes that are specifically regulated under stress combination may provide a remarkable tool for increasing plant resilience to climate change.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Inmaculada Simón
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, Spain
| | - Rosa M Rivero
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| |
Collapse
|
26
|
Li X, Li J, Wei S, Gao Y, Pei H, Geng R, Lu Z, Wang P, Zhou W. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. PLANT PHYSIOLOGY 2024; 194:774-786. [PMID: 37850886 PMCID: PMC10828204 DOI: 10.1093/plphys/kiad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.
Collapse
Affiliation(s)
- Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant
Physiology and Ecology, Chinese Academy of Sciences, Shanghai
200032, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Fang J, Peng Y, Zheng L, He C, Peng S, Huang Y, Wang L, Liu H, Feng G. Chitosan-Se Engineered Nanomaterial Mitigates Salt Stress in Plants by Scavenging Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:176-188. [PMID: 38127834 DOI: 10.1021/acs.jafc.3c06185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Soil salinity seriously hinders the sustainable development of green agriculture. The emergence of engineered nanomaterials has revolutionized agricultural research, providing a new means to overcome the limitations associated with current abiotic stress management and achieve highly productive agriculture. Herein, we synthesized a brand-new engineered nanomaterial (Cs-Se NMs) through the Schiff base reaction of oxidized chitosan with selenocystamine hydrochloride to alleviate salt stress in plants. After the addition of 300 mg/L Cs-Se NMs, the activity of superoxide dismutase, catalase, and peroxidase in rice shoots increased to 3.19, 1.79, and 1.85 times those observed in the NaCl group, respectively. Meanwhile, the MDA levels decreased by 63.9%. Notably, Cs-Se NMs also raised the transcription of genes correlated with the oxidative stress response and MAPK signaling in the transcriptomic analysis. In addition, Cs-Se NMs augmented the abundance and variety of rhizobacteria and remodeled the microbial community structure. These results provide insights into applying engineered nanomaterials in sustainable agriculture.
Collapse
Affiliation(s)
- Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chang He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lixiang Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Huipeng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
28
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Poudyal D, Joshi BK, Zhou R, Ottosen CO, Dahal KC. Evaluating the physiological responses and identifying stress tolerance of Akabare chili landraces to individual and combined drought and heat stresses. AOB PLANTS 2023; 15:plad083. [PMID: 38106642 PMCID: PMC10721449 DOI: 10.1093/aobpla/plad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Abstract. Akabare chili (Capsicum annuum) contributes to Nepalese rural livelihoods but suffers from low productivity due to various abiotic stresses including drought and heat. This study aimed to assess the physiological responses of Akabare chili landraces to heat and drought stress, individually and together, and to identify stress-tolerant genotypes in the early vegetative stage. Selected eight Akabare chili landraces and chili variety 'Jwala' were subjected to control (30/22 °C day/night) and heat stress (40/32 °C) conditions with irrigation, and drought stress (30/22 °C) and combined drought-heat stress conditions without irrigation for 7 days, followed by a 5-day recovery under control condition. Stress-tolerant landraces showed better performance compared to sensitive ones in terms of efficacy of PS II (Fv/Fm), transpiration rate (E), net photosynthetic rate (PN), stomatal conductance (gs), leaf temperature depression, water use efficiency (WUE) and the ratio of stomata pore area to stomata area under stress conditions, resulting in improved biomass. Although all genotypes performed statistically similar under control conditions, their responses Fv/Fm, PN, E, gs and WUE were significantly reduced under thermal stress, further reduced under drought stress, and severely declined under the combination of both. Total biomass exhibited a 57.48 % reduction due to combined stress, followed by drought (37.8 %) and heat (21.4 %) compared to the control. Among the landraces, C44 showed the most significant gain in biomass (35 %), followed by DKT77 (33.48 %), while the lowest gain percentage was observed for C64C and PPR77 during the recovery phase (29 %). The tolerant landraces also showed a higher percentage of leaf cooling, chlorophyll content and leaf relative water content with fewer stomata but broader openings of pores. The study identifies potential stress-tolerant Akabare chili landraces and discusses the stress-tolerant physiological mechanisms to develop resilient crop varieties in changing climates.
Collapse
Affiliation(s)
- Damodar Poudyal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| | - Bal Krishna Joshi
- National Agriculture Genetic Resource Center, Nepal Agriculture Research Council, Khumaltar, 44700 Lalitpur, Nepal
| | - Rong Zhou
- College of Horticulture, Nanjing Agriculture University, Weigang No.1, 210095 Nanjing, China
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Kishor Chandra Dahal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| |
Collapse
|
30
|
Arifuzzaman M, Mamidi S, Sanz-Saez A, Zakeri H, Scaboo A, Fritschi FB. Identification of loci associated with water use efficiency and symbiotic nitrogen fixation in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1271849. [PMID: 38034552 PMCID: PMC10687445 DOI: 10.3389/fpls.2023.1271849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Soybean (Glycine max) production is greatly affected by persistent and/or intermittent droughts in rainfed soybean-growing regions worldwide. Symbiotic N2 fixation (SNF) in soybean can also be significantly hampered even under moderate drought stress. The objective of this study was to identify genomic regions associated with shoot carbon isotope ratio (δ13C) as a surrogate measure for water use efficiency (WUE), nitrogen isotope ratio (δ15N) to assess relative SNF, N concentration ([N]), and carbon/nitrogen ratio (C/N). Genome-wide association mapping was performed with 105 genotypes and approximately 4 million single-nucleotide polymorphism markers derived from whole-genome resequencing information. A total of 11, 21, 22, and 22 genomic loci associated with δ13C, δ15N, [N], and C/N, respectively, were identified in two environments. Nine of these 76 loci were stable across environments, as they were detected in both environments. In addition to the 62 novel loci identified, 14 loci aligned with previously reported quantitative trait loci for different C and N traits related to drought, WUE, and N2 fixation in soybean. A total of 58 Glyma gene models encoding for different genes related to the four traits were identified in the vicinity of the genomic loci.
Collapse
Affiliation(s)
- Muhammad Arifuzzaman
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Sujan Mamidi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hossein Zakeri
- College of Agriculture, California State University-Chico, Chico, CA, United States
| | - Andrew Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Felix B. Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
31
|
Liang Y, Liu H, Fu Y, Li P, Li S, Gao Y. Regulatory effects of silicon nanoparticles on the growth and photosynthesis of cotton seedlings under salt and low-temperature dual stress. BMC PLANT BIOLOGY 2023; 23:504. [PMID: 37864143 PMCID: PMC10589941 DOI: 10.1186/s12870-023-04509-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Silicon nanoparticles (SiO2-NPs) play a crucial role in plants mitigating abiotic stress. However, the regulatory mechanism of SiO2-NPs in response to multiple stress remains unclear. The objectives of this study were to reveal the regulatory mechanism of SiO2-NPs on the growth and photosynthesis in cotton seedlings under salt and low-temperature dual stress. It will provide a theoretical basis for perfecting the mechanism of crop resistance and developing the technology of cotton seedling preservation and stable yield in arid and high salt areas. RESULTS The results showed that the salt and low-temperature dual stress markedly decreased the plant height, leaf area, and aboveground biomass of cotton seedlings by 9.58%, 15.76%, and 39.80%, respectively. While SiO2-NPs alleviated the damage of the dual stress to cotton seedling growth. In addition to reduced intercellular CO2 concentration, SiO2-NPs significantly improved the photosynthetic rate, stomatal conductance, and transpiration rate of cotton seedling leaves. Additionally, stomatal length, stomatal width, and stomatal density increased with the increase in SiO2-NPs concentration. Notably, SiO2-NPs not only enhanced chlorophyll a, chlorophyll b, and total chlorophyll content, but also slowed the decrease of maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and the increase in non-photochemical quenching. Moreover, SiO2-NPs enhanced the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, improved leaf water potential, and decreased abscisic acid and malondialdehyde content. All the parameters obtained the optimal effects at a SiO2-NPs concentration of 100 mg L- 1, and significantly increased the plant height, leaf area, and aboveground biomass by 7.68%, 5.37%, and 43.00%, respectively. Furthermore, significant correlation relationships were observed between photosynthetic rate and stomatal conductance, stomatal length, stomatal width, stomatal density, chlorophyll content, maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and Rubisco activity. CONCLUSION The results suggested that the SiO2-NPs improved the growth and photosynthesis of cotton seedlings might mainly result from regulating the stomatal state, improving the light energy utilization efficiency and electron transport activity of PSII reaction center, and inducing the increase of Rubisco activity to enhance carbon assimilation under the salt and low-temperature dual stress.
Collapse
Affiliation(s)
- Yueping Liang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Hao Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Yuanyuan Fu
- College of Agronomy, Tarim University, Alaer, 843300, China
| | - Penghui Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Shuang Li
- Shandong Academy of Agricultural Machinery Science, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China.
| |
Collapse
|
32
|
Meng X, Nakano A, Hoshino Y. Automated estimation of stomatal number and aperture in haskap (Lonicera caerulea L.). PLANTA 2023; 258:77. [PMID: 37673805 DOI: 10.1007/s00425-023-04231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
MAIN CONCLUSION This study developed the reliable Mask R-CNN model to detect stomata in Lonicera caerulea. The obtained data could be utilized for evaluating some characters such as stomatal number and aperture area. The native distribution of haskap (Lonicera caerulea L.), a small-shrub species, extends through Northern Eurasia, Japan, and North America. Stomatal observation is important for plant research to evaluate the physiological status and to investigate the effect of ploidy levels on phenotypes. However, manual annotation of stomata using microscope software or ImageJ is time consuming. Therefore, an efficient method to phenotype stomata is needed. In this study, we used the Mask Regional Convolutional Neural Network (Mask R-CNN), a deep learning model, to analyze the stomata of haskap efficiently and accurately. We analyzed haskap plants (dwarf and giant phenotypes) with the same ploidy but different phenotypes, including leaf area, stomatal aperture area, stomatal density, and total number of stomata. The R-square value of the estimated stomatal aperture area was 0.92 and 0.93 for the dwarf and giant plants, respectively. The R-square value of the estimated stomatal number was 0.99 and 0.98 for the two phenotypes. The results showed that the measurements obtained using the models were as accurate as the manual measurements. Statistical analysis revealed that the stomatal density of the dwarf plants was higher than that of the giant plants, but the maximum stomatal aperture area, average stomatal aperture area, total number of stomata, and average leaf area were lower than those of the giant plants. A high-precision, rapid, and large-scale detection method was developed by training the Mask R-CNN model. This model can help save time and increase the volume of data.
Collapse
Affiliation(s)
- Xiangji Meng
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita 11, Nishi 10, Kita-ku, Sapporo, 060-0811, Japan
| | - Arisa Nakano
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 11, Nishi 10, Kita-ku, Sapporo, 060-0811, Japan
| | - Yoichiro Hoshino
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita 11, Nishi 10, Kita-ku, Sapporo, 060-0811, Japan.
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 11, Nishi 10, Kita-ku, Sapporo, 060-0811, Japan.
| |
Collapse
|
33
|
Ying S, Scheible WR. REGULATOR OF FLOWERING AND STRESS manipulates stomatal density and size in Brachypodium. PHYSIOLOGIA PLANTARUM 2023; 175:e14008. [PMID: 37882269 DOI: 10.1111/ppl.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 10/27/2023]
Abstract
Stomata are crucial for gas exchange and water evaporation, and environmental stimuli influence their density (SD) and size (SS). Although genes and mechanisms underlying stomatal development have been elucidated, stress-responsive regulators of SD and SS are less well-known. Previous studies have shown that the stress-inducible Brachypodium RFS (REGULATOR OF FLOWERING AND STRESS, BdRFS) gene affects heading time and enhances drought tolerance by reducing leaf water loss. Here, we report that overexpression lines (OXs) of BdRFS have reduced SD and increased SS, regardless of soil water status. Furthermore, biomass and plant water content of OXs were significantly increased compared to wild type. CRISPR/Cas9-mediated BdRFS knockout mutant (KO) exhibited the opposite stomatal characteristics and biomass changes. Reverse transcription-quantitative polymerase chain reaction analysis revealed that expression of BdICE1 was reversely altered in OXs and KO, pointing to a potential cause for the observed changes in stomatal phenotypes. Stomatal and transcriptional changes were not observed in the Arabidopsis rfs double mutant. Taken together, RFS is a novel regulator of SD and SS and is a promising candidate for genetic engineering of climate-resilient crops.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLC, Ardmore, Oklahoma, USA
| | | |
Collapse
|