1
|
Mathieu RDR, McCullough DG. Long-term survival and radial growth of four North American and two Asian ash species in a common garden exposed to emerald ash borer invasion. ENVIRONMENTAL ENTOMOLOGY 2025:nvaf049. [PMID: 40353497 DOI: 10.1093/ee/nvaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
Four North American and one Asian ash species were planted in 2007 in 30 complete randomized blocks in a common garden in Ingham County, Michigan USA to evaluate host resistance and preference of emerald ash borer (EAB) (Agrilus planipennis Fairmaire), first detected in this area in 2003. Trees were protected from EAB colonization until 2012. We recorded current-year woodpecker holes and EAB adult exits on live trees annually from 2017 to 2022. Annual radial growth was quantified on increment cores from live trees and cross-sections from EAB-killed trees. Every Fraxinus nigra was killed by EAB by 2013. By August 2022, 63% of F. pennsylvanica, 12% of F. americana and 86% of F. chinensis trees had died. In contrast, F. quadrangulata trees were minimally colonized and remained healthy through 2022. Average (± SE) annual increment from 2007-2021 ranged from 2.65 ± 0.18 mm for F. quadrangulata to 4.61 ± 0.46 mm for F. chinensis. In an adjacent plantation planted in 2010, we assessed size, growth and EAB signs in 2022 on 12 live F. pennsylvanica and 12 Asian F. mandshurica. All F. mandshurica remained healthy with little evidence of EAB injury. Despite heavy EAB infestation, F. pennsylvanica radial growth in 2011 to 2022 remained relatively high. Results show F. nigra is highly preferred and vulnerable to EAB, followed by F. pennsylvanica, while F. americana is an intermediate host and F. quadrangulata is resistant. Of the 2 Asian species, F. mandshurica was resistant to EAB but F. chinensis trees were heavily colonized and most died.
Collapse
Affiliation(s)
- River D R Mathieu
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Deborah G McCullough
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Zhang B, Koski TM, Wang H, Chen Z, Li H, Mogouong J, Bushley KE, Xing L, Sun J. The Role of Phenylpropanoids and the Plant Microbiome in Defences of Ash Trees Against Invasive Emerald Ash Borer. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40231438 DOI: 10.1111/pce.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Plants have coevolved with herbivorous insects for millions of years, resulting in variation in resistance both within and between species. Using a manipulative experiment combined with untargeted metabolomics, microbiome sequencing and transcriptomics approaches, we investigated the roles of plant metabolites and the microbiome in defence mechanisms in native resistant Manchurian ash (Fraxinus mandshurica) trees and non-native susceptible velvet ash (Fraxinus velutina) trees against the highly invasive emerald ash borer (EAB, Agrilus planipennis). Comparative transcriptomics and metabolomics analyses show that the phenylpropanoid pathway, which is enriched in differentially expressed genes and differentially abundant metabolites, may serve as a potential regulator of resistance. Additionally, the microbiome is distinctly shifted in two ash species. Indicator taxa analysis reveals that the distinct genera are dominant in the galleries of two ash species, for example, Pseudomonas in velvet, and Hafnia-Obesumbacterium in Manchurian. The strong correlation between indicator taxa and metabolites suggests that the chemical compounds might impact the microbial community in phloem directly or indirectly, or vice versa. This study significantly enhances our understanding of the variation in resistance between ash species and its contribution to the invasion success of EAB, providing valuable insights for the development of pest management strategies.
Collapse
Affiliation(s)
- Bin Zhang
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Biology, University of Turku, Turku, Finland
| | - Hualing Wang
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Zhenzhu Chen
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Huiping Li
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Judith Mogouong
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | | | - Longsheng Xing
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
3
|
Liu JN, Yan L, Chai Z, Liang Q, Dong Y, Wang C, Li X, Li C, Mu Y, Gong A, Yang J, Li J, Yang KQ, Wu D, Fang H. Pan-genome analyses of 11 Fraxinus species provide insights into salt adaptation in ash trees. PLANT COMMUNICATIONS 2025; 6:101137. [PMID: 39308021 PMCID: PMC11783884 DOI: 10.1016/j.xplc.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Ash trees (Fraxinus) exhibit rich genetic diversity and wide adaptation to various ecological environments, and several species are highly salt tolerant. Dissecting the genomic basis of salt adaptation in Fraxinus is vital for its resistance breeding. Here, we present 11 high-quality chromosome-level genome assemblies for Fraxinus species, which reveal two unequal subgenome compositions and two recent whole-genome triplication events in their evolutionary history. A Fraxinus pan-genome was constructed on the basis of structural variations and revealed that presence-absence variations (PAVs) of transmembrane transport genes have likely contributed to salt adaptation in Fraxinus. Through whole-genome resequencing of an F1 population from an interspecies cross of F. velutina 'Lula 3' (salt tolerant) with F. pennsylvanica 'Lula 5' (salt sensitive), we mapped salt-tolerance PAV-based quantitative trait loci (QTLs) and pinpointed two PAV-QTLs and candidate genes associated with Fraxinus salt tolerance. Mechanistically, FvbHLH85 enhances salt tolerance by mediating reactive oxygen species and Na+/K+ homeostasis, whereas FvSWEET5 enhances salt tolerance by mediating osmotic homeostasis. Collectively, these findings provide valuable genomic resources for Fraxinus salt-resistance breeding and the research community.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Andi Gong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jinfeng Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jiaxiao Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China.
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
4
|
Singh A, Basu A, Shit B, Hegde T, Bansal N, Prasad NG. Experimental adaptation to singular pathogen challenge reduces susceptibility to novel pathogens in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2024; 7:100105. [PMID: 39866524 PMCID: PMC11757221 DOI: 10.1016/j.cris.2024.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance. Using laboratory Drosophila melanogaster populations, we explore if hosts experimentally adapted to surviving infection challenges by a single bacterial pathogen are also better at surviving infection challenges by novel bacterial pathogens. We found that such hosts can survive infection challenges by multiple novel pathogens, with the expanse of cross-resistance determined by the identity of the native pathogen and sex of the host. Therefore, we have demonstrated that cross-resistance can evolve in host populations by virtue of adaptation to a single pathogen. This observation has important ecological consequences, especially in the modern era where spillover of novel pathogens is a common occurrence due to various factors, including climate change.
Collapse
Affiliation(s)
- Aparajita Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | | | | | | | | | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| |
Collapse
|
5
|
Koski TM, Zhang B, Mogouong J, Wang H, Chen Z, Li H, Bushley KE, Sun J. Distinct metabolites affect the phloem fungal communities in ash trees (Fraxinus spp.) native and nonnative to the highly invasive emerald ash borer (AGRILUS PLANIPENNIS). PLANT, CELL & ENVIRONMENT 2024; 47:4116-4134. [PMID: 38922989 DOI: 10.1111/pce.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Emerald ash borer (EAB, Agrilus planipennis) is an invasive killer of ash trees (Fraxinus spp.) in North America and Europe. Ash species co-evolved with EAB in their native range in Asia are mostly resistant, although the precise mechanism(s) remain unclear. Very little is also known about EAB or ash tree microbiomes. We performed the first joint comparison of phloem mycobiome and metabolites between a native and a nonnative ash species, infested and uninfested with EAB, in conjunction with investigation of larval mycobiome. Phloem mycobiome communities differed between the tree species, but both were unaffected by EAB infestation. Several indicator taxa in the larval gut shared a similarly high relative abundance only with the native host trees. Widely targeted metabolomics revealed 24 distinct metabolites in native trees and 53 metabolites in nonnative trees, respectively, that differed in relative content between infested and uninfested trees only in one species. Interestingly, four metabolites shared a strong relationship with the phloem mycobiomes, majority of which affected only the native trees. Collectively, our results demonstrate a complex interplay between host tree chemistry and mycobiome, and suggest the shared relationships between the mycobiomes of the native host tree and EAB may reflect their shared co-evolution.
Collapse
Affiliation(s)
- Tuuli-Marjaana Koski
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Zhang
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Judith Mogouong
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Hualing Wang
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Zhenzhu Chen
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Huiping Li
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | | | - Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Liu Y, Han X, Zhao M, Liu L, Deng Z, Zhao Q, Yu Y. Functional characterization of polyphenol oxidase OfPPO2 supports its involvement in parallel biosynthetic pathways of acteoside. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:927-941. [PMID: 38872484 DOI: 10.1111/tpj.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.
Collapse
Affiliation(s)
- Yating Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Xiaoyang Han
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Mengya Zhao
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University; Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| |
Collapse
|
7
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
8
|
Johnson TD, Whitehill JGA. A phoenix glimmers within the ashes: generalized defensive traits suggest hope for plants under attack by invasive pests. THE NEW PHYTOLOGIST 2023; 240:912-914. [PMID: 37632211 DOI: 10.1111/nph.19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Affiliation(s)
- Todd D Johnson
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Justin G A Whitehill
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
9
|
Doonan JM, Kosawang C, Eisenring M, Ladd T, Roe AD, Budde KB, Jørgensen HJL, Queloz V, Gossner MM, Nielsen LR. Transcriptome profiling of Fraxinus excelsior genotypes infested by emerald ash borer. Sci Data 2023; 10:680. [PMID: 37798274 PMCID: PMC10556020 DOI: 10.1038/s41597-023-02588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
European ash, Fraxinus excelsior is facing the double threat of ongoing devastation by the invasive fungal pathogen, Hymenoscyphus fraxineus and the imminent arrival of the non-native emerald ash borer (EAB), Agrilus planipennis. The spread of EAB which is currently moving westwards from European Russia and Ukraine into central Europe, poses an additional substantial threat to European ash, F. excelsior. While the molecular basis for resistance or variation in resistance among European ash genotypes is heavily investigated, comparatively little is known about the molecular ash traits involved in resistance against EAB. In this study we have gathered transcriptomic data from EAB inoculated genotypes of F. excelsior that have previously shown different levels of susceptibility to EAB. Resultant datasets show differential gene expression in susceptible and resistant genotypes in response to EAB infestation. This data will provide important information on the molecular basis of resistance to the EAB and allow the development of management plans to combat a pending threat of a culturally and ecologically important European tree species.
Collapse
Affiliation(s)
- James M Doonan
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| | - Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Michael Eisenring
- Forest Health and biotic Interactions, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Tim Ladd
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Amanda D Roe
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Katharina B Budde
- Buesgen Institute of Forest Genetics and Forest Tree Breeding, Georg-August Universität Göttingen, Buesgenweg 2, 37077, Goettingen, Germany
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Valentin Queloz
- Forest Health and biotic Interactions, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Forest Health and biotic Interactions, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Lene R Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| |
Collapse
|