1
|
Shah VA, Cruz-Almeida Y, Roy A, Cenko E, Downey RJ, Ferris DP, Hass CJ, Reuter-Lorenz PA, Clark DJ, Manini TM, Seidler RD. Correlates of gait speed changes during uneven terrain walking in older adults: differential roles of cognitive and sensorimotor function. Exp Brain Res 2025; 243:72. [PMID: 39976706 DOI: 10.1007/s00221-025-07019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/04/2025] [Indexed: 03/08/2025]
Abstract
Many studies of walking function and aging have measured walking on flat surfaces with and without dual-tasking (i.e., performing a concurrent cognitive task). Walking in the community increases the complexity with surface undulations and varying surface types. We hypothesized that changes in walking resulting from increasing terrain unevenness would be better predicted by sensorimotor function than cognitive function. Sixty-three community-dwelling older adults (65-93 yrs old; 32 males) performed overground walking under four uneven terrain conditions (Flat, Low, Medium, and High unevenness). Cognitive (cognitive flexibility, working memory, inhibition) and sensorimotor assessments (grip strength, 2-pt discrimination, pressure pain threshold) were measured as the primary predictors of walking performance. We found that walking speed decreased linearly with more elevated uneven terrain conditions across all participants; this was accentuated in older adults with lower mobility function. Greater rates of decline in walking speed from flat to uneven terrain were associated with worse attention and inhibitory function as well as lower 2-point tactile discrimination. Findings suggest that greater rates of decline with elevated terrain walking are associated with lower mobility function, lower executive functions and less somatosensation.
Collapse
Affiliation(s)
- Valay A Shah
- Department of Applied Physiology and Kinesiology, University of Florida, FLG 80, 1864 Stadium Road, Gainesville, FL, 32611, USA.
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA.
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Erta Cenko
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Ryan J Downey
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Daniel P Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, FLG 80, 1864 Stadium Road, Gainesville, FL, 32611, USA
| | | | - David J Clark
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Todd M Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, FLG 80, 1864 Stadium Road, Gainesville, FL, 32611, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Deligiannis T, Barfi M, Schlattmann B, Kiyono K, Kelty-Stephen DG, Mangalam M. Selective engagement of long-latency reflexes in postural control through wobble board training. Sci Rep 2024; 14:31819. [PMID: 39738532 PMCID: PMC11685812 DOI: 10.1038/s41598-024-83101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Long-latency reflexes (LLRs) are critical precursors to intricate postural coordination of muscular adaptations that sustain equilibrium following abrupt disturbances. Both disturbances and adaptive responses reflect excursions of postural control from quiescent Gaussian stability under a narrow bell curve, excursions beyond Gaussianity unfolding at many timescales. LLRs slow with age, accentuating the risk of falls and undermining dexterity, particularly in settings with concurrent additional tasks. We investigated whether the wobble board could cultivate the engagement of LLRs selectively in healthy young participants executing a suprapostural Trail Making Task (TMT). A concurrent additional-task demand constituted visual precision predominantly along the anteroposterior (AP) axis and mechanical instability mainly along the mediolateral (ML) axis. We scrutinized planar center-of-pressure (CoP) trajectories to quantify postural non-Gaussianity across various temporal scales. Wobble board increased engagement of LLRs and decreased engagement of compensatory postural adjustments (CPAs), indicated by the peak in non-Gaussianity of CoP planar displacements over LLR-specific timescales (50-100 ms) and non-Gaussianity of CoP planar displacements progressively diminishing over CPA-specific timescales ([Formula: see text] ms). Engagement with TMT did not show any noticeable influence on non-Gaussian postural sway patterns. Despite aligning the unstable axis of the wobble board with participants' ML axis, thus rendering posture more unstable along the ML axis, the wobble board increased engagement of LLRs significantly more along the AP axis and reduced engagement of CPAs significantly more along the ML axis. These findings offer initial mechanistic insights into how wobble boards may bolster balance and potentially reduce the occurrence of falls by catalyzing the engagement of LLRs selectively.
Collapse
Affiliation(s)
- Theodore Deligiannis
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Mahsa Barfi
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Brian Schlattmann
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, 12561, USA
| | - Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
3
|
Abbas M, Szpiro SFA, Karawani H. Interconnected declines in audition vision and cognition in healthy aging. Sci Rep 2024; 14:30805. [PMID: 39730569 DOI: 10.1038/s41598-024-81154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Age-related sensory declines are unavoidable and closely linked to decreased visual, auditory, and cognitive functions. However, the interrelations of these declines remain poorly understood. Despite extensive studies in each domain, shared age-related characteristics are complex and may not consistently manifest direct relationships at the individual level. We investigated the link between visual and auditory perceptual declines in healthy aging and their relation to cognitive function using six psychophysical and three cognitive tasks. Eighty young and older healthy adults participated, revealing a general age-related decline. Young adults consistently outperformed older adults in all tasks. Critically, the performance in visual tasks significantly correlated with performance in auditory tasks in older adults. This suggests a domain-general decline in perception, where declines in vision are related to declines in audition within individuals. Additionally, perceptual performance in older adults decreased monotonically year by year. Working memory performance significantly correlated with perceptual performance across both age groups and modalities, further supporting the hypothesis of a domain-general decline. These findings highlight the complex and interconnected nature of sensory and cognitive declines in aging, providing a foundation for future translational research focused on enhancing cognitive and perceptual abilities to promote healthy aging and ultimately improve the quality of life for older adults.
Collapse
Affiliation(s)
- Mais Abbas
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Sarit F A Szpiro
- Department of Special Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel.
| |
Collapse
|
4
|
Morris A, Masegian C, Zhang A, Carrillo M, Székely B, Murray NG, Jiang F. The effect of age and proprioceptive illusion susceptibility on gait. Physiol Behav 2024; 287:114717. [PMID: 39424022 PMCID: PMC11568900 DOI: 10.1016/j.physbeh.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Age-related gait decline has been associated with impaired proprioception, one's internal awareness of spatial location and movement. Although impaired proprioception has further been linked to greater susceptibility to proprioceptive illusions, it is unclear the impact such susceptibility has on gait and its interaction with age. The purpose of this study was to address these uncertainties. METHODS We measured proprioceptive illusions induced by muscle spindle manipulation and gait in young and older adults. We also compared illusory measures with traditionally used joint position matching to examine if illusory susceptibility can reveal proprioceptive impairments. RESULTS We found no effect of age on proprioceptive illusion susceptibility or joint position matching error. Compared to non-perceivers, illusion perceivers across both age groups showed greater joint matching error, suggesting reduced proprioceptive acuity. Consistent with previous studies, older adults had reduced cadence, gait velocity, and step length compared to young adults in both single- and dual-task walking. Interestingly, illusion perceivers, regardless of age, showed reduced cadence and step width compared to non-perceivers. CONCLUSIONS Our results suggest that gait impairments observed in those who perceive these proprioceptive illusions are age-independent, potentially rooted in deteriorated proprioception. SIGNIFICANCE This is the first study to examine these relations.
Collapse
Affiliation(s)
- Amy Morris
- Department of Psychology, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA.
| | - Corinne Masegian
- Department of Psychology, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Angela Zhang
- Department of Psychology, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Madelyn Carrillo
- Department of Psychology, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Brian Székely
- Department of Psychology, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Nicholas G Murray
- Department of Kinesiology, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Fang Jiang
- Department of Psychology, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| |
Collapse
|
5
|
O'Dowd A, O'Connor DMA, Hirst RJ, Setti A, Kenny RA, Newell FN. Nutrition is associated with differences in multisensory integration in healthy older adults. Nutr Neurosci 2024; 27:1226-1236. [PMID: 38386286 DOI: 10.1080/1028415x.2024.2316446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Diet can influence cognitive functioning in older adults and is a modifiable risk factor for cognitive decline. However, it is unknown if an association exists between diet and lower-level processes in the brain underpinning cognition, such as multisensory integration. We investigated whether temporal multisensory integration is associated with daily intake of fruit and vegetables (FV) or products high in fat/sugar/salt (FSS) in a large sample (N = 2,693) of older adults (mean age = 64.06 years, SD = 7.60; 56% female) from The Irish Longitudinal Study on Ageing (TILDA). Older adults completed a Food Frequency Questionnaire from which the total number of daily servings of FV and FSS items respectively was calculated. Older adults' susceptibility to the Sound Induced Flash Illusion (SIFI) measured the temporal precision of audio-visual integration, which included three audio-visual Stimulus Onset Asynchronies (SOAs): 70, 150 and 230 ms. Older adults who self-reported a higher daily consumption of FV were less susceptible to the SIFI at the longest versus shortest SOAs (i.e. increased temporal precision) compared to those reporting the lowest daily consumption (p = .013). In contrast, older adults reporting a higher daily consumption of FSS items were more susceptible to the SIFI at the longer versus shortest SOAs (i.e. reduced temporal precision) compared to those reporting the lowest daily consumption (p < .001). The temporal precision of multisensory integration is differentially associated with levels of daily consumption of FV versus products high in FSS, consistent with broader evidence that habitual diet is associated with brain health.
Collapse
Affiliation(s)
- Alan O'Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Deirdre M A O'Connor
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rebecca J Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Annalisa Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- School of Applied Psychology, University College Cork, Cork, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fiona N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Mather MA, Ho EH, Bedjeti K, Karpouzian-Rogers T, Rogalski EJ, Gershon R, Weintraub S. Measuring Multidimensional Aspects of Health in the Oldest Old Using the NIH Toolbox: Results From the ARMADA Study. Arch Clin Neuropsychol 2024; 39:535-546. [PMID: 38216151 PMCID: PMC11269891 DOI: 10.1093/arclin/acad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE The percentage of older adults living into their 80s and beyond is expanding rapidly. Characterization of typical cognitive performance in this population is complicated by a dearth of normative data for the oldest old. Additionally, little attention has been paid to other aspects of health, such as motor, sensory, and emotional functioning, that may interact with cognitive changes to predict quality of life and well-being. The current study used the NIH Toolbox (NIHTB) to determine age group differences between persons aged 65-84 and 85+ with normal cognition. METHOD Participants were recruited in two age bands (i.e., 65-84 and 85+). All participants completed the NIHTB Cognition, Motor, Sensation, and Emotion modules. Independent-samples t-tests determined age group differences with post-hoc adjustments using Bonferroni corrections. All subtest and composite scores were then regressed on age and other demographic covariates. RESULTS The 65-84 group obtained significantly higher scores than the 85+ group across all cognitive measures except oral reading, all motor measures except gait speed, and all sensation measures except pain interference. Age remained a significant predictor after controlling for covariates. Age was not significantly associated with differences in emotion scores. CONCLUSIONS Results support the use of the NIHTB in persons over 85 with normal cognition. As expected, fluid reasoning abilities and certain motor and sensory functions decreased with age in the oldest old. Inclusion of motor and sensation batteries is warranted when studying trajectories of aging in the oldest old to allow for multidimensional characterization of health.
Collapse
Affiliation(s)
- Molly A Mather
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Ho
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Katy Bedjeti
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana Karpouzian-Rogers
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard Gershon
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Tan S, Pan S, Wei L, Chen W, Pan B, Kong G, Chen J, Xie Y. Association of peripheral B cells and delirium: combined single-cell sequencing and Mendelian randomization analysis. Front Neurol 2024; 15:1343726. [PMID: 38379709 PMCID: PMC10876872 DOI: 10.3389/fneur.2024.1343726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Background Delirium seriously affects the prognosis of patients and greatly reduces the ability to work and live. Peripheral inflammatory events may contribute to the development of delirium, the mechanism of which is still unclear. There is a lack of effective diagnostic and treatments for delirium in clinical practice. The study aims to investigate alterations in peripheral immune cell subsets under inflammatory stress and to explore causal associations with delirium. Methods Single-cell transcriptional sequencing data of human peripheral blood mononuclear cells (PBMC) before and after lipopolysaccharide (LPS) intervention were processed by the Seurat package in R software. PBMC subsets and cellular markers were defined after downscaling and clustering by the Harmony algorithm to identify characteristic subsets in the context of inflammatory stress. Subsequently, a two-sample Mendelian randomization (MR) study was used to explore the causal associations of these inflammation-related PBMC subsets and their molecular phenotypes with delirium. Based on publicly available genetic data, the study incorporated 70 PBMC-associated immune traits, including 8 types of circulating immune cells, 33 B cell subsets and molecular phenotypes, 13 T cell subsets, and 16 B cell-associated cytokines. The results were also validated for robustness, heterogeneity, and horizontal pleiotropy. Results Under LPS-induced inflammatory stress, B cells, T cells, monocytes, and dendritic cells in human PBMC showed significant activation and quantitative changes. Of these, only lymphocyte and B cell counts were causally associated with delirium risk. This risk link is also seen in the TNF pathway. Further studies of B cells and their subsets revealed that this association may be related to unswitched memory B cells and CD27 expressed on memory B cells. Annotation of the screened SNPs revealed significant polymorphisms in CD27 and CD40 annotated by rs25680 and rs9883798, respectively. The functions of the key annotated genes may be related to the regulation of immune responses, cell differentiation, proliferation, and intercellular interactions. Conclusion The present study revealed the potential possibility that B cell, memory B cell subset, and TNF-related molecules may be involved in the development of delirium due to peripheral inflammation, which can provide clues for further investigation of delirium prevention and treatment strategies.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sining Pan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bingbing Pan
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Ross D, Wagshul ME, Izzetoglu M, Holtzer R. Cortical thickness moderates intraindividual variability in prefrontal cortex activation patterns of older adults during walking. J Int Neuropsychol Soc 2024; 30:117-127. [PMID: 37366047 PMCID: PMC10751394 DOI: 10.1017/s1355617723000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Increased intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning hemodynamic signal IIV is limited. Cortical thinning occurs during aging and is associated with cognitive decline. Dual-task walking (DTW) performance in older adults has been related to cognition and neural integrity. We examined the hypothesis that reduced cortical thickness would be associated with greater increases in IIV in prefrontal cortex oxygenated hemoglobin (HbO2) from single tasks to DTW in healthy older adults while adjusting for behavioral performance. METHOD Participants were 55 healthy community-dwelling older adults (mean age = 74.84, standard deviation (SD) = 4.97). Structural MRI was used to quantify cortical thickness. Functional near-infrared spectroscopy (fNIRS) was used to assess changes in prefrontal cortex HbO2 during walking. HbO2 IIV was operationalized as the SD of HbO2 observations assessed during the first 30 seconds of each task. Linear mixed models were used to examine the moderation effect of cortical thickness throughout the cortex on HbO2 IIV across task conditions. RESULTS Analyses revealed that thinner cortex in several regions was associated with greater increases in HbO2 IIV from the single tasks to DTW (ps < .02). CONCLUSIONS Consistent with neural inefficiency, reduced cortical thickness in the PFC and throughout the cerebral cortex was associated with increases in HbO2 IIV from the single tasks to DTW without behavioral benefit. Reduced cortical thickness and greater IIV of prefrontal cortex HbO2 during DTW may be further investigated as risk factors for developing mobility impairments in aging.
Collapse
Affiliation(s)
- Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Mark E. Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
O'Dowd A, Hirst RJ, Setti A, Kenny RA, Newell FN. Individual differences in seated resting heart rate are associated with multisensory perceptual function in older adults. Psychophysiology 2024; 61:e14430. [PMID: 37675755 DOI: 10.1111/psyp.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
There is evidence that cardiovascular function can influence sensory processing and cognition, which are known to change with age. However, whether the precision of unisensory and multisensory temporal perception is influenced by cardiovascular activity in older adults is uncertain. We examined whether seated resting heart rate (RHR) was associated with unimodal visual and auditory temporal discrimination as well as susceptibility to the audio-visual Sound Induced Flash Illusion (SIFI) in a large sample of older adults (N = 3232; mean age = 64.17 years, SD = 7.74, range = 50-93; 56% female) drawn from The Irish Longitudinal Study on Ageing (TILDA). Faster seated RHR was associated with better discretization of two flashes (but not two beeps) and increased SIFI susceptibility when the audio-visual stimuli were presented close together in time but not at longer audio-visual temporal offsets. Our findings suggest a significant relationship between cardiovascular activity and the precision of visual and audio-visual temporal perception in older adults, thereby providing novel evidence for a link between cardiovascular function and perceptual function in aging.
Collapse
Affiliation(s)
- Alan O'Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Rebecca J Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Annalisa Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- School of Applied Psychology, University College Cork, Cork, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland
| | - Fiona N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Gümüş G, Balcı F. Working memory for time intervals: Another manifestation of the central tendency effect. Psychon Bull Rev 2023; 30:2289-2295. [PMID: 37369973 DOI: 10.3758/s13423-023-02324-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
The relationship between working memory and time perception has been typically investigated using dual-task paradigms (e.g., testing timing performance during a concurrent task). To our knowledge, none of these studies used time intervals as the target stimulus to be remembered. The current study investigated the working memory for time intervals by asking participants to reproduce durations they experienced at different orders in a series of experienced intervals (n-back task). One of the experiments was conducted online and the other one in the lab setting. Results showed a central tendency bias and additive elongation of time reproductions with increasing working memory load. Our results also showed that participants assigned different weights to experienced intervals based on their order of presentation (higher weight to the target interval). We conclude that the recall of intervals from working memory under high cognitive load leads to a central tendency effect, which is known to be induced by the temporal context and present particularly in aging and in those with Parkinson's disease.
Collapse
Affiliation(s)
- Gamze Gümüş
- Department of Psychology, Koç University, Istanbul, Türkiye
| | - Fuat Balcı
- Department of Psychology, Koç University, Istanbul, Türkiye.
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, BSB 222, Winnipeg, MB, R3T 2M5, Canada.
| |
Collapse
|
11
|
Azizi Z, Hirst RJ, Newell FN, Kenny RA, Setti A. Audio-visual integration is more precise in older adults with a high level of long-term physical activity. PLoS One 2023; 18:e0292373. [PMID: 37792786 PMCID: PMC10550131 DOI: 10.1371/journal.pone.0292373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
It is well established that physical activity leads to numerous health, cognitive, and psychological benefits. However, to date, very few studies have investigated the impact of physical activity on multisensory perception, that is, the brain's capacity to integrate information across sensory modalities. Furthermore, it is unknown what level of long-term physical activity is associated with multisensory integration in adults. We explored the relationship between multisensory integration and a ten-year physical activity trajectory in 2,974 adults aged 50+ from The Irish Longitudinal Study on Ageing by measuring susceptibility to the Sound Induced Flash Illusion (SIFI) at multiple audio-visual temporal asynchronies. Physical activity was measured using the International Physical Activity Questionnaire (IPAQ-SF) at 2 years intervals over ten years. We used latent class trajectory modelling to identify latent growth classes of individuals following a similar trajectory of physical activity over time. We analysed the association of this trajectory with performance accuracy to the illusion trials of the SIFI task with generalized logistic mixed effects regression models, adjusted for several covariates. Results showed that more precise integration (i.e., lower SIFI susceptibility with larger temporal asynchronies) was associated with a higher level of sustained physical activity across ten years. Although the use of self-reported physical activity and a short version of the SIFI task limit our conclusions to some extent, nonetheless, the results suggest that sustained physical activity is associated with more precise multisensory integration, which in turn is linked to better balance and a lower risk of falling in older adults.
Collapse
Affiliation(s)
- Zahra Azizi
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- School of Applied Psychology, University College Cork, Cork, Ireland
| | - Rebecca J Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Fiona N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland
| | - Annalisa Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- School of Applied Psychology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Zhu M, van Stiphout L, Karabulut M, Pérez Fornos A, Guinand N, Meijer K, van de Berg R, McCrum C. Assessing balance in people with bilateral vestibulopathy using the Mini-Balance Evaluation Systems Test (Mini-BESTest): feasibility and comparison with healthy control data. J Neurol 2023; 270:4423-4433. [PMID: 37269353 PMCID: PMC10421784 DOI: 10.1007/s00415-023-11795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Bilateral vestibulopathy (BVP) leads to unsteadiness when walking, which worsens in darkness or on uneven ground, as well as falls. Since simple balance tests struggle to distinguish between BVP and healthy participants, we aimed (1) to test if the Mini-BESTest is feasible in BVP, (2) how people with BVP perform on the Mini-BESTest and (3) to compare these scores with healthy reference data. METHODS Fifty participants with BVP completed the Mini-BESTest. 12-month falls incidence was obtained by questionnaire. To compare the overall and sub-scores between our participants with BVP and those of healthy participants from the literature (n = 327; obtained via PubMed searches), Mann-Whitney U tests were used. Sub scores within the BVP group were also compared. Spearman correlations were used to investigate the relationships between Mini-BESTest score and age. RESULTS No floor or ceiling effects were observed. Participants with BVP had significantly lower Mini-BESTest total scores than the healthy group. Anticipatory, reactive postural control and sensory orientation sub scores of the Mini-BESTest were significantly lower in BVP, while dynamic gait sub scores were not significantly different. A stronger negative correlation between age and Mini-BESTest total score was found in BVP than in the healthy group. Scores did not differ between patients with different falls history. CONCLUSION The Mini-BESTest is feasible in BVP. Our results confirm the commonly reported balance deficits in BVP. The stronger negative association between age and balance in BVP might reflect the age-related decline in the remaining sensory systems with which people with BVP compensate.
Collapse
Affiliation(s)
- Meichan Zhu
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
- Department of Otorhinolaryngology, Guangzhou Twelfth People's Hospital (Guangzhou Otolarynology-Head and Neck Surgery Hospital), No. 1 Tianqiang Road, Tianhe District, Guangzhou, 510620, Guangdong, China.
| | - Lisa van Stiphout
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mustafa Karabulut
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Angélica Pérez Fornos
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Nils Guinand
- Service of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Kostic E, Kwak K, Kim D. Assessing the Global Cognition of Community-Dwelling Older Adults Using Motor and Sensory Factors: A Cross-Sectional Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:7384. [PMID: 37687839 PMCID: PMC10490445 DOI: 10.3390/s23177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Impairments in gait, postural stability, and sensory functions were proved to be strongly associated with severe cognitive impairment such as in dementia. However, to prevent dementia, it is necessary to detect cognitive deterioration early, which requires a deeper understanding of the connections between the aforementioned functions and global cognition. Therefore, the current study measured gait, postural, auditory, and visual functions and, using principal component analysis, explored their individual and cumulative association with global cognition. The global cognitive function of 82 older Korean males was determined using the Montreal Cognitive Assessment. The motor and sensory functions were summarized into seven independent factors using factor analysis, followed by age and education-level-adjusted linear regression model analysis. The seven factors obtained using factor analysis were gait speed, gait stability, midstance, general auditory ability, auditory recognition, overall visual ability, and postural stability. The linear regression model included years of education, gait stability, postural stability, and auditory recognition, and was able to explain more than half of the variability in cognitive score. This shows that motor and sensory parameters, which are obtainable through wearable sensors and mobile applications, could be utilized in detecting cognitive fluctuations even in the early stages of cognitive deterioration.
Collapse
Affiliation(s)
- Emilija Kostic
- Department of Healthcare Engineering, The Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
| | - Kiyoung Kwak
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
| | - Dongwook Kim
- Division of Biomedical Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea;
- Research Center for Healthcare and Welfare Instrument for the Elderly, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| |
Collapse
|
14
|
Holtzer R, Choi J, Motl RW, Foley FW, Picone MA, Lipton ML, Izzetoglu M, Hernandez M, Wagshul ME. Individual reserve in aging and neurological disease. J Neurol 2023; 270:3179-3191. [PMID: 36906731 PMCID: PMC10008128 DOI: 10.1007/s00415-023-11656-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Cognitive and physical functions correlate and delineate aging and disease trajectories. Whereas cognitive reserve (CR) is well-established, physical reserve (PR) is poorly understood. We, therefore, developed and evaluated a novel and more comprehensive construct, individual reserve (IR), comprised of residual-derived CR and PR in older adults with and without multiple sclerosis (MS). We hypothesized that: (a) CR and PR would be positively correlated; (b) low CR, PR, and IR would be associated with worse study outcomes; (c) associations of brain atrophy with study outcomes would be stronger in lower compared to higher IR due to compensatory mechanisms conferred by the latter. METHODS Older adults with MS (n = 66, mean age = 64.48 ± 3.84 years) and controls (n = 66, mean age = 68.20 ± 6.09 years), underwent brain MRI, cognitive assessment, and motoric testing. We regressed the repeatable battery for the assessment of neuropsychological status and short physical performance battery on brain pathology and socio-demographic confounders to derive independent residual CR and PR measures, respectively. We combined CR and PR to define a 4-level IR variable. The oral symbol digit modalities test (SDMT) and timed-25-foot-walk-test (T25FW) served as outcome measures. RESULTS CR and PR were positively correlated. Low CR, PR and IR were associated with worse SDMT and T25FW performances. Reduced left thalamic volume, a marker of brain atrophy, was associated with poor SDMT and T25FW performances only in individuals with low IR. The presence of MS moderated associations between IR and T25FW performance. CONCLUSION IR is a novel construct comprised of cognitive and physical dimensions representing collective within-person reserve capacities.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
| | - Jaeun Choi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois, Chicago, IL, USA
| | - Frederick W Foley
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Mary Ann Picone
- Multiple Sclerosis Center, Holy Name Medical Center, Teaneck, NJ, USA
| | - Michael L Lipton
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, USA
| | - Manuel Hernandez
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
15
|
O' Dowd A, Hirst R, Setti A, Kenny R, Newell F. Longitudinal grip strength is associated with susceptibility to the Sound Induced Flash Illusion in older adults. AGING BRAIN 2023; 3:100076. [PMID: 37287584 PMCID: PMC10241972 DOI: 10.1016/j.nbas.2023.100076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
The precision of temporal multisensory integration is associated with specific aspects of physical functioning in ageing, including gait speed and incidents of falling. However, it is unknown if such an association exists between multisensory integration and grip strength, an important index of frailty and brain health and predictor of disease and mortality in older adults. Here, we investigated whether temporal multisensory integration is associated with longitudinal (eight-year) grip strength trajectories in a large sample of 2,061 older adults (mean age = 64.42 years, SD = 7.20; 52% female) drawn from The Irish Longitudinal Study on Ageing (TILDA). Grip strength (kg) for the dominant hand was assessed with a hand-held dynamometer across four testing waves. Longitudinal k-means clustering was applied to these data separately for sex (male, female) and age group (50-64, 65-74, 75+ years). At wave 3, older adults participated in the Sound Induced Flash Illusion (SIFI), a measure of the precision of temporal audio-visual integration, which included three audio-visual stimulus onset asynchronies (SOAs): 70, 150 and 230 ms. Results showed that older adults with a relatively lower (i.e., weaker) grip strength were more susceptible to the SIFI at the longer SOAs compared to those with a relatively higher (i.e., stronger) grip strength (p <.001). These novel findings suggest that older adults with relatively weaker grip strength exhibit an expanded temporal binding window for audio-visual events, possibly reflecting a reduction in the integrity of the central nervous system.
Collapse
Affiliation(s)
- A. O' Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland
| | - R.J. Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland
| | - A. Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland
- School of Applied Psychology, University College Cork, Ireland
| | - R.A. Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland
- Mercer Institute for Successful Ageing, St James. Hospital, Dublin, Ireland
| | - F.N. Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland
| |
Collapse
|
16
|
Virmani T, Bazanova OM, Larson-Prior LJ. Editorial: Neuroscience of posture and gait control: mechanisms, influencing factors and cognitive-motor retraining. Front Hum Neurosci 2023; 17:1197022. [PMID: 37261080 PMCID: PMC10227609 DOI: 10.3389/fnhum.2023.1197022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Affiliation(s)
- Tuhin Virmani
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olga M. Bazanova
- State Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Linda J. Larson-Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
17
|
O'Dowd A, Hirst RJ, Setti A, Donoghue OA, Kenny RA, Newell FN. The temporal precision of audiovisual integration is associated with longitudinal fall incidents but not sensorimotor fall risk in older adults. Sci Rep 2023; 13:7167. [PMID: 37137879 PMCID: PMC10156851 DOI: 10.1038/s41598-023-32404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Sustained multisensory integration over long inter-stimulus time delays is typically found in older adults, particularly those with a history of falls. However, the extent to which the temporal precision of audio-visual integration is associated with longitudinal fall or fall risk trajectories is unknown. A large sample of older adults (N = 2319) were grouped into longitudinal trajectories of self-reported fall incidents (i.e., decrease, stable, or increase in number) and, separately, their performance on a standard, objective measure of fall risk, Timed Up and Go (TUG; stable, moderate decline, severe decline). Multisensory integration was measured once as susceptibility to the Sound-Induced Flash Illusion (SIFI) across three stimulus onset asynchronies (SOAs): 70 ms, 150 ms and 230 ms. Older adults with an increasing fall number showed a significantly different pattern of performance on the SIFI than non-fallers, depending on age: For adults with increasing incidents of falls, those aged 53-59 years showed a much smaller difference in illusion susceptibility at 70 ms versus 150 ms than those aged 70 + years. In contrast, non-fallers showed a more comparable difference between these SOA conditions across age groups. There was no association between TUG performance trajectories and SIFI susceptibility. These findings suggests that a fall event is associated with distinct temporal patterns of multisensory integration in ageing and have implications for our understanding of the mechanisms underpinning brain health in older age.
Collapse
Affiliation(s)
- Alan O'Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Green, Dublin 2, D02 PN40, Ireland.
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.
| | - Rebecca J Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Green, Dublin 2, D02 PN40, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Annalisa Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- School of Applied Psychology, University College Cork, Cork, Ireland
| | - Orna A Donoghue
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland
| | - Fiona N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Green, Dublin 2, D02 PN40, Ireland
| |
Collapse
|
18
|
Setti A, Hernández B, Hirst RJ, Donoghue OA, Kenny RA, Newell FN. Susceptibility to the sound-induced flash illusion is associated with gait speed in a large sample of middle-aged and older adults. Exp Gerontol 2023; 174:112113. [PMID: 36736711 DOI: 10.1016/j.exger.2023.112113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Multisensory integration is the ability to appropriately merge information from different senses for the purpose of perceiving and acting in the environment. During walking, information from multiple senses must be integrated appropriately to coordinate effective movements. We tested the association between a well characterised multisensory task, the Sound-Induced Flash Illusion (SIFI), and gait speed in 3255 participants from The Irish Longitudinal Study on Ageing. High susceptibility to this illusion at longer stimulus onset asynchronies characterises older adults, and has been associated with cognitive and functional impairments, therefore it should be associated with slower gait speed. METHOD Gait was measured under three conditions; usual pace, cognitive dual tasking, and maximal walking speed. A separate logistic mixed effects regression model was run for 1) gait at usual pace, 2) change in gait speed for the cognitive dual tasking relative to usual pace and 3) change in maximal walking speed relative to usual pace. In all cases a binary response indicating a correct/incorrect response to each SIFI trial was the dependent variable. The model controlled for covariates including age, sex, education, vision and hearing abilities, Body Mass Index, and cognitive function. RESULTS Slower gait was associated with more illusions, particularly at longer temporal intervals between the flash-beep pair and the second beep, indicating that those who integrated incongruent sensory inputs over longer intervals, also walked slower. The relative changes in gait speed for cognitive dual tasking and maximal walking speed were also significantly associated with SIFI at longer SOAs. CONCLUSIONS These findings support growing evidence that mobility, susceptibility to falling and balance control are associated with multisensory processing in ageing.
Collapse
Affiliation(s)
- Annalisa Setti
- School of Applied Psychology, University College Cork, Cork, Ireland; The Irish Longitudinal Study in Ageing, Trinity College Dublin, Dublin, Ireland.
| | - Belinda Hernández
- The Irish Longitudinal Study in Ageing, Trinity College Dublin, Dublin, Ireland; Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland
| | - Rebecca J Hirst
- The Irish Longitudinal Study in Ageing, Trinity College Dublin, Dublin, Ireland; School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Orna A Donoghue
- The Irish Longitudinal Study in Ageing, Trinity College Dublin, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study in Ageing, Trinity College Dublin, Dublin, Ireland; Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland; Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland
| | - Fiona N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Ireland
| |
Collapse
|
19
|
Shah VA, Cruz-Almeida Y, Roy A, Cenko E, Downey RJ, Ferris DP, Hass CJ, Reuter-Lorenz PA, Clark DJ, Manini TM, Seidler RD. Uneven terrain versus dual-task walking: differential challenges imposed on walking behavior in older adults are predicted by cognitive and sensorimotor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.531779. [PMID: 36993462 PMCID: PMC10054936 DOI: 10.1101/2023.03.14.531779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Aging is associated with declines in walking function. To understand these mobility declines, many studies have obtained measurements while participants walk on flat surfaces in laboratory settings during concurrent cognitive task performance (dual-tasking). This may not adequately capture the real-world challenges of walking at home and around the community. Here, we hypothesized that uneven terrains in the walking path impose differential changes to walking speed compared to dual-task walking. We also hypothesized that changes in walking speed resulting from uneven terrains will be better predicted by sensorimotor function than cognitive function. Sixty-three community-dwelling older adults (65-93 yrs old) performed overground walking under varying walking conditions. Older adults were classified into two mobility function groups based on scores of the Short Physical Performance Battery. They performed uneven terrain walking across four surface conditions (Flat, Low, Medium, and High unevenness) and performed single and verbal dual-task walking on flat ground. Participants also underwent a battery of cognitive (cognitive flexibility, working memory, inhibition) and sensorimotor testing (grip strength, 2-pt discrimination, pressure pain threshold). Our results showed that walking speed decreased during both dual-task walking and across uneven terrain walking conditions compared to walking on flat terrain. Participants with lower mobility function had even greater decreases in uneven terrain walking speeds. The change in uneven terrain speed was associated with attention and inhibitory function. Changes in both dual-task and uneven terrain walking speeds were associated with 2-point tactile discrimination. This study further documents associations between mobility, executive functions, and somatosensation, highlights the differential costs to walking imposed by uneven terrains, and identifies that older adults with lower mobility function are more likely to experience these changes to walking function.
Collapse
Affiliation(s)
- Valay A Shah
- Dept. of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Dept. of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Dept. of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Arkaprava Roy
- Dept. of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Erta Cenko
- Dept. of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- Dept. of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Ryan J Downey
- Dept. of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Daniel P Ferris
- Dept. of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Dept. of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | - David J Clark
- Dept of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Todd M Manini
- Dept. of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Dept. of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Downey RJ, Richer N, Gupta R, Liu C, Pliner EM, Roy A, Hwang J, Clark DJ, Hass CJ, Manini TM, Seidler RD, Ferris DP. Uneven terrain treadmill walking in younger and older adults. PLoS One 2022; 17:e0278646. [PMID: 36534645 PMCID: PMC9762558 DOI: 10.1371/journal.pone.0278646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
We developed a method for altering terrain unevenness on a treadmill to study gait kinematics. Terrain consisted of rigid polyurethane disks (12.7 cm diameter, 1.3-3.8 cm tall) which attached to the treadmill belt using hook-and-loop fasteners. Here, we tested four terrain unevenness conditions: Flat, Low, Medium, and High. The main objective was to test the hypothesis that increasing the unevenness of the terrain would result in greater gait kinematic variability. Seventeen younger adults (age 20-40 years), 25 higher-functioning older adults (age 65+ years), and 29 lower-functioning older adults (age 65+ years, Short Physical Performance Battery score < 10) participated. We customized the treadmill speed to each participant's walking ability, keeping the speed constant across all four terrain conditions. Participants completed two 3-minute walking trials per condition. Using an inertial measurement unit placed over the sacrum and pressure sensors in the shoes, we calculated the stride-to-stride variability in step duration and sacral excursion (coefficient of variation; standard deviation expressed as percentage of the mean). Participants also self-reported their perceived stability for each condition. Terrain was a significant predictor of step duration variability, which roughly doubled from Flat to High terrain for all participant groups: younger adults (Flat 4.0%, High 8.2%), higher-functioning older adults (Flat 5.0%, High 8.9%), lower-functioning older adults (Flat 7.0%, High 14.1%). Similarly, all groups exhibited significant increases in sacral excursion variability for the Medium and High uneven terrain conditions, compared to Flat. Participants were also significantly more likely to report feeling less stable walking over all three uneven terrain conditions compared to Flat. These findings support the hypothesis that altering terrain unevenness on a treadmill will increase gait kinematic variability and reduce perceived stability in younger and older adults.
Collapse
Affiliation(s)
- Ryan J. Downey
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Natalie Richer
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Rohan Gupta
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Chang Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Erika M. Pliner
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, United States of America
| | - Jungyun Hwang
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - David J. Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States of America
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Todd M. Manini
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, United States of America
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
21
|
Morais A, Ferreira S, Martins AD, Tomas-Carus P, Marmeleira J, Parraca JA. Phase Angle as a Predictor for Physical Function in Institutionalized Independent Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14615. [PMID: 36361495 PMCID: PMC9654623 DOI: 10.3390/ijerph192114615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the relationship between phase angle (PhA) and physical function in institutionalized, independent older adults. Physical function was evaluated using the Senior Fitness Test Battery. PhA was measured by electrical bioimpedance at 50 khz, and body composition parameters were also registered. Results showed that PhA significantly correlated with all physical fitness tests, except for arm curls. Regarding the results of the multivariate analysis, three models were created: Model 1, formed by a dependent variable "PhA" and two predictor variables "8 ft up-and-go" and "6 min walk"; Model 2, formed by a dependent variable "PhA" and three predictor variables "8 ft up-and-go", "6 min walk" and "30-s chair stand"; and Model 3, formed by a dependent variable "PhA" and four predictor variables "8 ft up-and-go", "6 min walk", "30-s chair stand" and "arm curl". Results showed that predictor variables had a significant influence on the PhA for all three models (Model 1: p = 0.001, 12.5%; Model 2: p = 0.002, 12.9%; and Model 3: p = 0.005, 13.1%). For women, Model 1 showed a significant influence of predictor variables on the PhA (p = 0.030, 9.3%). The results for men in Models 1, 2 and 3 showed significant influences on the PhA (p = 0.002, 31.2%; p = 0.006, 31.6%; and p = 0.016, 31.6%; respectively). This study confirmed previous studies regarding to the relationship between PhA and physical function. It also indicates that PhA could be an excellent predictor of physical function.
Collapse
Affiliation(s)
- Ana Morais
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7004-516 Évora, Portugal
| | - Soraia Ferreira
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7004-516 Évora, Portugal
| | - Alexandre Duarte Martins
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7004-516 Évora, Portugal
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal
| | - Pablo Tomas-Carus
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7004-516 Évora, Portugal
| | - José Marmeleira
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7004-516 Évora, Portugal
| | - Jose A. Parraca
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7004-516 Évora, Portugal
| |
Collapse
|
22
|
Mille J, Izaute M, Vallet G. Liens entre le déclin sensoriel et cognitif dans le vieillissement normal : revue critique de la littérature et apports de l’approche incarnée et située de la cognition. PSYCHOLOGIE FRANCAISE 2022. [DOI: 10.1016/j.psfr.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Embon-Magal S, Krasovsky T, Doron I, Asraf K, Haimov I, Gil E, Agmon M. The effect of co-dependent (thinking in motion [TIM]) versus single-modality (CogniFit) interventions on cognition and gait among community-dwelling older adults with cognitive impairment: a randomized controlled study. BMC Geriatr 2022; 22:720. [PMID: 36045345 PMCID: PMC9429752 DOI: 10.1186/s12877-022-03403-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cognition and motor skills are interrelated throughout the aging process and often show simultaneous deterioration among older adults with cognitive impairment. Co-dependent training has the potential to ameliorate both domains; however, its effect on the gait and cognition of older adults with cognitive impairment has yet to be explored. The aim of this study is to compare the effects of the well-established single-modality cognitive computerized training program, CogniFit, with “Thinking in Motion (TIM),” a co-dependent group intervention, among community-dwelling older adults with cognitive impairment. Methods Employing a single-blind randomized control trial design, 47 community-dwelling older adults with cognitive impairment were randomly assigned to 8 weeks of thrice-weekly trainings of TIM or CogniFit. Pre- and post-intervention assessments included cognitive performance, evaluated by a CogniFit battery, as a primary outcome; and gait, under single- and dual-task conditions, as a secondary outcome. Results CogniFit total Z scores significantly improved from baseline to post-intervention for both groups. There was a significant main effect for time [F (1, 44) = 17.43, p < .001, ηp2 = .283] but not for group [F (1, 44) = 0.001, p = .970]. No time X group interaction [F (1, 44) = 1.29, p = .261] was found. No changes in gait performance under single and dual-task performance were observed in both groups. Conclusions The findings show that single-modality (CogniFit) and co-dependent (TIM) trainings improve cognition but not gait in older adults with cognitive impairment. Such investigations should be extended to include various populations and a broader set of outcome measurements. Trial registration ACTRN12616001543471. Date: 08/11/2016.
Collapse
|
24
|
Holtzer R, Zhu X, Rosso AL, Rosano C. Cognitive reserve and risk of mobility impairment in older adults. J Am Geriatr Soc 2022; 70:3096-3104. [PMID: 35978534 DOI: 10.1111/jgs.17979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cognitive reserve (CR) protects against cognitive decline and dementia but its relation to mobility impairment has not been established. To address this important gap in the literature, we conducted a longitudinal investigation to test the hypothesis that higher baseline CR was associated with a lower risk of developing mobility impairment in older adults. METHODS Participants were dementia-free older adults who received brain magnetic resonance imaging and had gait speed assessments during follow-up. Using the residuals approach, CR was computed as the variance in the Modified Mini-Mental Status Examination total score, that was left after accounting for structural brain integrity, education, and race. Mobility impairment was defined using a validated cutoff score in gait speed of 0.8 m/s. Logistic regression models using general estimating equations were utilized to examine longitudinal associations between baseline CR and the risk of developing mobility impairment across repeated assessments. RESULTS Of the participants (n = 237; mean age = 82 years; %female = 56%) who were free of mobility impairment at baseline, 103 developed mobility impairment during follow-up (mean = 3.1 years). Higher CR at baseline was associated with a lower risk of developing incident mobility impairment-odds ratio (OR) = 0.819, 0.67-0.98, p = 0.038 (unadjusted); OR = 0.815, 0.67-0.99, p = 0.04 (adjusted for socio-demographic variables and depression); OR = 0.819, 0.68-0.88, p = 0.035 (adjusted for illness history); OR = 0.824, 0.68-0.99, p = 0.045 (adjusted for white matter hyperintensities); OR = 0.795, 0.65-0.95, p = 0.016 (adjusted for falls history). CONCLUSION Higher CR at baseline was protective against developing incident mobility impairment during follow-up among community-residing older adults.
Collapse
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, New York, USA.,Department of Neurology, Albert Einstein College of Medicine, New York, New York, USA
| | - Xiaonan Zhu
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Pinto JO, Dores AR, Peixoto B, Vieira de Melo BB, Barbosa F. Critical review of multisensory integration programs and proposal of a theoretical framework for its combination with neurocognitive training. Expert Rev Neurother 2022; 22:557-566. [PMID: 35722763 DOI: 10.1080/14737175.2022.2092401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The main purpose of this manuscript is to critically review the Multisensory Integration (MI) training programs applied to older adults, their characteristics, target sensory systems, efficacy, assessment methods, and results. We also intend to propose an integrated framework to support combined interventions of neurocognitive and sensory training. AREAS COVERED A critical review was conducted covering the most relevant literature on the MI training programs applied to older adults. Two MI training programs applied to cognitively healthy older adults were found: (a) audio-visual temporal discrimination training and (b) simultaneity judgment training. Both led to the improvement of the MI between pre- and post-training. However, only the audio-visual temporal discrimination training led to the generalization of the improvements to another MI task. EXPERT OPINION Considering the relationship between sensory and cognitive functioning, this review supports the potential advantages of combining MI with neurocognitive training in the rehabilitation of older adults. We suggested that this can be achieved within the framework of Branched Programmed Neurocognitive Training (BPNT). Criteria for deciding the most suitable multisensory intervention, that is, MI or Multisensory Stimulation, and general guidelines for the development of MI intervention protocols with older adults with or without cognitive impairment are provided.
Collapse
Affiliation(s)
- Joana O Pinto
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal.,Human and Social Sciences Technical and Scientific Area, School of Health, Polytechnic Institute of Porto, Porto, Portugal.,CESPU, University Institute of Health Sciences, Gandra, Portugal
| | - Artemisa R Dores
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal.,Human and Social Sciences Technical and Scientific Area, School of Health, Polytechnic Institute of Porto, Porto, Portugal.,Psychosocial Rehabilitation Laboratory, Center for Rehabilitation Research, School of Health of the Polytechnic of Porto, Porto, Portugal
| | - Bruno Peixoto
- CESPU, University Institute of Health Sciences, Gandra, Portugal.,NeuroGen - Center for Health Technology and Services Research (CINTESIS), Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, Gandra, Portugal
| | - Bruno B Vieira de Melo
- Psychosocial Rehabilitation Laboratory, Center for Rehabilitation Research, School of Health of the Polytechnic of Porto, Porto, Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
The Effects of High-Speed Resistance Training on Health Outcomes in Independent Older Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095390. [PMID: 35564788 PMCID: PMC9099943 DOI: 10.3390/ijerph19095390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Human ageing involves several physiological impairments—in particular, a decrease in sensorimotor function and changes in the nervous system reduce muscle strength, power, balance, and functional capacity performance. Preventive strategies are essential to ensure the quality of life of the elderly. High-speed resistance training (HSRT) may be an effective approach to muscle power development in this population, with significant short-term effects on neural adaptations and muscle power production. Therefore, the present study intends to analyze and systematize the studies focused on HSRT interventions and their effects on health outcomes in independent older adults. Four electronic databases (PubMed, Web of Science, EBSCO, and Scielo) were used for the purposes of searching randomized controlled trials that measured at least one key outcome measure focusing on velocity-based training and health outcomes in older adults on 7 March 2022 and identified 1950 studies. At the end of the process, fourteen studies were included in this systematic review and ten studies were included in the quantitative analysis. The main results showed that HSRT interventions would improve health measures, mostly cognitive function (large effects, p = 0.001, SMD = 0.94), neuromuscular function (moderate effects, p = 0.003, SMD = 0.70), and physical function (moderate effects, p = 0.04, SMD = 0.55 and p = 0.009, SMD = −0.59). Additionally, the results suggested that interventions with ten weeks or more, performed three times a week, provide significant improvements in neuromuscular function. In this sense, HSRT is effective for improving overall health outcomes in older adults. Future studies should include proper follow-ups (e.g., minimum six months) to assess the durability of HSRT intervention effects on all health-related variables.
Collapse
|
27
|
Schaefer S, Bill D, Hoor M, Vieweg J. The influence of age and age simulation on task-difficulty choices in motor tasks. AGING, NEUROPSYCHOLOGY, AND COGNITION 2022; 30:429-454. [PMID: 35227170 DOI: 10.1080/13825585.2022.2043232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Having a realistic perception of one's motor abilities is important for successful aging. We used two different motor tasks, carrying a tray with cube-towers (study 1; n = 20 young adults; n = 20 older adults), and stepping over a crossbar (study 2; n = 23 young adults; n = 21 older adults), to investigate how physical risk influences task-difficulty choices. We also investigated the effect of wearing an age simulation suit on young adults. For the tray-carrying task, older adults were more risk-tolerant in their task-difficulty choices. When stepping over the crossbar, older adults left a larger "safety-buffer" than young adults. When wearing the age suit, young adults adopted a more careful strategy in the stepping task. We conclude that healthy older adults flexibly adjust their strategies to postural risks, and that young adults' strategy-choices can be influenced by experimentally inducing some of the sensory-motor constraints of old age.
Collapse
Affiliation(s)
- Sabine Schaefer
- Department of Movement Science, Institute of Sport Science, Saarland University, Saarbrücken, Germany
| | - Daniel Bill
- Department of Movement Science, Institute of Sport Science, Saarland University, Saarbrücken, Germany
| | - Maren Hoor
- Department of Movement Science, Institute of Sport Science, Saarland University, Saarbrücken, Germany
| | - Janine Vieweg
- Department of Movement Science, Institute of Sport Science, Saarland University, Saarbrücken, Germany
| |
Collapse
|
28
|
Jayasinghe N, Backus S, Gibbons M, Sobel J, Spielman L, Ganz SB, Moallem BI, Ojie MJ, Kakoullis M, Hillstrom H. Brief training of gait and posture using a wearable sensory feedback device with older adults who have fears of falling: A feasibility study. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-021-00623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Candini M, D’Angelo M, Frassinetti F. Time Interaction With Two Spatial Dimensions: From Left/Right to Near/Far. Front Hum Neurosci 2022; 15:796799. [PMID: 35115914 PMCID: PMC8804530 DOI: 10.3389/fnhum.2021.796799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, we explored the time and space relationship according to two different spatial codings, namely, the left/right extension and the reachability of stimulus along a near/far dimension. Four experiments were carried out in which healthy participants performed the time and spatial bisection tasks in near/far space, before and after short or long tool-use training. Stimuli were prebisected horizontal lines of different temporal durations in which the midpoint was manipulated according to the Muller-Lyer illusion. The perceptual illusory effects emerged in spatial but not temporal judgments. We revealed that temporal and spatial representations dynamically change according to the action potentialities of an individual: temporal duration was perceived as shorter and the perceived line’s midpoint was shifted to the left in far than in near space. Crucially, this dissociation disappeared following a long but not short tool-use training. Finally, we observed age-related differences in spatial attention which may be crucial in building the memory temporal standard to categorize durations.
Collapse
Affiliation(s)
- Michela Candini
- Department of Psychology, University of Bologna, Bologna, Italy
- Unit of Recovery and Functional Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Castel Goffredo, Mantova, Italy
- *Correspondence: Michela Candini,
| | - Mariano D’Angelo
- Department of Psychology, University of Bologna, Bologna, Italy
- Unit of Recovery and Functional Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Castel Goffredo, Mantova, Italy
| | - Francesca Frassinetti
- Department of Psychology, University of Bologna, Bologna, Italy
- Unit of Recovery and Functional Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Castel Goffredo, Mantova, Italy
| |
Collapse
|
30
|
Jeanvoine H, Labriffe M, Tannou T, Navasiolava N, Ter Minassian A, Girot JB, Leiber LM, Custaud MA, Annweiler C, Dinomais M. Specific age-correlated activation of top hierarchical motor control areas during gait-like plantar stimulation: An fMRI study. Hum Brain Mapp 2021; 43:833-843. [PMID: 34738281 PMCID: PMC8720193 DOI: 10.1002/hbm.25691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
A better understanding of gait disorders that are associated with aging is crucial to prevent adverse outcomes. The functional study of gait remains a thorny issue due to technical constraints inherent to neuroimaging procedures, as most of them require to stay supine and motionless. Using an MRI‐compatible system of boots reproducing gait‐like plantar stimulation, we investigated the correlation between age and brain fMRI activation during simulated gait in healthy adults. Sixty‐seven right‐handed healthy volunteers aged between 20 and 77 years old (49.2 ± 18.0 years; 35 women) were recruited. Two paradigms were assessed consecutively: (a) gait‐like plantar stimulation and (b) chaotic and not gait‐related plantar stimulation. Resulting statistical parametric maps were analyzed with a multiple‐factor regression that included age and a threshold determined by Monte‐Carlo simulation to fulfill a family‐wise error rate correction of p < .05. In the first paradigm, there was an age‐correlated activation of the right pallidum, thalamus and putamen. The second paradigm showed an age‐correlated deactivation of both primary visual areas (V1). The subtraction between results of the first and second paradigms showed age‐correlated activation of the right presupplementary motor area (Brodmann Area [BA] 6) and right mid‐dorsolateral prefrontal cortex (BA9‐10). Our results show age‐correlated activity in areas that have been associated with the control of gait, highlighting the relevance of this simulation model for functional gait study. The specific progressive activation of top hierarchical control areas in simulated gait and advancing age corroborate a progressive loss of automation in healthy older adults.
Collapse
Affiliation(s)
- Henry Jeanvoine
- Department of Radiology, Angers University Hospital, University of Angers, Angers, France
| | - Matthieu Labriffe
- Department of Radiology, Angers University Hospital, University of Angers, Angers, France.,Laboratoire Angevin de Recherche en Ingénierie des Systèmes, EA7315, University of Angers, Angers, France
| | - Thomas Tannou
- Department of Geriatrics, Besançon University Hospital, University of Franche-Comté, Besançon, France.,Integrative and Clinical Neurosciences, EA 481, University of Franche-Comté, Besançon, France.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Nastassia Navasiolava
- Clinical Research Center, Angers University Hospital, University of Angers, Angers, France
| | - Aram Ter Minassian
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, EA7315, University of Angers, Angers, France.,Department of Anesthesia and Critical Care, Angers University Hospital, Angers, France
| | - Jean-Baptiste Girot
- Department of Radiology, Angers University Hospital, University of Angers, Angers, France.,Laboratoire Angevin de Recherche en Ingénierie des Systèmes, EA7315, University of Angers, Angers, France
| | - Louis-Marie Leiber
- Department of Radiology, Angers University Hospital, University of Angers, Angers, France.,Laboratoire Angevin de Recherche en Ingénierie des Systèmes, EA7315, University of Angers, Angers, France
| | - Marc-Antoine Custaud
- Clinical Research Center, Angers University Hospital, University of Angers, Angers, France.,Laboratoire de Biologie Neuro-Vasculaire et Mitochondriale Intégrée, UMR CNRS 6214 INSERM U1083, University of Angers, Angers, France
| | - Cédric Annweiler
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic-Angers University Hospital, UPRES EA 4638-University of Angers, Angers, France.,Department of Medical Biophysics, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mickaël Dinomais
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, EA7315, University of Angers, Angers, France.,Department of Physical and Rehabilitation Medicine, Angers University Hospital, University of Angers, Angers, France
| |
Collapse
|
31
|
Holtzer R, Ross D, O'Brien C, Izzetoglu M, Wagshul ME. Cognitive Reserve Moderates the Efficiency of Prefrontal Cortex Activation Patterns of Gait in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 77:1836-1844. [PMID: 34606598 DOI: 10.1093/gerona/glab288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cognitive Reserve (CR) protects against cognitive decline, but whether CR influences the efficiency of cortical control of gait has not been reported. The current study addressed this important gap in the literature. Specifically, we determined the role of CR in moderating the efficiency of functional Near-Infrared-Spectroscopy (fNIRS)-derived HbO2 in the prefrontal cortex (PFC) assessed during active walking. We hypothesized that higher CR would be associated with more efficient brain activation patterns. METHODS Participants were 55 (mean age=74.84; %female=49.1) older adults who underwent the combined walking/fNIRS protocol and had MRI data. We used an established dual-task walking paradigm that consisted of three task conditions: Single-Task-Walk (STW), Single-Task-Alpha (STA, cognitive task) and Dual-Task-Walk (DTW). Using the residuals approach, CR was derived from a word-reading test score by removing variance accounted for by socio-demographic variables, tests of current cognitive functions and a measure of structural brain integrity. RESULTS CR moderated the change in fNIRS-derived HbO2 in the PFC across tasks. Higher CR was associated with smaller increases in fNIRS-derived HbO2 from the single tasks to dual task walking (CR x DTW compared to STW: estimate = .183; p < .001; CR x DTW compared to STA: estimate =.257; p < .001). The moderation effect of CR remained significant when adjusting for multiple covariates and concurrent moderation effects of measures of gait performance, current cognitive functions and structural integrity of the brain. CONCLUSION The current study provided first evidence that higher CR was associated with better neural efficiency of walking in older adults.
Collapse
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University.,Department of Neurology, Albert Einstein College of Medicine
| | - Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University
| | | | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University
| | - Mark E Wagshul
- Department of Radiology, Albert Einstein College of Medicine
| |
Collapse
|
32
|
Agmon M, Bar-Shalita T, Kizony R. High Sensory Responsiveness in Older Adults is Associated with Walking Outside but Not Inside: Proof of Concept Study. Clin Interv Aging 2021; 16:1651-1657. [PMID: 34548788 PMCID: PMC8449548 DOI: 10.2147/cia.s322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Reduced mobility and a higher risk of falls among older adults are related to aging-associated sensory alteration. Sensory responsiveness (SR) has been found to be strongly correlated with postural control in studies on young adults in stimulating environments; however, SR has not been studied in the context of mobility among older adults, despite its potential to enhance fall risks. The aim of the current study is to characterize the associations between SR and gait under single and dual-task (ST, DT) conditions inside and outside the laboratory. Methods Twenty-six community-dwelling older adults (age 70.3 ± 4.6 years, 65.4% women) participated in this cross-sectional study. Gait variables were measured using the APDM system under single and dual task conditions, in a quiet corridor inside and in an ecological (outside) environment. SR was evaluated using the SR questionnaire and cognition was assessed with the Trail-Making Test and the Montreal Cognitive Assessment. Results SR was negatively associated with gait speed during ST (rs = −0.491, p < 0.05) and DT (rs = −0.528, p < 0.01) outside and with ST gait speed inside (rs = −0.528, p < 0.01). SR was positively associated with gait variability under DT (rs = 0.41, p < 0.05) and with DT cost (rs = 0.44, p < 0.05) only outside. Conclusion SR may play an important role in understanding mobility deterioration throughout the aging process, especially outside, illuminating the importance of SR evaluation among older adults during mobility assessment. Therefore, accounting for SR in gait research may contribute to a better understanding of mobility decline throughout the aging process.
Collapse
Affiliation(s)
- Maayan Agmon
- The Cheryl Spencer Department of Nursing, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, The Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Kizony
- Department of Occupational Therapy, Faculty of Social Welfare & Health Sciences University of Haifa, Haifa, Israel.,Department of Occupational Therapy, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
33
|
O’Brien C, Holtzer R. Cognitive Reserve Moderates Associations Between Walking Performance Under Single- and Dual-Task Conditions and Incident Mobility Impairment in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 76:e314-e320. [PMID: 34153107 PMCID: PMC8691058 DOI: 10.1093/gerona/glab178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Among older adults, walking performance is a reliable indicator of adverse health outcomes including incident mobility impairment. Whereas, attention and executive functions have been implicated in cognitive control of locomotion, much less is known about the role of cognitive reserve (CR) in predicting mobility impairments among older adults. Specifically, whether CR moderates the relationship between gait performance and incident mobility impairment has not been reported. To address this gap in the literature, we examined whether gait performance under single-task walk (STW) and dual-task walk (DTW) conditions predicted incident mobility impairment and whether CR moderated this relationship. METHOD Participants were 176 (mean age = 75.57; % female = 53) older adults with baseline Short Physical Performance Battery (SPPB) scores of 10-12. Participants completed neuropsychological testing, the SPPB, and a DTW protocol. CR was evaluated using the Wide Range Achievement Test, third edition. Participants were followed for 3 years; individuals whose SPPB scores declined below 10 were defined as incident cases of mobility impairment (n = 42). RESULTS Moderation analyses revealed significant interaction effects of CR with walking velocity under STW (b = 0.09, 95% CI [0.01, 0.17], z = 2.30, p = .02) and DTW (b = 0.10, 95% CI [0.02, 0.17], z = 2.55, p = .01) conditions, wherein slower gait predicted increased risk of incident mobility impairment among individuals with lower CR. CONCLUSION These findings extend knowledge about the interrelation of cognitive and mobility functions, revealing the critical role of CR in identifying older adults at risk of developing incident mobility impairment.
Collapse
Affiliation(s)
- Catherine O’Brien
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
34
|
Maaß SC, de Jong J, van Maanen L, van Rijn H. Conceptually plausible Bayesian inference in interval timing. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201844. [PMID: 34457319 PMCID: PMC8371368 DOI: 10.1098/rsos.201844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/20/2021] [Indexed: 05/12/2023]
Abstract
In a world that is uncertain and noisy, perception makes use of optimization procedures that rely on the statistical properties of previous experiences. A well-known example of this phenomenon is the central tendency effect observed in many psychophysical modalities. For example, in interval timing tasks, previous experiences influence the current percept, pulling behavioural responses towards the mean. In Bayesian observer models, these previous experiences are typically modelled by unimodal statistical distributions, referred to as the prior. Here, we critically assess the validity of the assumptions underlying these models and propose a model that allows for more flexible, yet conceptually more plausible, modelling of empirical distributions. By representing previous experiences as a mixture of lognormal distributions, this model can be parametrized to mimic different unimodal distributions and thus extends previous instantiations of Bayesian observer models. We fit the mixture lognormal model to published interval timing data of healthy young adults and a clinical population of aged mild cognitive impairment patients and age-matched controls, and demonstrate that this model better explains behavioural data and provides new insights into the mechanisms that underlie the behaviour of a memory-affected clinical population.
Collapse
Affiliation(s)
- Sarah C. Maaß
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands
- Behavioral and Cognitive Neurosciences, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Joost de Jong
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands
- Behavioral and Cognitive Neurosciences, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands
| | - Leendert van Maanen
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands
| | - Hedderik van Rijn
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands
- Behavioral and Cognitive Neurosciences, University of Groningen, Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands
| |
Collapse
|
35
|
Do the young and the old perceive emotional intervals differently when shown on a younger or older face? Cogn Process 2021; 22:691-699. [PMID: 34117596 DOI: 10.1007/s10339-021-01037-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022]
Abstract
Many authors have analysed the effects of emotion recognition on time perception, showing that the more arousing the stimuli are the greater is the effect on duration perception. Visual stimuli, in particular faces, are the most recurrent stimuli employed in the literature. However, pictures in which emotional faces of older individuals have rarely been used, and when used, only young participants were tested. Hence, the present study is designed not only to analyse differences as regards duration perception in younger and older participants, but also to investigate the effects of neutral, happy, and angry facial expressions on younger and older participants when younger or older faces express those emotions. Results showed overestimation when emotional stimuli were presented. Interestingly, we observed temporal underestimation when the temporal intervals were marked by the image of younger participants and this was true in particular for older adults participants. Results are discussed in accordance with the internal clock model and in accordance with an inferential/reconstructive process occurring in memory and acting on temporal judgments.
Collapse
|
36
|
Pinto JO, Vieira De Melo BB, Dores AR, Peixoto B, Geraldo A, Barbosa F. Narrative review of the multisensory integration tasks used with older adults: inclusion of multisensory integration tasks into neuropsychological assessment. Expert Rev Neurother 2021; 21:657-674. [PMID: 33890537 DOI: 10.1080/14737175.2021.1914592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Age-related changes in sensory functioning impact the activities of daily living and interact with cognitive decline. Given the interactions between sensory and cognitive functioning, combining multisensory integration (MI) assessment with the neuropsychological assessment of older adults seems promising. This review aims to examine the characteristics and utility of MI tasks in functional and cognitive assessment of older adults, with or without neurocognitive impairment.Areas covered: A literature search was conducted following the quality assessment of narrative review criteria. Results focused on tasks of detection, discrimination, sensory illusion, temporal judgment, and sensory conflict. Studies were not consensual regarding the enhancement of MI with age, but most studies showed that older adults had an expanded time window of integration. In older adults with mild cognitive impairment or major neurocognitive disorder it was a mediating role of the magnitude of visual-somatosensory integration between neurocognitive impairment and spatial aspects of gait.Expert opinion: Recently, some concerns have been raised about how to maximize the ecological validity of the neuropsychological assessment. Since most of our activities of daily living are multisensory and older adults benefit from multisensory information, MI assessment has the potential to improve the ecological validity of the neuropsychological assessment.
Collapse
Affiliation(s)
- Joana O Pinto
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal.,Human and Social Sciences Department, School of Health, Polytechnic Institute of Porto, Porto, Portugal.,CESPU, University Institute of Health Sciences, Gandra, Portugal
| | - Bruno B Vieira De Melo
- Psychosocial Rehabilitation Laboratory, Center for Rehabilitation Research, School of Health of the Polytechnic of Porto, Porto, Portugal
| | - Artemisa R Dores
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal.,Human and Social Sciences Department, School of Health, Polytechnic Institute of Porto, Porto, Portugal.,Psychosocial Rehabilitation Laboratory, Center for Rehabilitation Research, School of Health of the Polytechnic of Porto, Porto, Portugal
| | - Bruno Peixoto
- CESPU, University Institute of Health Sciences, Gandra, Portugal.,NeuroGen - Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - Andreia Geraldo
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Fernando Barbosa
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Disentangling the effects of modality, interval length and task difficulty on the accuracy and precision of older adults in a rhythmic reproduction task. PLoS One 2021; 16:e0248295. [PMID: 33730049 PMCID: PMC7968708 DOI: 10.1371/journal.pone.0248295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Studies on the functional quality of the internal clock that governs the temporal processing of older adults have demonstrated mixed results as to whether they perceive and produce time slower, faster, or equally well as younger adults. These mixed results are due to a multitude of methodologies applied to study temporal processing: many tasks demand different levels of cognitive ability. To investigate the temporal accuracy and precision of older adults, in Experiment 1, we explored the age-related differences in rhythmic continuation task taking into consideration the effects of attentional resources required by the stimulus (auditory vs. visual; length of intervals). In Experiment 2, we added a dual task to explore the effect of attentional resources required by the task. Our findings indicate that (1) even in an inherently automatic rhythmic task, where older and younger adult’s general accuracy is comparable, accuracy but not precision is altered by the stimulus properties and (2) an increase in task load can magnify age-related differences in both accuracy and precision.
Collapse
|
38
|
Engel-Yeger B, Rosenblum S. Executive dysfunctions mediate between altered sensory processing and daily activity performance in older adults. BMC Geriatr 2021; 21:132. [PMID: 33618664 PMCID: PMC7898742 DOI: 10.1186/s12877-021-02032-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sensory processing is essential for the interaction with the environment and for adequate daily function. Sensory processing may deteriorate with aging and restrict daily activity performance. Aging may also affect Executive functions (EFs) which are critical for daily activity performance. Yet, most studies refer separately to the impacts of sensory processing or EFs and use clinical evaluations that do not necessarily reflect functional restrictions in real life. This study aims to describe the prevalence of altered sensory processing in the elderly as expressed in daily life scenarios and explore whether EFs mediate between altered sensory processing and daily activity performance in older adults. METHODS This cross-sectional study included 167 healthy independently functioning people aged 65 and above who were living in the community, had sufficient cognitive status and no symptoms of depression (based on the GDS and the MMSE). All participants completed a socio-demographic-health questionnaire, the Adolescent/Adult Sensory Profile, the Behavior Rating Inventory of Executive Function-Adult Version and the Daily Living Questionnaire. RESULTS Altered sensory processing, and mainly by the reduced ability to register and modulate sensory input from daily environment, were prevalent in older adults. Their impacts on daily activity performance were mediated by executive dysfunctions. CONCLUSIONS Executive dysfunctions may worsen the negative effects of altered sensory processing on daily activity performance in older adults. The interaction between EFs and sensory processing should receive growing attention in intervention and prevention programs for older adults, with the emphasis on their expressions and implications on peoples' function in real life context.
Collapse
Affiliation(s)
- Batya Engel-Yeger
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Aba Hushi, 199, Mount Carmel, 3498838, Haifa, Israel.
| | - Sara Rosenblum
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Aba Hushi, 199, Mount Carmel, 3498838, Haifa, Israel
| |
Collapse
|
39
|
Skiadopoulos A, Stergiou N. Risk-of-falling related outcomes improved in community-dwelling older adults after a 6-week sideways walking intervention: a feasibility and pilot study. BMC Geriatr 2021; 21:60. [PMID: 33446112 PMCID: PMC7809866 DOI: 10.1186/s12877-021-02010-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aging increases fall risk and alters gait mechanics and control. Our previous work has identified sideways walking as a potential training regimen to decrease fall risk by improving frontal plane control in older adults' gait. The purposes of this pilot study were to test the feasibility of sideways walking as an exercise intervention and to explore its preliminary effects on risk-of-falling related outcomes. METHODS We conducted a 6-week single-arm intervention pilot study. Participants were community-dwelling older adults ≥ 65 years old with walking ability. Key exclusion criteria were neuromusculoskeletal and cardiovascular disorders that affect gait. Because initial recruitment rate through University of Nebraska at Omaha and Omaha community was slower than expected (3 participants∙week- 1), we expanded the recruitment pool through the Mind & Brain Health Labs registry of the University of Nebraska Medical Center. Individualized sideways walking intervention carried out under close supervision in a 200 m indoor walking track (3 days∙week- 1). Recruitment and retention capability, safety, and fidelity of intervention delivery were recorded. We also collected (open-label) walking speed, gait variability, self-reported and performance-based functional measures to assess participants' risk-of-falling at baseline and post-intervention: immediate, and 6 weeks after the completion of the intervention. RESULTS Over a 7-month period, 42 individuals expressed interest, 21 assessed for eligibility (21/42), and 15 consented to participate (15/21). Most of the potential participants were reluctant to commit to a 6-week intervention. Desired recruitment rate was achieved after revising the recruitment strategy. One participant dropped out (1/15). Remaining participants demonstrated excellent adherence to the protocol. Participants improved on most outcomes and the effects remained at follow-up. No serious adverse events were recorded during the intervention. CONCLUSIONS Our 6-week sideways walking training was feasible to deliver and demonstrated strong potential as an exercise intervention to improve risk-of-falling outcomes in community-dwelling older adults. In a future trial, alternative clinical tools should be considered to minimize the presence of ceiling/floor effects. A future large trial is needed to confirm sideways walking as a fall prevention intervention. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04505527 . Retrospectively registered 10 August 2020.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Biomechanics Research Building 214, 6160 University Drive South, 68182-0860, NE, Omaha, USA
| | - Nick Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Biomechanics Research Building 214, 6160 University Drive South, 68182-0860, NE, Omaha, USA.
- College of Public Health, University of Nebraska Medical Center, 68198-4355, Omaha, NE, USA.
| |
Collapse
|
40
|
Ophey A, Rehberg S, Giehl K, Eggers C, Reker P, van Eimeren T, Kalbe E. Predicting Working Memory Training Responsiveness in Parkinson's Disease: Both "System Hardware" and Room for Improvement Are Needed. Neurorehabil Neural Repair 2021; 35:117-130. [PMID: 33410387 DOI: 10.1177/1545968320981956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background. Patients with Parkinson's disease (PD) are highly vulnerable to develop cognitive dysfunctions, and the mitigating potential of early cognitive training (CT) is increasingly recognized. Predictors of CT responsiveness, which could help to tailor interventions individually, have rarely been studied in PD. This study aimed to examine individual characteristics of patients with PD associated with responsiveness to targeted working memory training (WMT). Methods. Data of 75 patients with PD (age: 63.99 ± 9.74 years, 93% Hoehn & Yahr stage 2) without cognitive dysfunctions from a randomized controlled trial were analyzed using structural equation modeling. Latent change score models with and without covariates were estimated and compared between the WMT group (n = 37), who participated in a 5-week adaptive WMT, and a waiting list control group (n = 38). Results. Latent change score models yielded adequate model fit (χ2-test p > .05, SRMR ≤ .08, CFI ≥ .95). For the near-transfer working memory composite, lower baseline performance, younger age, higher education, and higher fluid intelligence were found to significantly predict higher latent change scores in the WMT group, but not in the control group. For the far-transfer executive function composite, higher self-efficacy expectancy tended to significantly predict larger latent change scores. Conclusions. The identified associations between individual characteristics and WMT responsiveness indicate that there has to be room for improvement (e.g., lower baseline performance) and also sufficient "hardware" (e.g., younger age, higher intelligence) to benefit in training-related cognitive plasticity. Our findings are discussed within the compensation versus magnification account. They need to be replicated by methodological high-quality research applying advanced statistical methods with larger samples.
Collapse
Affiliation(s)
| | | | | | - Carsten Eggers
- University Hospital of Marburg, Marburg, Germany.,Universities of Marburg and Gießen, Marburg, Germany
| | | | - Thilo van Eimeren
- University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
41
|
Timing behavior in genetic murine models of neurological and psychiatric diseases. Exp Brain Res 2021; 239:699-717. [PMID: 33404792 DOI: 10.1007/s00221-020-06021-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
How timing behavior is altered in different neurodevelopmental and neurodegenerative disorders is a contemporary research question. Genetic murine models (GMM) that offer high construct validity also serve as useful tools to investigate this question. But the literature on timing behavior of different GMMs largely remains to be consolidated. The current paper addresses this gap by reviewing studies that have been conducted with GMMs of neurodevelopmental (e.g. ADHD, schizophrenia, autism spectrum disorder), neurodegenerative disorders (e.g., Alzheimer's disease, Huntington's disease) as well as circadian and other mutant lines. The review focuses on those studies that specifically utilized the peak interval procedure to improve the comparability of findings both within and between different disease models. The reviewed studies revealed timing deficits that are characteristic of different disorders. Specifically, Huntington's disease models had weaker temporal control over the termination of their anticipatory responses, Alzheimer's disease models had earlier timed responses, schizophrenia models had weaker temporal control, circadian mutants had shifted timed responses consistent with shifts in the circadian periods. The differences in timing behavior were less consistent for other conditions such as attention deficit and hyperactivity disorder and mutations related to intellectual disability. We discuss the implications of these findings for the neural basis of an internal stopwatch. Finally, we make methodological recommendations for future research for improving the comparability of the timing behavior across different murine models.
Collapse
|
42
|
Agathos CP, Ramanoël S, Bécu M, Bernardin D, Habas C, Arleo A. Postural Control While Walking Interferes With Spatial Learning in Older Adults Navigating in a Real Environment. Front Aging Neurosci 2020; 12:588653. [PMID: 33281600 PMCID: PMC7689348 DOI: 10.3389/fnagi.2020.588653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Cognitive demands for postural control increase with aging and cognitive-motor interference (CMI) exists for a number of walking situations, especially with visuo-spatial cognitive tasks. Such interference also influences spatial learning abilities among older adults; however, this is rarely considered in research on aging in spatial navigation. We posited that visually and physically exploring an unknown environment may be subject to CMI for older adults. We investigated potential indicators of postural control interfering with spatial learning. Given known associations between age-related alterations in gait and brain structure, we also examined potential neuroanatomical correlates of this interference. Fourteen young and 14 older adults had to find an invisible goal in an unfamiliar, real, ecological environment. We measured walking speed, trajectory efficiency (direct route over taken route) and goal fixations (proportion of visual fixations toward the goal area). We calculated the change in walking speed between the first and last trials and adaptation indices for all three variables to quantify their modulation across learning trials. All participants were screened with a battery of visuo-cognitive tests. Eighteen of our participants (10 young, 8 older) also underwent a magnetic resonance imaging (MRI) examination. Older adults reduced their walking speed considerably on the first, compared to the last trial. The adaptation index of walking speed correlated positively with those of trajectory efficiency and goal fixations, indicating a reduction in resource sharing between walking and encoding the environment. The change in walking speed correlated negatively with gray matter volume in superior parietal and occipital regions and the precuneus. We interpret older adults’ change in walking speed as indicative of CMI, similar to dual task costs. This is supported by the correlations between the adaptation indices and between the change in walking speed and gray matter volume in brain regions that are important for navigation, given that they are involved in visual attention, sensory integration and encoding of space. These findings under ecological conditions in a natural spatial learning task question what constitutes dual tasking in older adults and they can lead future research to reconsider the actual cognitive burden of postural control in aging navigation research.
Collapse
Affiliation(s)
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,University of Côte d'Azur, LAMHESS, Nice, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Delphine Bernardin
- Vision Sciences Department, Essilor International R&D, Paris, France.,Essilor Canada Ltd., Montreal, QC, Canada
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
43
|
Holtzer R, Ross D, Izzetoglu M. Intraindividual variability in neural activity in the prefrontal cortex during active walking in older adults. Psychol Aging 2020; 35:1201-1214. [PMID: 33180518 DOI: 10.1037/pag0000583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intraindividual variability in gait and cognitive performance is distinct from central-tendency measures and associated with clinical outcomes in aging. Knowledge concerning intraindividual variability in neural activity, however, has been relatively scarce, and no research to date has reported on such variability during active walking. The current study addressed this major gap in knowledge. Participants were community-residing older adults (n = 394; mean age = 76.29 ± 6.65 years; %female = 55). Functional near-infrared spectroscopy (fNIRS) was used to measure oxygenated hemoglobin (HbO2) in the prefrontal cortex under three experimental conditions: single-task-walk, single-task-alpha (cognitive task), and dual-task-walk, which required the participants to perform the two single tasks simultaneously. Intraindividual variability in neural activity was operationalized using the standard deviation of fNIRS-derived HbO2 observations assessed during a 30-s interval in each experimental condition. The increase in intraindividual variability in neural activity in the dual-task-walk condition compared to both single-task conditions was associated with the presence of cognitive impairments and being a male. Furthermore, measures of intraindividual variability in neural activity and gait performance were positively correlated only under the dual-task-walk condition. Intraindividual variability in the neural activity of gait may be a novel marker for age-related impairments in mobility and cognitive function. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University
| | - Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University
| |
Collapse
|
44
|
Ophey A, Roheger M, Folkerts AK, Skoetz N, Kalbe E. A Systematic Review on Predictors of Working Memory Training Responsiveness in Healthy Older Adults: Methodological Challenges and Future Directions. Front Aging Neurosci 2020; 12:575804. [PMID: 33173503 PMCID: PMC7591761 DOI: 10.3389/fnagi.2020.575804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Research on predictors of working memory training responsiveness, which could help tailor cognitive interventions individually, is a timely topic in healthy aging. However, the findings are highly heterogeneous, reporting partly conflicting results following a broad spectrum of methodological approaches to answer the question “who benefits most” from working memory training. Objective: The present systematic review aimed to systematically investigate prognostic factors and models for working memory training responsiveness in healthy older adults. Method: Four online databases were searched up to October 2019 (MEDLINE Ovid, Web of Science, CENTRAL, and PsycINFO). The inclusion criteria for full texts were publication in a peer-reviewed journal in English/German, inclusion of healthy older individuals aged ≥55 years without any neurological and/or psychiatric diseases including cognitive impairment, and the investigation of prognostic factors and/or models for training responsiveness after targeted working memory training in terms of direct training effects, near-transfer effects to verbal and visuospatial working memory as well as far-transfer effects to other cognitive domains and behavioral variables. The study design was not limited to randomized controlled trials. Results: A total of 16 studies including n = 675 healthy older individuals with a mean age of 63.0–86.8 years were included in this review. Within these studies, five prognostic model approaches and 18 factor finding approaches were reported. Risk of bias was assessed using the Quality in Prognosis Studies checklist, indicating that important information, especially regarding the domains study attrition, study confounding, and statistical analysis and reporting, was lacking throughout many of the investigated studies. Age, education, intelligence, and baseline performance in working memory or other cognitive domains were frequently investigated predictors across studies. Conclusions: Given the methodological shortcomings of the included studies, no clear conclusions can be drawn, and emerging patterns of prognostic effects will have to survive sound methodological replication in future attempts to promote precision medicine approaches in the context of working memory training. Methodological considerations are discussed, and our findings are embedded to the cognitive aging literature, considering, for example, the cognitive reserve framework and the compensation vs. magnification account. The need for personalized cognitive prevention and intervention methods to counteract cognitive decline in the aging population is high and the potential enormous. Registration: PROSPERO, ID CRD42019142750.
Collapse
Affiliation(s)
- Anja Ophey
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mandy Roheger
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ann-Kristin Folkerts
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Department of Medical Psychology
- Neuropsychology & Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Skiadopoulos A, Moore EE, Sayles HR, Schmid KK, Stergiou N. Step width variability as a discriminator of age-related gait changes. J Neuroeng Rehabil 2020; 17:41. [PMID: 32138747 PMCID: PMC7059259 DOI: 10.1186/s12984-020-00671-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is scientific evidence that older adults aged 65 and over walk with increased step width variability which has been associated with risk of falling. However, there are presently no threshold levels that define the optimal reference range of step width variability. Thus, the purpose of our study was to estimate the optimal reference range for identifying older adults with normative and excessive step width variability. METHODS We searched systematically the BMC, Cochrane Library, EBSCO, Frontiers, IEEE, PubMed, Scopus, SpringerLink, Web of Science, Wiley, and PROQUEST databases until September 2018, and included the studies that measured step width variability in both younger and older adults during walking at self-selected speed. Data were pooled in meta-analysis, and standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated. A single-decision threshold method based on the Youden index, and a two-decision threshold method based on the uncertain interval method were used to identify the optimal threshold levels (PROSPERO registration: CRD42018107079). RESULTS Ten studies were retrieved (older adults = 304; younger adults = 219). Step width variability was higher in older than in younger adults (SMD = 1.15, 95% CI = 0.60; 1.70; t = 4.72, p = 0.001). The single-decision method set the threshold level for excessive step width variability at 2.14 cm. For the two-decision method, step width variability values above the upper threshold level of 2.50 cm were considered excessive, while step width variability values below the lower threshold level of 1.97 cm were considered within the optimal reference range. CONCLUSION Step width variability is higher in older adults than in younger adults, with step width variability values above the upper threshold level of 2.50 cm to be considered as excessive. This information could potentially impact rehabilitation technology design for devices targeting lateral stability during walking.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Biomechanics Research Building 214, 6160 University Drive South, Omaha, NE, 68182-0860, USA
| | - Emily E Moore
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Biomechanics Research Building 214, 6160 University Drive South, Omaha, NE, 68182-0860, USA
- Department of Health and Nutritional Sciences, South Dakota State University, Brookings, USA
| | - Harlan R Sayles
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, USA
| | - Kendra K Schmid
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, USA
| | - Nicholas Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Biomechanics Research Building 214, 6160 University Drive South, Omaha, NE, 68182-0860, USA.
- College of Public Health, University of Nebraska Medical Center, Omaha, USA.
| |
Collapse
|
46
|
Gür E, Duyan YA, Arkan S, Karson A, Balcı F. Interval timing deficits and their neurobiological correlates in aging mice. Neurobiol Aging 2020; 90:33-42. [PMID: 32220513 DOI: 10.1016/j.neurobiolaging.2020.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/27/2020] [Accepted: 02/22/2020] [Indexed: 11/24/2022]
Abstract
Age-related neurobiological and cognitive alterations suggest that interval timing (as a related function) is also altered in aging, which can, in turn, disrupt timing-dependent functions. We investigated alterations in interval timing with aging and accompanying neurobiological changes. We tested 4-6, 10-12, and 18-20 month-old mice on the dual peak interval procedure. Results revealed a specific deficit in the termination of timed responses (stop-times). The decision processes contributed more to timing variability (vs. clock/memory process) in the aged mice. We observed age-dependent reductions in the number of dopaminergic neurons in the VTA and SNc, cholinergic neurons in the medial septum/diagonal band (MS/DB) complex, and density of dopaminergic axon terminals in the DLS/DMS. Negative correlations were found between the number of dopaminergic neurons in the VTA and stop times, and the number of cholinergic neurons in MS/DB complex and the acquisition of stop times. Our results point at age-dependent changes in the decisional components of interval timing and the role of dopaminergic and cholinergic functions in these behavioral alterations.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Yalçın Akın Duyan
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Sertan Arkan
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey; Kocaeli University, Physiology Department, Umuttepe Campus, Kocaeli, Turkey
| | - Ayşe Karson
- Kocaeli University, Physiology Department, Umuttepe Campus, Kocaeli, Turkey
| | - Fuat Balcı
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
47
|
Maaß SC, Riemer M, Wolbers T, van Rijn H. Timing deficiencies in amnestic Mild Cognitive Impairment: Disentangling clock and memory processes. Behav Brain Res 2019; 373:112110. [DOI: 10.1016/j.bbr.2019.112110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 07/20/2019] [Indexed: 12/16/2022]
|
48
|
Cassarino M, Bantry-White E, Setti A. Cognitive and Sensory Dimensions of Older People's Preferences of Outdoor Spaces for Walking: A Survey Study in Ireland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1340. [PMID: 31013969 PMCID: PMC6518375 DOI: 10.3390/ijerph16081340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Physical exercise, particularly walking, benefits healthy ageing. Understanding the environmental circumstances in which exercise occurs is crucial to the promotion of physical activity in older age. Most studies have focused on the structural dimensions of environments that may foster walking; however, individual differences in how older people perceive and interact with outdoor spaces need further attention. This study explored the cognitive and sensory dimensions of preferences of outdoor spaces for walking. METHODS We invited 112 healthy community-dwelling people aged ≥60 years to complete a survey to test associations between walking preferences and cognitive/sensory vulnerability. A subsample also completed focus groups/walk along interviews to explore qualitatively the cognitive/sensory reasons for outdoor walking preferences. RESULTS While most participants indicated a preference for outdoor spaces that offer variety and greenery, we observed a complex association between individual cognitive/sensory needs (stimulation seeking vs. avoidance), preferences for social interactions, and the place of residence urbanity level. Furthermore, walking preferences varied based on the purpose of the walk (recreation vs. transportation). CONCLUSIONS Our findings support an ecological approach to understanding determinants of physical activity in older age, which consider the interaction between individual cognitive processing and the environment.
Collapse
Affiliation(s)
- Marica Cassarino
- School of Applied Psychology, University College Cork, Enterprise Centre, North Mall, T23 TK30 Cork City, Ireland.
| | - Eleanor Bantry-White
- School of Applied Social Studies, University College Cork, William Thompson House, Donovan's Road, T12 E6F3 Cork City, Ireland.
| | - Annalisa Setti
- School of Applied Psychology, University College Cork, Enterprise Centre, North Mall, T23 TK30 Cork City, Ireland.
| |
Collapse
|
49
|
de França NAG, Murthy LS, Phu S, Liberts E, Vogrin S, Araujo Martini L, Duque G. High parathyroid hormone levels are associated with poor balance in older persons: A cross-sectional study. Maturitas 2019; 121:57-62. [PMID: 30704566 DOI: 10.1016/j.maturitas.2018.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/09/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022]
|
50
|
Fernandez NB, Hars M, Trombetti A, Vuilleumier P. Age-related changes in attention control and their relationship with gait performance in older adults with high risk of falls. Neuroimage 2019; 189:551-559. [PMID: 30660655 DOI: 10.1016/j.neuroimage.2019.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Falls are the leading cause of injury-related deaths in the elderly worldwide. Both gait impairment and cognitive decline have been shown to constitute major fall risk factors. However, further investigations are required to establish a more precise link between the influence of age on brain systems mediating executive cognitive functions and their relationship with gait disturbances, and thus help define novel markers and better guide remediation strategies to prevent falls. METHODS Event-related functional magnetic resonance imaging (fMRI) was used to evaluate age-related effects on the recruitment of executive control brain network in selective attention task, as measured with a flanker paradigm. Brain activation patterns were compared between twenty young (21 years ± 2.5) and thirty-four old participants (72 years ± 5.3) with high fall risks. We then determined to what extend age-related differences in activation patterns were associated with alterations in several gait parameters, measured with electronic devices providing a precise quantitative evaluation of gait, as well as with alterations in several aspects of cognitive and physical abilities. RESULTS We found that both young and old participants recruited a distributed fronto-parietal-occipital network during interference by incongruent distractors in the flanker task. However, additional activations were observed in posterior parieto-occipital areas in the older relative to the younger participants. Furthermore, a differential recruitment of both the left dorsal parieto-occipital sulcus and precuneus was significantly correlated with higher gait variability. Besides, decreased activation in the right cerebellum was found in the older with poorer cognitive processing speed scores. CONCLUSIONS Overall results converge to indicate greater sensitivity to attention interference and heightened recruitment of cortical executive control systems in the elderly with fall risks. Critically, this change was associated with selective increases in gait variability indices, linking attentional control with gait performance in elderly with high risks of falls.
Collapse
Affiliation(s)
- Natalia B Fernandez
- Laboratory of Behavioral Neurology and Imaging of Cognition, Dept. of Neurosciences, University Medical Center, University of Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Switzerland.
| | - Mélany Hars
- Division of Bone Diseases, Dept. of Internal Medicine Specialties, Geneva University Hospitals, Faculty of Medicine, Switzerland
| | - Andrea Trombetti
- Division of Bone Diseases, Dept. of Internal Medicine Specialties, Geneva University Hospitals, Faculty of Medicine, Switzerland
| | - Patrik Vuilleumier
- Laboratory of Behavioral Neurology and Imaging of Cognition, Dept. of Neurosciences, University Medical Center, University of Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Switzerland
| |
Collapse
|