1
|
Zhang Z, Wang X, Gao Y, Xian X, Zhang D, Zhao W, Wang X, Wang Y. Orchestrating anthocyanin biosynthesis in fruit of fruit trees: Transcriptional, post-transcriptional, and post-translational regulation. Int J Biol Macromol 2025; 307:141835. [PMID: 40064275 DOI: 10.1016/j.ijbiomac.2025.141835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Coloration is an important appearance quality that contributes to product value. Anthocyanins, a type of flavonoid, not only impart rich plants color, but also contribute to human health because of their antioxidant properties, such as preventing cardiovascular disease and reducing obesity. This benefit mainly stems from various fruits. Accordingly, based on the consumption demand of beauty and nutrition, the creation of fruit tree products rich in anthocyanin is becoming an important breeding goal. The synthesis of anthocyanin has been investigated in various fruits, which is modulated by a variety of endogenous and exogenous factors, including transcription factors (TFs), plant hormones, and environmental factors (such as light, low temperature, drought). However, the detailed mechanisms in fruits of fruit trees have not been thoroughly elucidated. This review comprehensively examines the regulation of anthocyanin biosynthesis at the transcriptional, post-transcriptional, and post-translational levels, which is important for the application of molecular design strategies to cultivate high-quality fruits. At the transcriptional level, TFs were summarized to directly regulate anthocyanin biosynthesis genes, target non-anthocyanin biosynthesis pathway genes, interact with other proteins to mediate anthocyanin synthesis, and regulate anthocyanin synthesis by environmental factors and plant hormones. At the post-transcriptional level, non-coding RNAs (ncRNAs) were elucidated to mediate anthocyanin synthesis. At the post-translational level, a variety of post-translational modifications, including phosphorylation, ubiquitination, sumoylation, and persulfidation, have been elucidated to exhibit crucial functions in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Donghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbing Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Ji XL, Zhao LL, Liu B, Yuan YB, Han Y, You CX, An JP. MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1339-1363. [PMID: 39936840 DOI: 10.1111/jipb.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.
Collapse
Affiliation(s)
- Xing-Long Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Yong-Bing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Di T, Wu Y, Wang J, He M, Huang J, Li N, Hao X, Ding C, Zeng J, Yang Y, Wang X, Wang L. CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction. PLANT, CELL & ENVIRONMENT 2025; 48:3337-3351. [PMID: 39740204 DOI: 10.1111/pce.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants. The overexpression of CsCIPK20 in Arabidopsis and its transient knockdown in tea plants confirmed its positive role in cold resistance. Notably, the ascorbic acid (AsA) levels increased in the overexpression lines and decreased in the CsCIPK20 knockdown tea plants under freezing stress. Transcriptomic analysis revealed that genes involved in flavonoid metabolism, glutathione metabolism, and AsA biosynthesis were significantly regulated by CsCIPK20. Furthermore, we found that CsCSN5, a key component of the COP9 signalosome, interacted with CsCIPK20 to mediate CsCIPK20 degradation. CsCSN5 interacted with CsVTC1, a key enzyme in AsA biosynthesis, and mediated CsVTC1 degradation. Knockdown of CsVTC1 in tea plants enhanced sensitivity to low temperature. Moreover, we demonstrated that CsCIPK20 competed with CsVTC1 to bind to CsCSN5, which protected CsVTC1 from degradation mediated by CsCSN5 and contributed to AsA accumulation. Overall, our findings uncovered a mechanistic framework through which the CsCIPK20-CsCSN5-CsVTC1 module mediated AsA accumulation and low-temperature resistance in tea plants.
Collapse
Affiliation(s)
- Taimei Di
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yedie Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mingming He
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yajun Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Zhao T, Li Q, Yan T, Yu B, Wang Q, Wang D. Sugar and anthocyanins: A scientific exploration of sweet signals and natural pigments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112409. [PMID: 39894058 DOI: 10.1016/j.plantsci.2025.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The presence of anthocyanins imparts vibrant hues to plants, whose biosynthesis and accumulation is a complex process and are influenced by numerous factors. In plants, sugar acts as a primary energy source and signaling molecule regulating anthocyanins biosynthesis. In this review, we provides a comprehensive overview of the relationship between sugar and anthocyanin. We delved into the intricate biosynthetic pathway of anthocyanins, outlining the key structural genes involved and their functions. Furthermore, we summarized how various environmental factors such as sugar, light, abiotic stresses, etc., affect anthocyanin biosynthesis. Notably, Most notably, we emphasized that sugars can independently regulate anthocyanin biosynthesis by modulating the expression of the MBW complex or structural genes, as well as through cascades involving hormones. These findings offer valuable insights into understanding the molecular mechanisms underlying anthocyanin accumulation and present potential avenues for enhancing anthocyanin content in plants through targeted manipulations that could have applications in agriculture and nutrition.
Collapse
Affiliation(s)
- Ting Zhao
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qian Li
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ting Yan
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Boping Yu
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qi Wang
- Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
5
|
Guo XL, Wang DR, Liu B, Han Y, You CX, An JP. The E3 ubiquitin ligase BRG3 and the protein kinase MPK7 antagonistically regulate LBD36 turnover, a key node for integrating nitrate and gibberellin signaling in apple. THE NEW PHYTOLOGIST 2025. [PMID: 40084628 DOI: 10.1111/nph.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Nitrate is the main source of nitrogen in plants. Nitrate stimulation causes changes in plant secondary metabolites, including anthocyanins. However, the molecular mechanism underlying how nitrate regulates anthocyanin biosynthesis remains unclear. In this study, we identified a nitrate response factor MdLBD36 in apple. This factor positively regulated nitrate deficiency-induced anthocyanin biosynthesis by promoting the transcriptional activity of MdABI5, an important regulator of anthocyanins, and directly activated MdABI5 expression. The E3 ubiquitin ligase MdBRG3 promoted the ubiquitinated degradation of MdLBD36 to reduce anthocyanin biosynthesis under nitrate-sufficient conditions. Nitrate deficiency-activated MdMPK7 maintained the stimulating effect of MdLBD36 on anthocyanin biosynthesis by counteracting the MdBRG3-mediated degradation of MdLBD36. Nitrate coordinated gibberellin (GA) signaling to regulate anthocyanin biosynthesis. The GA signaling repressor MdRGL2a contributed to MdLBD36-promoted anthocyanin biosynthesis by enhancing the MdLBD36-MdABI5 interaction and increasing the MdLBD36 transcriptional activation of MdABI5. In summary, our results elucidate the molecular framework of the coordinated regulation of the nitrate signaling response and anthocyanin biosynthesis by ubiquitination and phosphorylation. This study revealed the cross talk between nitrate and GA signaling in the regulation of anthocyanin biosynthesis and provides references for an in-depth exploration of the nitrate signal transduction pathway and its interactions with hormones.
Collapse
Affiliation(s)
- Xin-Long Guo
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yan-Tai, 265599, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| |
Collapse
|
6
|
Feng K, Sun N, Bian YQ, Rui WD, Yan YJ, Yang ZY, Liu JL, Zhou ZQ, Zhao SP, Wu P, Li LJ. Identification and characterization of anthocyanins' composition and regulatory genes involved in anthocyanins biosynthesis in water dropwort (Oenanthe javanica). PLANTA 2025; 261:76. [PMID: 40035850 DOI: 10.1007/s00425-025-04660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
MAIN CONCLUSION This study showed that anthocyanin was the main pigments related to purple stem and OjUFGT1 is involved in anthocyanin glycosylation in water dropwort. Water dropwort is a kind of aquatic vegetable with many medicinal values. In the study, the green-stem water dropwort 'FQ1H' and purple-stem water dropwort 'Sq013' were selected as plant materials. The anthocyanins composition was determined by UPLC-MS/MS and the transcript profile was analyzed based on RNA-seq in water dropwort. Nine anthocyanins were identified from water dropwort by UPLC-MS/MS. Petunidin and anthocyanin have higher content, which play a crucial role in the formation of purple stem. In total, 20,478 DEGs were identified in the purple stem, which might have a high correlation with anthocyanin accumulation. The expressions of 26 DEGs encoding anthocyanin biosynthesis structural genes were determined. Furthermore, co-expression analysis indicated that many R2R3-MYB and bHLH transcription factors were potentially involved in anthocyanin biosynthesis. In vitro enzyme activity assay showed that glycosyltransferase OjUFGT1 recognizes UDP-galactose as glycosyl donor and converts cyanidin to cyanidin-3-O-galactoside. In summary, these results may facilitate the development of our breeding and utilization for the high-anthocyanin water dropwort in the future.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Ya-Qing Bian
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Wu-Di Rui
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Ya-Jie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Zhi-Yuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jia-Lu Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Zi-Qi Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Shu-Ping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Liang-Jun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri‑Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Wan Q, Lu M, Jiang G, Shao J, Chen T, Yang L, Khan IA, Deng J, Zhong S, Wang Y, Xiao Z, Fang Q, Zhao H. The characterization of OfRGA in regulation of flower size through tuning cell expansion genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1502347. [PMID: 39822961 PMCID: PMC11736142 DOI: 10.3389/fpls.2024.1502347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion. However, the specific biological function of DELLA proteins in the woody plant Osmanthus fragrans remains unclear. In this study, O. fragrans 'Sijigui' was utilized as the experimental material, and OfRGA was isolated using the PCR method. OfRGA is expressed in various tissues and is localized in the nucleus. A negative association was observed between OfRGA expression and petal size across four different Osmanthus fragrans cultivars. Transformation experiments in tobacco revealed that transgenic plants overexpressing OfRGA exhibited increased plant height, greater node spacing, shorter leaf length, and wider leaves during the vegetative phase. Notably, the flower organs of transgenic tobacco plants displayed noticeable alterations, including reduced petal size, shorter corolla tubes, pedicels, male and female stamens, and lighter petal color. Furthermore, a decrease in the length and area of petal and corolla tube cells was observed as well. DEGs were found in RNA-seq studies of OfRGA transgenic plants. Subsequent investigation revealed a considerable quantity of down-regulated genes were associated with cell wall synthesis genes and expansion genes, such as CesA1, XEH, and EXPB1, as well as genes related to anthocyanin biosynthesis. Overall, our findings suggest that OfRGA undermines tobacco petal size by influencing cell expansion. The present study offers a fundamental comprehension of the role of DELLA protein in the organ development in Osmanthus fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qiu Fang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden
Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden
Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Yang K, Li Z, Zhu C, Liu Y, Li H, Di X, Song X, Ren H, Gao Z. A hierarchical ubiquitination-mediated regulatory module controls bamboo lignin biosynthesis. PLANT PHYSIOLOGY 2024; 196:2565-2582. [PMID: 39250763 DOI: 10.1093/plphys/kiae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The lignocellulosic feedstock of woody bamboo shows promising potential as an alternative to conventional wood, attributed to its excellent properties. The content and distribution of lignin serve as the foundation of these properties. While the regulation of lignin biosynthesis in bamboo has been extensively studied at the transcriptional level, its posttranslational control has remained poorly understood. This study provides a ubiquitinome dataset for moso bamboo (Phyllostachys edulis), identifying 13,015 ubiquitinated sites in 4,849 unique proteins. We further identified Kelch repeat F-box protein 9 (PeKFB9) that plays a negative role in lignin biosynthesis. Heterologous expression of PeKFB9 resulted in reduced accumulation of lignin and decreased phenylalanine ammonia lyase (PAL) activities. Both in vitro and in vivo assays identified interaction between PeKFB9 and PePAL10. Further examination revealed that SCFPeKFB9 mediated the ubiquitination and degradation of PePAL10 via the 26S proteasome pathway. Moreover, PebZIP28667 could bind to the PePAL10 promoter to significantly inhibit its transcription, and ubiquitination of PebZIP28667 weakened this inhibition. Collectively, our findings reveal a PeKFB9-PePAL10/PebZIP28667-PePAL10 module that acts as a negative regulator of lignin biosynthesis. This study advances our understanding of posttranslational regulation in plant lignification, which will facilitate the improvement of the properties of bamboo wood and the breeding of varieties.
Collapse
Affiliation(s)
- Kebin Yang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyang Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Haiqing Ren
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
9
|
Wang NN, Xiu KY, Deng M, Liu QY, Jin DD, Zhao QM, Su HQ, Qiu TT, Wang HY, Liu YJ, Jiang XL, Xia T, Gao LP. Effects of phosphorylation on CsTT12 transport function: A comparative phosphoproteomic analysis of flavonoid biosynthesis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2420-2436. [PMID: 39488740 DOI: 10.1111/tpj.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Monomeric flavan-3-ols and their oligomeric forms, proanthocyanidins (PAs), are closely related to the bitterness of tea beverages. Monomeric flavan-3-ols are characteristic flavor compounds in tea. Increasing the content of PAs and anthocyanins enhances the resistance of tea plants to pathogen invasion but decreases the quality of tea beverages. MATE family transporters play a critical role in transferring monomeric flavan-3-ols and anthocyanins into vacuoles for storage or subsequent condensation into PAs. Their activities modulate the ratio of monomeric flavan-3-ols to PAs and increase anthocyanin content in tea plants. In this study, it was observed that the gene expression and protein phosphorylation level of the MATE transporter CsTT12, a vacuole-localized flavonoid transporter, were notably upregulated following exogenous sucrose treatment, promoting PA synthesis in tea plants. Further analysis revealed that overexpression of CsTT12 and CsTT12S17D significantly increased the content of anthocyanins and PAs in plants, whereas CsTT12S17A did not. In CsTT12 knockdown plants, PA's accumulation decreased significantly, while monomeric catechin content increased. Moreover, phosphorylation modification enhanced the vacuolar membrane localization of CsTT12, whereas dephosphorylation weakened its vacuolar membrane localization. This study uncovers the crucial role of phosphorylation in flavonoid biosynthesis and provides insights into balancing quality improvements and resistance enhancement.
Collapse
Affiliation(s)
- Na-Na Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ke-Yan Xiu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Min Deng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qi-Yun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Di-Di Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qiao-Mei Zhao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huang-Qiang Su
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ting-Ting Qiu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hai-Yan Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ya-Jun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiao-Lan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Li-Ping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
10
|
Luo H, Guan Y, Zhang Z, Zhang Z, Zhang Z, Li H. FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS. PLANT, CELL & ENVIRONMENT 2024; 47:4630-4650. [PMID: 39051467 DOI: 10.1111/pce.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold-tolerant strawberry resources 'Fragaria mandschurica' and 'Fragaria nipponica'. In conclusion, our study reveals the molecular mechanism of FveDREB1B-FveSCL23-FveDELLA module and FveDREB1B-FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources.
Collapse
Affiliation(s)
- He Luo
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhan Guan
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zihui Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Zhang LL, Zhu H, Chen CY, Shang NN, Sheng LX, Yu JQ. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14590. [PMID: 39468987 DOI: 10.1111/ppl.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Salt stress severely affects the growth and yield of apples (Malus domestica Borkh). Although salt-tolerant genes have been extensively studied, documentation on the role of the ATP-dependent phosphofructokinase gene MdPFK5 in salt stress is limited. This study conducted an evolutionary tree and three-dimensional structure analysis of the PFK gene family in Arabidopsis thaliana and MdPFK (MD01G1037400), revealing a close phylogenetic relationship between MdPFK (MD01G1037400) and AtPFK5. Given the similarity in their protein tertiary structures, MdPFK was designated as MdPFK5, suggesting functional similarities with AtPFK5. Further investigation revealed elevated expression levels of MdPFK5 in apple leaves and flowers, particularly showing significant upregulation 120 days after blooming and differential expression beginning at 3 hours of salt stress. Overexpression of MdPFPK5 conferred salt tolerance in both apple calli and transgenic lines of Arabidopsis thaliana. Moreover, NaCl treatment promoted soluble sugar accumulation in apple calli and transgenic lines of Arabidopsis thaliana overexpressing MdPFK5. This study provides new insights into the salt tolerance function of MdPFK5.
Collapse
Affiliation(s)
- Li-Li Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Hao Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Chao-Yan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Na-Na Shang
- Dongying Vocational Institute, Dongying, China
| | - Li-Xia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Bulgakov VP, Fialko AV, Yugay YA. Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109096. [PMID: 39250844 DOI: 10.1016/j.plaphy.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Plant responses to cold stress include either induction of flavonoid biosynthesis as part of defense responses or initially elevated levels of these substances to mitigate sudden temperature fluctuations. The role of chromatin modifying factors and, in general, epigenetic variability in these processes is not entirely clear. In this work, we review the literature to establish the relationship between flavonoids, cold and chromatin modifications. We demonstrate the relationship between cold acclimation and flavonoid accumulation, and then describe the cold adaptation signaling pathways and their relationship with chromatin modifying factors. Particular attention was paid to the cold signaling module OST1-HOS1-ICE1 and the novel function of the E3 ubiquitin protein ligase HOS1 (a protein involved in chromatin modification during cold stress) in flavonoid regulation.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia.
| | - Alexandra V Fialko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia
| | - Yulia A Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| |
Collapse
|
13
|
An JP, Zhao L, Cao YP, Ai D, Li MY, You CX, Han Y. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple. THE PLANT CELL 2024; 36:4404-4425. [PMID: 38917246 PMCID: PMC11448916 DOI: 10.1093/plcell/koae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yun-Peng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Di Ai
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao-Yi Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
14
|
Yuan Y, Fan Y, Huang L, Lu H, Tan B, Ramirez C, Xia C, Niu X, Chen S, Gao M, Zhang C, Liu Y, Xiao F. The SINA1-BSD1 Module Regulates Vegetative Growth Involving Gibberellin Biosynthesis in Tomato. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400995. [PMID: 39190572 PMCID: PMC11633369 DOI: 10.1002/advs.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/10/2024] [Indexed: 08/29/2024]
Abstract
In plants, vegetative growth is controlled by synergistic and/or antagonistic effects of many regulatory factors. Here, the authors demonstrate that the ubiquitin ligase seven in absentia1 (SINA1) mammalian BTF2-like transcription factors, Drosophila synapse-associated proteins, and yeast DOS2-like proteins (BSD1) function as a regulatory module to control vegetative growth in tomato via regulation of the production of plant growth hormone gibberellin (GA). SINA1 negatively regulates the protein level of BSD1 through ubiquitin-proteasome-mediated degradation, and the transgenic tomato over-expressing SINA1 (SINA1-OX) resembles the dwarfism phenotype of the BSD1-knockout (BSD1-KO) tomato plant. BSD1 directly activates expression of the BSD1-regulated gene 1 (BRG1) via binding to a novel core BBS (standing for BSD1 binding site) binding motif in the BRG1 promoter. Knockout of BRG1 (BRG1-KO) in tomato also results in a dwarfism phenotype, suggesting BRG1 plays a positive role in vegetative growth as BSD1 does. Significantly, GA contents are attenuated in transgenic SINA1-OX, BSD1-KO, and BRG1-KO plants exhibiting dwarfism phenotype and exogenous application of bioactive GA3 restores their vegetative growth. Moreover, BRG1 is required for the expression of multiple GA biosynthesis genes and BSD1 activates three GA biosynthesis genes promoting GA production. Thus, this study suggests that the SINA1-BSD1 module controls vegetative growth via direct and indirect regulation of GA biosynthesis in tomato.
Collapse
Affiliation(s)
- Yulin Yuan
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Youhong Fan
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
- School of Food and Biological EngineeringHefei University of TechnologyHefeiAnhui230009China
| | - Li Huang
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Han Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringNational Observations and Research Station for Wetland Ecosystems of the Yangtze EstuaryInstitute of Biodiversity Science and Institute of Eco‑ChongmingSchool of Life SciencesFudan UniversityShanghai200433China
| | - Bowen Tan
- Department of BiologyUniversity of MississippiOxfordMS38677USA
| | - Chloe Ramirez
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| | - Chao Xia
- Maize Research InstituteSichuan Agricultural UniversityChengdu611130China
| | - Xiangli Niu
- School of Food and Biological EngineeringHefei University of TechnologyHefeiAnhui230009China
| | - Sixue Chen
- Department of BiologyUniversity of MississippiOxfordMS38677USA
| | - Mingjun Gao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringNational Observations and Research Station for Wetland Ecosystems of the Yangtze EstuaryInstitute of Biodiversity Science and Institute of Eco‑ChongmingSchool of Life SciencesFudan UniversityShanghai200433China
| | - Cankui Zhang
- Department of AgronomyPurdue Center for Plant BiologyPurdue University915 Mitch Daniels BlvdWest LafayetteIN47907USA
| | - Yongsheng Liu
- School of Food and Biological EngineeringHefei University of TechnologyHefeiAnhui230009China
- School of HorticultureAnhui Agricultural UniversityHefeiAnhui230036China
- Ministry of Education Key Laboratory for Bio‐resource and Eco‐environmentCollege of Life ScienceState Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduSichuan610064China
| | - Fangming Xiao
- Department of Plant SciencesUniversity of IdahoMoscowID83844USA
| |
Collapse
|
15
|
Li HL, Xu RR, Guo XL, Liu YJ, You CX, Han Y, An JP. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. THE NEW PHYTOLOGIST 2024; 243:997-1016. [PMID: 38849319 DOI: 10.1111/nph.19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Collapse
Affiliation(s)
- Hong-Liang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Xin-Long Guo
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Jing Liu
- School of Horticulture, Anhui Agricultural University, He-Fei, 230036, Anhui, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| |
Collapse
|
16
|
Ai D, Zhao L, You CX, Han Y, An JP. Apple SINA11-JAZ2 module is involved in jasmonate signaling response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1270-1273. [PMID: 38888226 DOI: 10.1111/jipb.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
The E3 ubiquitin ligase MdSINA11 targets the jasmonate ZIM domain protein MdJAZ2 for ubiquitination and degradation through the 26S proteasome pathway, thereby initiating jasmonate signaling and jasmonic acid-triggered anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Di Ai
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| |
Collapse
|
17
|
Yan R, Zhang T, Wang Y, Wang W, Sharif R, Liu J, Dong Q, Luan H, Zhang X, Li H, Guo S, Qi G, Jia P. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108707. [PMID: 38763002 DOI: 10.1016/j.plaphy.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Apple (Malus domestica Borkh.) is a widely cultivated fruit crop worldwide but often suffers from abiotic stresses such as salt and cold. Gibberellic acid (GA) plays a pivotal in controlling plant development, environmental adaptability, and secondary metabolism. The GA2-oxidase (GA2ox) is responsible for the deactivation of bioactive GA. In this study, seventeen GA2-oxidase genes were identified in the apple genome, and these members could be clustered into four clades based on phylogenetic relationships and conserved domain structures. MdGA2ox7 exhibited robust expression across various tissues, responded to cold and salt treatments, and was triggered in apple fruit peels via light-induced anthocyanin accumulation. Subcellular localization prediction and experiments confirmed that MdGA2ox7 was located in the cytoplasm. Overexpression of MdGA2ox7 in Arabidopsis caused a lower level of active GA and led to GA-deficient phenotypes, such as dwarfism and delayed flowering. MdGA2ox7 alleviated cold and salt stress damage in both Arabidopsis and apple in concert with melatonin (MT). Additionally, MdGA2ox7 enhanced anthocyanin biosynthesis in apple calli and activated genes involved in anthocyanin synthesis. These findings provide new insights into the functions of apple GA2ox in regulating development, stress tolerance, and secondary metabolism.
Collapse
Affiliation(s)
- Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tianle Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, China
| | - Wenxiu Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Han Li
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
18
|
An JP, Xu RR, Wang XN, Zhang XW, You CX, Han Y. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:265-284. [PMID: 38284786 DOI: 10.1111/jipb.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals. The positive regulators of anthocyanin biosynthesis have been reported, whereas the anthocyanin repressors have been neglected. Although the signal transduction pathways of gibberellin (GA) and jasmonic acid (JA) and their regulation of anthocyanin biosynthesis have been investigated, the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated. In this study, we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals. MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33, which are two recognized positive regulators of anthocyanin biosynthesis. MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33 complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33. The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex. The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex. Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis. This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
Collapse
Affiliation(s)
- Jian-Ping An
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, China
| | - Xiao-Na Wang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Xiao-Wei Zhang
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
19
|
Li HL, Liu ZY, Wang XN, Han Y, You CX, An JP. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple. PLANT, CELL & ENVIRONMENT 2023; 46:3902-3918. [PMID: 37658649 DOI: 10.1111/pce.14709] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Auxin/indole-3-acetic acid (AUX/IAA) and auxin response factor (ARF) proteins are important components of the auxin signalling pathway, but their ubiquitination modification and the mechanism of auxin-mediated anthocyanin biosynthesis remain elusive. Here, the ARF MdARF5-1 was identified as a negative regulator of anthocyanin biosynthesis in apple, and it integrates auxin and ethylene signals by inhibiting the expression of the ethylene response factor MdERF3. The auxin repressor MdIAA29 decreased the inhibitory effect of MdARF5-1 on anthocyanin biosynthesis by attenuating the transcriptional inhibition of MdERF3 by MdARF5-1. In addition, the E3 ubiquitin ligases MdSINA4 and MdSINA11 played negative and positive regulatory roles in anthocyanin biosynthesis by targeting MdIAA29 and MdARF5-1 for ubiquitination degradation, respectively. MdSINA4 destabilized MdSINA11 to regulate anthocyanin accumulation in response to auxin signalling. In sum, our data revealed the crosstalk between auxin and ethylene signals mediated by the IAA29-ARF5-1-ERF3 module and provide new insights into the ubiquitination modification of the auxin signalling pathway.
Collapse
Affiliation(s)
- Hong-Liang Li
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhi-Ying Liu
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Na Wang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|