1
|
Hess SS, Burns DA, Boudinot FG, Brown-Lima C, Corwin J, Foppert JD, Robinson GR, Rose KC, Schlesinger MD, Shuford RL, Bradshaw D, Stevens A. New York State Climate Impacts Assessment Chapter 05: Ecosystems. Ann N Y Acad Sci 2024; 1542:253-340. [PMID: 39652386 DOI: 10.1111/nyas.15203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The people of New York have long benefited from the state's diversity of ecosystems, which range from coastal shorelines and wetlands to extensive forests and mountaintop alpine habitat, and from lakes and rivers to greenspaces in heavily populated urban areas. These ecosystems provide key services such as food, water, forest products, flood prevention, carbon storage, climate moderation, recreational opportunities, and other cultural services. This chapter examines how changes in climatic conditions across the state are affecting different types of ecosystems and the services they provide, and considers likely future impacts of projected climate change. The chapter emphasizes how climate change is increasing the vulnerability of ecosystems to existing stressors, such as habitat fragmentation and invasive species, and highlights opportunities for New Yorkers to adapt and build resilience.
Collapse
Affiliation(s)
| | - Douglas A Burns
- New York Water Science Center, United States Geological Survey, Troy, New York, USA
| | - F Garrett Boudinot
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Carrie Brown-Lima
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Jason Corwin
- Department of Indigenous Studies, University at Buffalo, Buffalo, New York, USA
| | - John D Foppert
- Department of Forestry, Paul Smith's College, Paul Smiths, New York, USA
| | - George R Robinson
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, USA
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew D Schlesinger
- New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, Albany, New York, USA
| | | | - Drake Bradshaw
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
2
|
Peng J, Xie J, Gu Y, Guo H, Zhang S, Huang X, Luo X, Qian J, Liu M, Wan X, Chen L, Huang X, Zhang F, He F, Zhu P, Zhong Y, Yang H. Assessing population genetic structure and diversity and their driving factors in Phoebe zhennan populations. BMC PLANT BIOLOGY 2024; 24:1091. [PMID: 39551749 PMCID: PMC11572363 DOI: 10.1186/s12870-024-05810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Phoebe zhennan, commonly known as "golden-thread nanmu," is one of the most valuable and protected tree species in China. An accurate understanding of the population genetic structure and its environmental factors is of significance for the protection and selection of new P. zhennan varieties. RESULTS Sixteen nSSR and six cpSSR markers were used to determine the genetic diversity and population structure of P. zhennan and the effect of environmental factors on the genetic structure. The nSSR markers identified a total of 451 number of alleles (Na), while cpSSR markers detected 20 Na. A relative high level of genetic diversity was observed in the P. zhennan population evidenced by high Shannon's information index (I) of 0.671 and 2.294 based on cpSSR and nSSR datasets. The low value of fixation index (F) observed from the nSSR dataset indicated low breeding within the population. The genetic differentiation was mainly detected within populations (only 28% and 13% of the variance being between populations according to the nSSR and cpSSR datasets). Among them, the HNSZX (H = 0.469) and SCSZZ (I = 1.943) populations exhibited the highest level of genetic diversity, while the HNXXT (H = 0.041) and SCLJS (I = 0.943) populations exhibited the lowest level of genetic diversity. The average genetic differentiation coefficient (Fst) and gene flow (Nm) were 0.022-0.128 and 1.698-11.373, respectively, which indicated a moderate level of genetic differentiation and a high level of gene flow. STRUCTURE, neighbor-joining clustering, and principal coordinate analysis divided 543 individuals into two or three categories based on the nSSR or cpSSR datasets. Four temperature, three precipitation, five chemical, five physical, and one soil texture variable showed significant effects on the genetic structure and distribution of P. zhennan populations. Compared to nSSR, the genetic differentiation among populations based on cpSSR datasets conformed to the geographic isolation model, suggesting that geographic and genetic distances should be considered for further genetic conservation and breeding utilization. The importance of in situ conservation units, such as populations with a high level of genetic diversity, more private alleles, and haplotypes (e.g., population SCGTS, SCYFS, and YNYJX), should be emphasized. Additionally, breeding, along with artificially assisted population regeneration and restoration, should also be carefully planned, taking into account climate and soil properties at the same time. CONCLUSIONS In conclusion, this study provided genetic background information for the genetic conservation, management, and utilization of P. zhennan.
Collapse
Affiliation(s)
- Jian Peng
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Jiaxin Xie
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yunjie Gu
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China.
| | - Hongying Guo
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Shuaiying Zhang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xin Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiandan Luo
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jianghong Qian
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Minhao Liu
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, China
| | - Xueqin Wan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiong Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fang He
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Peng Zhu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhong
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hanbo Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
3
|
Li G, Liang Y, Liu Q, Zeng J, Ren Q, Guo J, Xiong F, Lu D. Enhancing production efficiency through optimizing plant density in maize-soybean strip intercropping. FRONTIERS IN PLANT SCIENCE 2024; 15:1473786. [PMID: 39464277 PMCID: PMC11505130 DOI: 10.3389/fpls.2024.1473786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Introduction Due to limited arable land resources, intercropping has emerged as an efficient and sustainable production method for increasing total grain yield per unit land area. Maize-soybean strip intercropping (MSSI) technology is being widely promoted and applied across China. However, the combination of optimal density for achieving higher production efficiency of both soybean and maize remains unclear. The objective of this study was to evaluate the differences in yield, economic benefits, land, and nitrogen (N) efficiency in MSSI systems under different densities. Methods Five maize/soybean density combinations (67,500/97,500 plants ha-1, D1; 67,500/120,000 plants ha-1, D2; 67,500/142,500 plants ha-1, D3; 60,000/142,500 plants ha-1, D4; 52,500/142,500 plants ha-1, D5) were set under the same N input in the field experiment. Results and discussion The results demonstrated that optimizing the density in the intercropping system could enhance production efficiency. Increasing the density of soybean and maize significantly increased the total grain yield (D3 > D2 > D1 > D4 > D5). The D3 treatment, exhibiting the best comprehensive performance, also promoted increases in leaf area index, dry matter accumulation, and N absorption and utilization. Path analysis indicated that density had the most substantial impact on maize yield, while grain number had the greatest influence on soybean yield, with contribution rates of 49.7% and 61.0%, respectively. These results provide valuable insights into optimal field density for summer planting in MSSI, facilitating its wider adoption.
Collapse
Affiliation(s)
- Guanghao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuwen Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Qiannan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jinghan Zeng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Qingming Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Fei Xiong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Lu Z, Shan Y, Shan H, Wen H, Wu Y, Han R, Tong X. Effect of climate change on Clinopodium polycephalum (Vaniot) C. Y. Wu & S. J. Hsuan distribution adopting temporal data, ArcGIS, and the MaxEnt model. FRONTIERS IN PLANT SCIENCE 2024; 15:1445764. [PMID: 39315375 PMCID: PMC11416927 DOI: 10.3389/fpls.2024.1445764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Clinopodium polycephalum (Vaniot) C. Y. Wu & S. J. Hsuan, a vital plant in traditional Chinese medicine, has been used for its hemostatic properties since 1220 AD. Despite its recognized medicinal benefits including anti-inflammatory and cardiovascular applications and increasing market demands, research on this plant remains limited, particularly from the perspective of plant ecology. Due to global warming and the resultant climate change, studies on the distribution and conservation of C. polycephalum are of great importance, especially when a clear trend that its habitat shifts to the north was observed. To predict the potential distribution of C. polycephalum under distinct climate situations, the MaxEnt model was used along with the ArcGIS software. As a result, an AUC value of 0.931 was achieved, indicating high predictive accuracy of the model. By analyzing 135 occurrence points and their corresponding bioclimatic factors (including precipitation), soil data, and other environmental variables (49 in total), 16 key factors including pH value and basic saturation were selected for downstream analysis. It was found that solar radiation in May, precipitation in May and April, and the lowest temperature in the coldest month are important factors influencing the growth and distribution of C. polycephalum. Compared to the current climate scenario, the future suitable habitat for C. polycephalum is expected to shift northwest, and under the SSP245-2061-2080 climate scenario, its highly suitable habitat area is projected to increase by 886,000 km2. These findings provide crucial insights into the environmental drivers of C. polycephalum distribution and aid in its preservation and sustainable use in traditional medicine. Based on the findings of this study, future research should focus on factors such as solar radiation in May and the lowest temperature in the coldest month within the suitable habitat to ensure its effective conservation.
Collapse
Affiliation(s)
- Zongran Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yuxin Shan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huijiao Shan
- Department of Food and Drug Inspection and Testing, Huludao City Inspection and Testing Center, Huludao, China
| | - Haicheng Wen
- Faculty of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Shang X, Qin W, Yang B, Dai Q, Pan H, Yang X, Gu X, Yang Z, Zhang Z, Zhang L. Integrated framework for dynamic conservation of bamboo forest in giant panda habitat under climate change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122052. [PMID: 39128359 DOI: 10.1016/j.jenvman.2024.122052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Climate change presents formidable challenges to forest biodiversity and carbon storage. Bamboo forests will be affected particularly in Southwest China's mountainous regions. Bamboo serves as not only a key food resource and habitat for giant panda Ailuropoda melanoleuca but also a potential carbon sink due to its rapid energy-to-matter conversion capability. We employ the MaxEnt model to project the distribution shifts of 20 giant panda foraged bamboo species in Sichuan Province under future climate scenarios, utilizing climate data of 30m resolution. Based on the changes in the diversity and distribution area of bamboo communities caused by climate change, the changing of giant pandas' food resources and the carbon storage of bamboo forests were calculated. The results indicated that the area of bamboo communities is projected to expand by 17.94%-60.88% more than now by the end of the 21st century. We analyzed the energy balance between the dietary needs of giant pandas and the energy provided by bamboo. We predicted that bamboo communities from 2000 to 2150 could support the continuous growth of the giant panda population (6533 wild individuals by 2140-2150 in an ideal state in Sichuan province). However, the species diversity and carbon storage of bamboo forests face out-of-sync fluctuations, both temporally and spatially. This is a critical issue for subalpine forest ecosystem management under climate change. Therefore, we propose a dynamic conservation management framework for giant panda habitats across spatial and temporal scales. This framework aims to facilitate the adaptation of subalpine forest ecosystems to climate change. This innovative approach, which integrates climate change into the conservation strategy for endangered species, contributes a conservation perspective to global climate action, highlighting the interconnectedness of biodiversity preservation and climate mitigation.
Collapse
Affiliation(s)
- Xiaotong Shang
- Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Weirui Qin
- School of Life Science (School of Giant Panda), China West Normal University, Nanchong, 637009, China; Daxiangling Nature Reserve Management and Protection Center of Yingjing County, Ya'an, Sichuan, 625000, China
| | - Biao Yang
- School of Life Science (School of Giant Panda), China West Normal University, Nanchong, 637009, China; Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing, 100020, China.
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, China
| | - Han Pan
- Society of Entrepreneurs and Ecology (SEE) Foundation, Beijing, 100020, China
| | - Xuyu Yang
- Sichuan Station of Wildlife Survey and Management, Chengdu, 610081, China
| | - Xiaodong Gu
- Giant Panda National Park Administration, Chengdu, 610081, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Zejun Zhang
- School of Life Science (School of Giant Panda), China West Normal University, Nanchong, 637009, China
| | - Li Zhang
- Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Ni M, Vellend M. Soil properties constrain forest understory plant distributions along an elevation gradient. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230373. [PMID: 38583477 PMCID: PMC10999263 DOI: 10.1098/rstb.2023.0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 04/09/2024] Open
Abstract
Projections of spatial biodiversity dynamics under climate warming are often based on models including only climate variables, and when non-climatic factors (e.g. soil) are included, data are often at much coarser spatial resolutions than those experienced by plants. Field studies along elevation gradients permit the gathering of detailed soil data, while still covering a wide climatic gradient. Here, an intensive field survey of four spring forest herbs along an elevation gradient showed that soil properties had substantial impacts on the occurrence/abundance of all species, and that soil effects were more pronounced at higher elevations. For Trillium erectum and Claytonia caroliniana, very infrequent occurrences at high elevation were strongly associated with rare microsites with high pH or nutrients. In a seven-year transplant experiment with T. erectum, we found that individuals grew to much smaller sizes at high than low elevation, suggesting that environmental factors rather than dispersal limitation constrain the species' upper range limit, despite substantial warming in recent decades. Our study demonstrates that soil factors interact strongly with climate to determine plant range limits along climatic gradients. Unsuitable soils for plants at high elevations or latitudes may represent an important constraint on future plant migration and biodiversity change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Ming Ni
- Université de Sherbrooke, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Mark Vellend
- Université de Sherbrooke, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| |
Collapse
|
7
|
White FJ, Mondoni A, Corli A, Shrestha BB, Rossi G, Orsenigo S. An investigation into the potential for upward range expansion in high-montane species on the roof of the world. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:390-397. [PMID: 38433356 DOI: 10.1111/plb.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Climate warming is occurring in high-mountain areas at a faster rate than the global average. To escape the increasing temperatures, alpine species may shift in distribution upwards, threatening cold-adapted nival plant specialists. However, little is known about the success of seedling emergence and establishment at high altitudes outside the current range, particularly in the highest mountain areas of the Himalayas. We selected four native alpine species occurring around 4000 m a.s.l. and sowed seeds at the natural growing site (GS), at a high elevation site (HS; 5000 m a.s.l.) and at high elevation with soil from the growing site (HS-S) in the Khumbu Valley, north-eastern Nepal. We monitored seedling emergence and establishment for two consecutive years. Seedling emergence and establishment varied between species. Emergence was similar between GS and HS and improved at HS-S. Establishment was low at high elevations with all but one species having high mortality after winter. Seedling emergence of low elevation plants is possible at high elevations in the Everest region, indicating species may be able to shift their distribution range upwards. However, successful establishment may be limited by the soil and high winter mortality at high elevations, although not in all species. Climate warming will potentially lead to upward migration of some Himalayan plant species, leading to altered community composition in high-mountain areas.
Collapse
Affiliation(s)
- F J White
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - A Mondoni
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - A Corli
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - B B Shrestha
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - G Rossi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - S Orsenigo
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
8
|
Chamard J, Faticov M, Blanchet FG, Chagnon PL, Laforest-Lapointe I. Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Commun Biol 2024; 7:360. [PMID: 38519711 PMCID: PMC10960049 DOI: 10.1038/s42003-024-06042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.
Collapse
Affiliation(s)
- Joey Chamard
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Faticov
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département des sciences de la santé communautaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Chagnon
- Agriculture and Agri-food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
Zettlemoyer MA. Adding edaphic nuance to species distribution models complicates predictions of range shifts. THE NEW PHYTOLOGIST 2024; 241:5-6. [PMID: 37855167 DOI: 10.1111/nph.19326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
|