1
|
Tian S, Cheng YA, Luo H. Rhythm Facilitates Auditory Working Memory via Beta-Band Encoding and Theta-Band Maintenance. Neurosci Bull 2025; 41:195-210. [PMID: 39215886 PMCID: PMC11794857 DOI: 10.1007/s12264-024-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 09/04/2024] Open
Abstract
Rhythm, as a prominent characteristic of auditory experiences such as speech and music, is known to facilitate attention, yet its contribution to working memory (WM) remains unclear. Here, human participants temporarily retained a 12-tone sequence presented rhythmically or arrhythmically in WM and performed a pitch change-detection task. Behaviorally, while having comparable accuracy, rhythmic tone sequences showed a faster response time and lower response boundaries in decision-making. Electroencephalographic recordings revealed that rhythmic sequences elicited enhanced non-phase-locked beta-band (16 Hz-33 Hz) and theta-band (3 Hz-5 Hz) neural oscillations during sensory encoding and WM retention periods, respectively. Importantly, the two-stage neural signatures were correlated with each other and contributed to behavior. As beta-band and theta-band oscillations denote the engagement of motor systems and WM maintenance, respectively, our findings imply that rhythm facilitates auditory WM through intricate oscillation-based interactions between the motor and auditory systems that facilitate predictive attention to auditory sequences.
Collapse
Affiliation(s)
- Suizi Tian
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yu-Ang Cheng
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | - Huan Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Polver S, Miller-Viacava N, Fraticelli M, Gervain J, Lorenzi C. Developmental origins of natural sound perception. Front Psychol 2024; 15:1474961. [PMID: 39726626 PMCID: PMC11669913 DOI: 10.3389/fpsyg.2024.1474961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Infants are exposed to a myriad of sounds early in life, including caregivers' speech, songs, human-made and natural (non-anthropogenic) environmental sounds. While decades of research have established that infants have sophisticated perceptual abilities to process speech, less is known about how they perceive natural environmental sounds. This review synthesizes current findings about the perception of natural environmental sounds in the first years of life, emphasizing their role in auditory development and describing how these studies contribute to the emerging field of human auditory ecology. Some of the existing studies explore infants' responses to animal vocalizations and water sounds. Infants demonstrate an initial broad sensitivity to primate vocalizations, which narrows to human speech through experience. They also show early recognition of water sounds, with preferences for natural over artificial water sounds already at birth, indicating an evolutionary ancient sensitivity. However, this ability undergoes refinement with age and experience. The few studies available suggest that infants' auditory processing of natural sounds is complex and influenced by both genetic predispositions and exposure. Building on these existing results, this review highlights the need for ecologically valid experimental paradigms that better represent the natural auditory environments humans evolved in. Understanding how children process natural soundscapes not only deepens our understanding of auditory development but also offers practical insights for advancing environmental awareness, improving auditory interventions for children with hearing loss, and promoting wellbeing through exposure to natural sounds.
Collapse
Affiliation(s)
- Silvia Polver
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Nicole Miller-Viacava
- Laboratoire des Systèmes Perceptifs, UMR CNRS 8248, Ecole Normale Supérieure, PSL University, Paris, France
| | - Matthieu Fraticelli
- Laboratoire des Systèmes Perceptifs, UMR CNRS 8248, Ecole Normale Supérieure, PSL University, Paris, France
| | - Judit Gervain
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
- Integrative Neuroscience and Cognition Center, UMR8002, Université Paris Cité and CNRS, Paris, France
| | - Christian Lorenzi
- Laboratoire des Systèmes Perceptifs, UMR CNRS 8248, Ecole Normale Supérieure, PSL University, Paris, France
| |
Collapse
|
3
|
Osiecka AN, Fearey J, Ravignani A, Burchardt LS. Isochrony in barks of Cape fur seal ( Arctocephalus pusillus pusillus) pups and adults. Ecol Evol 2024; 14:e11085. [PMID: 38463637 PMCID: PMC10920323 DOI: 10.1002/ece3.11085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Animal vocal communication often relies on call sequences. The temporal patterns of such sequences can be adjusted to other callers, follow complex rhythmic structures or exhibit a metronome-like pattern (i.e., isochronous). How regular are the temporal patterns in animal signals, and what influences their precision? If present, are rhythms already there early in ontogeny? Here, we describe an exploratory study of Cape fur seal (Arctocephalus pusillus pusillus) barks-a vocalisation type produced across many pinniped species in rhythmic, percussive bouts. This study is the first quantitative description of barking in Cape fur seal pups. We analysed the rhythmic structures of spontaneous barking bouts of pups and adult females from the breeding colony in Cape Cross, Namibia. Barks of adult females exhibited isochrony, that is they were produced at fairly regular points in time. Instead, intervals between pup barks were more variable, that is skipping a bark in the isochronous series occasionally. In both age classes, beat precision, that is how well the barks followed a perfect template, was worse when barking at higher rates. Differences could be explained by physiological factors, such as respiration or arousal. Whether, and how, isochrony develops in this species remains an open question. This study provides evidence towards a rhythmic production of barks in Cape fur seal pups and lays the groundwork for future studies to investigate the development of rhythm using multidimensional metrics.
Collapse
Affiliation(s)
- Anna N. Osiecka
- Department of Vertebrate Ecology and Zoology, Faculty of BiologyUniversity of GdańskGdańskPoland
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jack Fearey
- Sea Search Research and Conservation NPCCape TownSouth Africa
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and ConservationUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrea Ravignani
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhus CDenmark
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Lara S. Burchardt
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Leibniz‐Zentrum Allgemeine SprachwissenschaftBerlinGermany
| |
Collapse
|
4
|
James LS, Wang AS, Bertolo M, Sakata JT. Learning to pause: Fidelity of and biases in the developmental acquisition of gaps in the communicative signals of a songbird. Dev Sci 2023; 26:e13382. [PMID: 36861437 DOI: 10.1111/desc.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
The temporal organization of sounds used in social contexts can provide information about signal function and evoke varying responses in listeners (receivers). For example, music is a universal and learned human behavior that is characterized by different rhythms and tempos that can evoke disparate responses in listeners. Similarly, birdsong is a social behavior in songbirds that is learned during critical periods in development and used to evoke physiological and behavioral responses in receivers. Recent investigations have begun to reveal the breadth of universal patterns in birdsong and their similarities to common patterns in speech and music, but relatively little is known about the degree to which biological predispositions and developmental experiences interact to shape the temporal patterning of birdsong. Here, we investigated how biological predispositions modulate the acquisition and production of an important temporal feature of birdsong, namely the duration of silent pauses ("gaps") between vocal elements ("syllables"). Through analyses of semi-naturally raised and experimentally tutored zebra finches, we observed that juvenile zebra finches imitate the durations of the silent gaps in their tutor's song. Further, when juveniles were experimentally tutored with stimuli containing a wide range of gap durations, we observed biases in the prevalence and stereotypy of gap durations. Together, these studies demonstrate how biological predispositions and developmental experiences differently affect distinct temporal features of birdsong and highlight similarities in developmental plasticity across birdsong, speech, and music. RESEARCH HIGHLIGHTS: The temporal organization of learned acoustic patterns can be similar across human cultures and across species, suggesting biological predispositions in acquisition. We studied how biological predispositions and developmental experiences affect an important temporal feature of birdsong, namely the duration of silent intervals between vocal elements ("gaps"). Semi-naturally and experimentally tutored zebra finches imitated the durations of gaps in their tutor's song and displayed some biases in the learning and production of gap durations and in gap variability. These findings in the zebra finch provide parallels with the acquisition of temporal features of speech and music in humans.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montréal, Quebec, Canada
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Angela S Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Mila Bertolo
- Centre for Research in Brain, Language and Music, McGill University, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montréal, Quebec, Canada
- Centre for Research in Brain, Language and Music, McGill University, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Erdemir A, Walden TA, Tilsen S, Mefferd AS, Jones RM. A Preliminary Study of Speech Rhythm Differences as Markers of Stuttering Persistence in Preschool-Age Children. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:931-950. [PMID: 36827517 PMCID: PMC10205104 DOI: 10.1044/2022_jslhr-22-00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 05/25/2023]
Abstract
PURPOSE The purpose of this study was twofold: (a) to determine whether there are speech rhythm differences between preschool-age children who stutter that were eventually diagnosed as persisting (CWS-Per) or recovered (CWS-Rec) and children who do not stutter (CWNS), using empirical spectral analysis and empirical mode decomposition of the speech amplitude envelope, and (b) to determine whether speech rhythm characteristics close to onset are predictive of later persistence. METHOD Fifty children (3-4 years of age) participated in the study. Approximately 2-2.5 years after the experimental testing took place, children were assigned to the following groups: CWS-Per (nine boys, one girl), CWS-Rec (18 boys, two girls), and CWNS (18 boys, two girls). All children produced a narrative based on a text-free storybook. From the audio recordings of these narratives, fluent utterances were selected for each child from which seven envelope-based measures were extracted. Group-based differences on each measure as well as predictive analyses were conducted to identify measures that discriminate CWS-Per versus CWS-Rec. RESULTS CWS-Per were found to have a relatively higher degree of power in suprasyllabic oscillations and greater variability in the timing of syllabic rhythms especially for longer utterances. A logistic regression model using two speech rhythm measures was able to discriminate the eventual outcome of recovery versus persistence, with 80% sensitivity and 75% specificity. CONCLUSION Findings suggest that envelope-based speech rhythm measures are a promising approach to assess speech rhythm differences in developmental stuttering, and its potential for identification of children at risk of developing persistent stuttering should be investigated further.
Collapse
Affiliation(s)
- Aysu Erdemir
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Tedra A. Walden
- Department of Psychology, Vanderbilt University, Nashville, TN
| | - Sam Tilsen
- Department of Linguistics, Cornell University, Ithaca, NY
| | - Antje S. Mefferd
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Robin M. Jones
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
6
|
Jourjine N, Woolfolk ML, Sanguinetti-Scheck JI, Sabatini JE, McFadden S, Lindholm AK, Hoekstra HE. Two pup vocalization types are genetically and functionally separable in deer mice. Curr Biol 2023; 33:1237-1248.e4. [PMID: 36893759 DOI: 10.1016/j.cub.2023.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
Vocalization is a widespread social behavior in vertebrates that can affect fitness in the wild. Although many vocal behaviors are highly conserved, heritable features of specific vocalization types can vary both within and between species, raising the questions of why and how some vocal behaviors evolve. Here, using new computational tools to automatically detect and cluster vocalizations into distinct acoustic categories, we compare pup isolation calls across neonatal development in eight taxa of deer mice (genus Peromyscus) and compare them with laboratory mice (C57BL6/J strain) and free-living, wild house mice (Mus musculus domesticus). Whereas both Peromyscus and Mus pups produce ultrasonic vocalizations (USVs), Peromyscus pups also produce a second call type with acoustic features, temporal rhythms, and developmental trajectories that are distinct from those of USVs. In deer mice, these lower frequency "cries" are predominantly emitted in postnatal days one through nine, whereas USVs are primarily made after day 9. Using playback assays, we show that cries result in a more rapid approach by Peromyscus mothers than USVs, suggesting a role for cries in eliciting parental care early in neonatal development. Using a genetic cross between two sister species of deer mice exhibiting large, innate differences in the acoustic structure of cries and USVs, we find that variation in vocalization rate, duration, and pitch displays different degrees of genetic dominance and that cry and USV features can be uncoupled in second-generation hybrids. Taken together, this work shows that vocal behavior can evolve quickly between closely related rodent species in which vocalization types, likely serving distinct functions in communication, are controlled by distinct genetic loci.
Collapse
Affiliation(s)
- Nicholas Jourjine
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Maya L Woolfolk
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Juan I Sanguinetti-Scheck
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - John E Sabatini
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sade McFadden
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Anna K Lindholm
- Department of Evolutionary Biology & Environmental Studies, University of Zürich, Winterthurerstrasse, 190 8057 Zürich, Switzerland
| | - Hopi E Hoekstra
- Department of Molecular & Cellular Biology, Department of Organismic & Evolutionary Biology, Center for Brain Science, Museum of Comparative Zoology, Harvard University and the Howard Hughes Medical Institute, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Xing J, Sainburg T, Taylor H, Gentner TQ. Syntactic modulation of rhythm in Australian pied butcherbird song. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220704. [PMID: 36177196 PMCID: PMC9515642 DOI: 10.1098/rsos.220704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 05/04/2023]
Abstract
The acoustic structure of birdsong is spectrally and temporally complex. Temporal complexity is often investigated in a syntactic framework focusing on the statistical features of symbolic song sequences. Alternatively, temporal patterns can be investigated in a rhythmic framework that focuses on the relative timing between song elements. Here, we investigate the merits of combining both frameworks by integrating syntactic and rhythmic analyses of Australian pied butcherbird (Cracticus nigrogularis) songs, which exhibit organized syntax and diverse rhythms. We show that rhythms of the pied butcherbird song bouts in our sample are categorically organized and predictable by the song's first-order sequential syntax. These song rhythms remain categorically distributed and strongly associated with the first-order sequential syntax even after controlling for variance in note length, suggesting that the silent intervals between notes induce a rhythmic structure on note sequences. We discuss the implication of syntactic-rhythmic relations as a relevant feature of song complexity with respect to signals such as human speech and music, and advocate for a broader conception of song complexity that takes into account syntax, rhythm, and their interaction with other acoustic and perceptual features.
Collapse
Affiliation(s)
- Jeffrey Xing
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Tim Sainburg
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Hollis Taylor
- Sydney Conservatorium of Music, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy Q. Gentner
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Xing J, Sainburg T, Taylor H, Gentner TQ. Syntactic modulation of rhythm in Australian pied butcherbird song. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220704. [PMID: 36177196 DOI: 10.6084/m9.figshare.c.6197494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 05/21/2023]
Abstract
The acoustic structure of birdsong is spectrally and temporally complex. Temporal complexity is often investigated in a syntactic framework focusing on the statistical features of symbolic song sequences. Alternatively, temporal patterns can be investigated in a rhythmic framework that focuses on the relative timing between song elements. Here, we investigate the merits of combining both frameworks by integrating syntactic and rhythmic analyses of Australian pied butcherbird (Cracticus nigrogularis) songs, which exhibit organized syntax and diverse rhythms. We show that rhythms of the pied butcherbird song bouts in our sample are categorically organized and predictable by the song's first-order sequential syntax. These song rhythms remain categorically distributed and strongly associated with the first-order sequential syntax even after controlling for variance in note length, suggesting that the silent intervals between notes induce a rhythmic structure on note sequences. We discuss the implication of syntactic-rhythmic relations as a relevant feature of song complexity with respect to signals such as human speech and music, and advocate for a broader conception of song complexity that takes into account syntax, rhythm, and their interaction with other acoustic and perceptual features.
Collapse
Affiliation(s)
- Jeffrey Xing
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Tim Sainburg
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Hollis Taylor
- Sydney Conservatorium of Music, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy Q Gentner
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Pouw W, Fuchs S. Origins Of Vocal-Entangled Gesture. Neurosci Biobehav Rev 2022; 141:104836. [PMID: 36031008 DOI: 10.1016/j.neubiorev.2022.104836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/13/2023]
Abstract
Gestures during speaking are typically understood in a representational framework: they represent absent or distal states of affairs by means of pointing, resemblance, or symbolic replacement. However, humans also gesture along with the rhythm of speaking, which is amenable to a non-representational perspective. Such a perspective centers on the phenomenon of vocal-entangled gestures and builds on evidence showing that when an upper limb with a certain mass decelerates/accelerates sufficiently, it yields impulses on the body that cascade in various ways into the respiratory-vocal system. It entails a physical entanglement between body motions, respiration, and vocal activities. It is shown that vocal-entangled gestures are realized in infant vocal-motor babbling before any representational use of gesture develops. Similarly, an overview is given of vocal-entangled processes in non-human animals. They can frequently be found in rats, bats, birds, and a range of other species that developed even earlier in the phylogenetic tree. Thus, the origins of human gesture lie in biomechanics, emerging early in ontogeny and running deep in phylogeny.
Collapse
Affiliation(s)
- Wim Pouw
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Susanne Fuchs
- Leibniz Center General Linguistics, Berlin, Germany.
| |
Collapse
|
10
|
Rodríguez-Saltos CA, Duque FG, Clarke JA. Precise and nonscalar timing of intervals in a bird vocalization. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
Lau JCY, Fyshe A, Waxman SR. Rhythm May Be Key to Linking Language and Cognition in Young Infants: Evidence From Machine Learning. Front Psychol 2022; 13:894405. [PMID: 35693512 PMCID: PMC9178268 DOI: 10.3389/fpsyg.2022.894405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Rhythm is key to language acquisition. Across languages, rhythmic features highlight fundamental linguistic elements of the sound stream and structural relations among them. A sensitivity to rhythmic features, which begins in utero, is evident at birth. What is less clear is whether rhythm supports infants' earliest links between language and cognition. Prior evidence has documented that for infants as young as 3 and 4 months, listening to their native language (English) supports the core cognitive capacity of object categorization. This precocious link is initially part of a broader template: listening to a non-native language from the same rhythmic class as (e.g., German, but not Cantonese) and to vocalizations of non-human primates (e.g., lemur, Eulemur macaco flavifrons, but not birds e.g., zebra-finches, Taeniopygia guttata) provide English-acquiring infants the same cognitive advantage as does listening to their native language. Here, we implement a machine-learning (ML) approach to ask whether there are acoustic properties, available on the surface of these vocalizations, that permit infants' to identify which vocalizations are candidate links to cognition. We provided the model with a robust sample of vocalizations that, from the vantage point of English-acquiring 4-month-olds, either support object categorization (English, German, lemur vocalizations) or fail to do so (Cantonese, zebra-finch vocalizations). We assess (a) whether supervised ML classification models can distinguish those vocalizations that support cognition from those that do not, and (b) which class(es) of acoustic features (including rhythmic, spectral envelope, and pitch features) best support that classification. Our analysis reveals that principal components derived from rhythm-relevant acoustic features were among the most robust in supporting the classification. Classifications performed using temporal envelope components were also robust. These new findings provide in principle evidence that infants' earliest links between vocalizations and cognition may be subserved by their perceptual sensitivity to rhythmic and spectral elements available on the surface of these vocalizations, and that these may guide infants' identification of candidate links to cognition.
Collapse
Affiliation(s)
- Joseph C. Y. Lau
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Policy Research, Northwestern University, Evanston, IL, United States
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Alona Fyshe
- Department of Computing Science and Psychology, University of Alberta, Edmonton, AB, Canada
| | - Sandra R. Waxman
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Policy Research, Northwestern University, Evanston, IL, United States
| |
Collapse
|
12
|
Kent RD, Kim Y, Chen LM. Oral and Laryngeal Diadochokinesis Across the Life Span: A Scoping Review of Methods, Reference Data, and Clinical Applications. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:574-623. [PMID: 34958599 DOI: 10.1044/2021_jslhr-21-00396] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE The aim of this study was to conduct a scoping review of research on oral and laryngeal diadochokinesis (DDK) in children and adults, either typically developing/developed or with a clinical diagnosis. METHOD Searches were conducted with PubMed/MEDLINE, Google Scholar, CINAHL, and legacy sources in retrieved articles. Search terms included the following: DDK, alternating motion rate, maximum repetition rate, sequential motion rate, and syllable repetition rate. RESULTS Three hundred sixty articles were retrieved and included in the review. Data source tables for children and adults list the number and ages of study participants, DDK task, and language(s) spoken. Cross-sectional data for typically developing children and typically developed adults are compiled for the monosyllables /pʌ/, /tʌ/, and /kʌ/; the trisyllable /pʌtʌkʌ/; and laryngeal DDK. In addition, DDK results are summarized for 26 disorders or conditions. DISCUSSION A growing number of multidisciplinary reports on DDK affirm its role in clinical practice and research across the world. Atypical DDK is not a well-defined singular entity but rather a label for a collection of disturbances associated with diverse etiologies, including motoric, structural, sensory, and cognitive. The clinical value of DDK can be optimized by consideration of task parameters, analysis method, and population of interest.
Collapse
Affiliation(s)
- Ray D Kent
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison
| | - Yunjung Kim
- School of Communication Sciences & Disorders, Florida State University, Tallahassee
| | - Li-Mei Chen
- Department of Foreign Languages and Literature, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Crespo-Bojorque P, Celma-Miralles A, Toro JM. Detecting surface changes in a familiar tune: exploring pitch, tempo and timbre. Anim Cogn 2022; 25:951-960. [PMID: 35138480 PMCID: PMC9334415 DOI: 10.1007/s10071-022-01604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Humans recognize a melody independently of whether it is played on a piano or a violin, faster or slower, or at higher or lower frequencies. Much of the way in which we engage with music relies in our ability to normalize across these surface changes. Despite the uniqueness of our music faculty, there is the possibility that key aspects in music processing emerge from general sensitivities already present in other species. Here we explore whether other animals react to surface changes in a tune. We familiarized the animals (Long–Evans rats) with the “Happy Birthday” tune on a piano. We then presented novel test items that included changes in pitch (higher and lower octave transpositions), tempo (double and half the speed) and timbre (violin and piccolo). While the rats responded differently to the familiar and the novel version of the tune when it was played on novel instruments, they did not respond differently to the original song and its novel versions that included octave transpositions and changes in tempo.
Collapse
Affiliation(s)
| | - Alexandre Celma-Miralles
- Universitat Pompeu Fabra, C. Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain.,Royal Academy of Music in Aarhus/Aalborg, Aarhus University, Universitetsbyen, 3, 8000, Aarhus, Denmark
| | - Juan M Toro
- Universitat Pompeu Fabra, C. Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain. .,Institució Catalana de Recerca I Estudis Avançats (ICREA), Pg. Lluís Companys, 23, 08019, Barcelona, Spain.
| |
Collapse
|
14
|
|
15
|
Leongómez JD, Havlíček J, Roberts SC. Musicality in human vocal communication: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200391. [PMID: 34775823 PMCID: PMC8591388 DOI: 10.1098/rstb.2020.0391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Studies show that specific vocal modulations, akin to those of infant-directed speech (IDS) and perhaps music, play a role in communicating intentions and mental states during human social interaction. Based on this, we propose a model for the evolution of musicality-the capacity to process musical information-in relation to human vocal communication. We suggest that a complex social environment, with strong social bonds, promoted the appearance of musicality-related abilities. These social bonds were not limited to those between offspring and mothers or other carers, although these may have been especially influential in view of altriciality of human infants. The model can be further tested in other species by comparing levels of sociality and complexity of vocal communication. By integrating several theories, our model presents a radically different view of musicality, not limited to specifically musical scenarios, but one in which this capacity originally evolved to aid parent-infant communication and bonding, and even today plays a role not only in music but also in IDS, as well as in some adult-directed speech contexts. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part II)'.
Collapse
Affiliation(s)
- Juan David Leongómez
- Human Behaviour Lab, Faculty of Psychology, Universidad El Bosque, Bogota, Colombia
| | - Jan Havlíček
- Department of Zoology, Charles University, Prague, Czech Republic
| | - S. Craig Roberts
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
16
|
Matzinger T, Fitch WT. Voice modulatory cues to structure across languages and species. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200393. [PMID: 34719253 PMCID: PMC8558770 DOI: 10.1098/rstb.2020.0393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Voice modulatory cues such as variations in fundamental frequency, duration and pauses are key factors for structuring vocal signals in human speech and vocal communication in other tetrapods. Voice modulation physiology is highly similar in humans and other tetrapods due to shared ancestry and shared functional pressures for efficient communication. This has led to similarly structured vocalizations across humans and other tetrapods. Nonetheless, in their details, structural characteristics may vary across species and languages. Because data concerning voice modulation in non-human tetrapod vocal production and especially perception are relatively scarce compared to human vocal production and perception, this review focuses on voice modulatory cues used for speech segmentation across human languages, highlighting comparative data where available. Cues that are used similarly across many languages may help indicate which cues may result from physiological or basic cognitive constraints, and which cues may be employed more flexibly and are shaped by cultural evolution. This suggests promising candidates for future investigation of cues to structure in non-human tetrapod vocalizations. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part I)'.
Collapse
Affiliation(s)
- Theresa Matzinger
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of English, University of Vienna, 1090 Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of English, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Kern P, Assaneo MF, Endres D, Poeppel D, Rimmele JM. Preferred auditory temporal processing regimes and auditory-motor synchronization. Psychon Bull Rev 2021; 28:1860-1873. [PMID: 34100222 PMCID: PMC8642338 DOI: 10.3758/s13423-021-01933-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 11/08/2022]
Abstract
Decoding the rich temporal dynamics of complex sounds such as speech is constrained by the underlying neuronal-processing mechanisms. Oscillatory theories suggest the existence of one optimal perceptual performance regime at auditory stimulation rates in the delta to theta range (< 10 Hz), but reduced performance in the alpha range (10-14 Hz) is controversial. Additionally, the widely discussed motor system contribution to timing remains unclear. We measured rate discrimination thresholds between 4 and 15 Hz, and auditory-motor coupling strength was estimated through a behavioral auditory-motor synchronization task. In a Bayesian model comparison, high auditory-motor synchronizers showed a larger range of constant optimal temporal judgments than low synchronizers, with performance decreasing in the alpha range. This evidence for optimal processing in the theta range is consistent with preferred oscillatory regimes in auditory cortex that compartmentalize stimulus encoding and processing. The findings suggest, remarkably, that increased auditory-motor synchronization might extend such an optimal range towards faster rates.
Collapse
Affiliation(s)
- Pius Kern
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt/M, Germany
| | - M Florencia Assaneo
- Instituto de Neurobiologia, Universidad Nacional Autónoma de México Juriquilla, Campus UNAM 3001, 76230, Juriquilla, Qro., Mexico
| | - Dominik Endres
- Department of Psychology, Philipps University Marburg, Gutenbergstraße 18, 35032, Marburg, Germany
| | - David Poeppel
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt/M, Germany
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA
- Max Planck NYU Center for Language, Music, and Emotion, Frankfurt/M, Germany, NY, USA
| | - Johanna M Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt/M, Germany.
- Max Planck NYU Center for Language, Music, and Emotion, Frankfurt/M, Germany, NY, USA.
| |
Collapse
|
18
|
Abstract
The present study investigates effects of conventionally metered and rhymed poetry on eyemovements
in silent reading. Readers saw MRRL poems (i.e., metrically regular, rhymed
language) in two layouts. In poem layout, verse endings coincided with line breaks. In prose
layout verse endings could be mid-line. We also added metrical and rhyme anomalies. We
hypothesized that silently reading MRRL results in building up auditive expectations that
are based on a rhythmic “audible gestalt” and propose that rhythmicity is generated through
subvocalization. Our results revealed that readers were sensitive to rhythmic-gestalt-anomalies
but showed differential effects in poem and prose layouts. Metrical anomalies in particular
resulted in robust reading disruptions across a variety of eye-movement measures in
the poem layout and caused re-reading of the local context. Rhyme anomalies elicited
stronger effects in prose layout and resulted in systematic re-reading of pre-rhymes. The
presence or absence of rhythmic-gestalt-anomalies, as well as the layout manipulation, also
affected reading in general. Effects of syllable number indicated a high degree of subvocalization.
The overall pattern of results suggests that eye-movements reflect, and are closely
aligned with, the rhythmic subvocalization of MRRL. This study introduces a two-stage approach to the analysis of long MRRL stimuli and contributes
to the discussion of how the processing of rhythm in music and speech may overlap.
Collapse
Affiliation(s)
- Judith Beck
- Cognitive Science, University of Freiburg,, Germany
| | | |
Collapse
|
19
|
Bouwer FL, Nityananda V, Rouse AA, ten Cate C. Rhythmic abilities in humans and non-human animals: a review and recommendations from a methodological perspective. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200335. [PMID: 34420380 PMCID: PMC8380979 DOI: 10.1098/rstb.2020.0335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Rhythmic behaviour is ubiquitous in both human and non-human animals, but it is unclear whether the cognitive mechanisms underlying the specific rhythmic behaviours observed in different species are related. Laboratory experiments combined with highly controlled stimuli and tasks can be very effective in probing the cognitive architecture underlying rhythmic abilities. Rhythmic abilities have been examined in the laboratory with explicit and implicit perception tasks, and with production tasks, such as sensorimotor synchronization, with stimuli ranging from isochronous sequences of artificial sounds to human music. Here, we provide an overview of experimental findings on rhythmic abilities in human and non-human animals, while critically considering the wide variety of paradigms used. We identify several gaps in what is known about rhythmic abilities. Many bird species have been tested on rhythm perception, but research on rhythm production abilities in the same birds is lacking. By contrast, research in mammals has primarily focused on rhythm production rather than perception. Many experiments also do not differentiate between possible components of rhythmic abilities, such as processing of single temporal intervals, rhythmic patterns, a regular beat or hierarchical metrical structures. For future research, we suggest a careful choice of paradigm to aid cross-species comparisons, and a critical consideration of the multifaceted abilities that underlie rhythmic behaviour. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Fleur L. Bouwer
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- Institute for Logic, Language and Computation (ILLC), University of Amsterdam, PO Box 94242, 1090 CE Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, PO Box 15900, 1001 NK Amsterdam, The Netherlands
| | - Vivek Nityananda
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew A. Rouse
- Department of Psychology, Tufts University, Medford, MA 02155, USA
| | - Carel ten Cate
- Institute of Biology Leiden (IBL), Leiden Institute for Brain and Cognition (LIBC), Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
20
|
Why language survives as the dominant communication tool: A neurocognitive perspective. Behav Brain Sci 2021; 44:e94. [PMID: 34588016 DOI: 10.1017/s0140525x20000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By focusing on the contributions of subcortical structures, our commentary suggests that the functions of the hippocampus underlying "displacement," a feature enabling humans to communicate things and situations that are remote in space and time, make language more effective at social bonding. Based on the functions of the basal ganglia and hippocampus, evolutionary trajectory of the subcomponents of music and language in different species will also be discussed.
Collapse
|
21
|
Provasi J, Blanc L, Carchon I. The Importance of Rhythmic Stimulation for Preterm Infants in the NICU. CHILDREN (BASEL, SWITZERLAND) 2021; 8:660. [PMID: 34438551 PMCID: PMC8393990 DOI: 10.3390/children8080660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022]
Abstract
The fetal environment provides the fetus with multiple potential sources of rhythmic stimulation that are not present in the NICU. Maternal breathing, heartbeats, walking, dancing, running, speaking, singing, etc., all bathe the fetus in an environment of varied rhythmic stimuli: vestibular, somatosensory, tactile, and auditory. In contrast, the NICU environment does not offer the same proportion of rhythmic stimulation. After analyzing the lack of rhythmic stimulation in the NICU, this review highlights the different proposals for vestibular and/or auditory rhythmic stimulation offered to preterm infants alone and with their parents. The focus is on the beneficial effects of auditory and vestibular stimulation involving both partners of the mother-infant dyad. A preliminary study on the influence of a skin-to-skin lullaby on the stability of maternal behavior and on the tonic emotional manifestations of the preterm infant is presented as an example. The review concludes with the importance of introducing rhythmic stimulations in the NICU.
Collapse
Affiliation(s)
- Joëlle Provasi
- Cognitions Humaine et Artificielle -EPHE-PSL, CHArt Laboratory, 93322 Aubervilliers, France;
| | - Loreline Blanc
- Psychomotor Therapist, DE ISRP, 92100 Boulogne-Billancourt, France;
| | - Isabelle Carchon
- Cognitions Humaine et Artificielle -EPHE-PSL, CHArt Laboratory, 93322 Aubervilliers, France;
| |
Collapse
|
22
|
Kent RD. Developmental Functional Modules in Infant Vocalizations. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1581-1604. [PMID: 33861626 DOI: 10.1044/2021_jslhr-20-00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Purpose Developmental functional modules (DFMs) are biological modules that are defined by their structural (morphological), functional, or developmental elements, and, in some cases, all three of these. This review article considers the hypothesis that vocal development in the first year of life can be understood in large part with respect to DFMs that characterize the speech production system. Method Literature is reviewed on relevant embryology, orofacial reflexes, craniofacial muscle properties, stages of vocal development, and related topics to identity candidates for DFMs. Results The following DFMs are identified and described: laryngeal, pharyngo-laryngeal, mandibular, velopharyngeal, labial complex, and lingual complex. These DFMs and their submodules, considered along with phenomena such as rhythmic movements, account for several well-documented features of vocal development in the first year of life. The proposed DFMs, rooted in embryologic, histologic, and kinematic properties, serve as low-dimensional control variables for the developing vocal tract. Each DFM is semi-autonomous but interacts with other DFMs to produce patterns of vocal behavior. Discussion Considered in relation to contemporary profiles and models of vocal development in the first year of life, DFMs have interpretive and explanatory value. DFMs complement other approaches in the study of infant vocalizations and are grounded in biology.
Collapse
Affiliation(s)
- Ray D Kent
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison
| |
Collapse
|
23
|
Ng L, Garcia JE, Dyer AG, Stuart-Fox D. The ecological significance of time sense in animals. Biol Rev Camb Philos Soc 2020; 96:526-540. [PMID: 33164298 DOI: 10.1111/brv.12665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022]
Abstract
Time is a fundamental dimension of all biological events and it is often assumed that animals have the capacity to track the duration of experienced events (known as interval timing). Animals can potentially use temporal information as a cue during foraging, communication, predator avoidance, or navigation. Interval timing has been traditionally investigated in controlled laboratory conditions but its ecological relevance in natural environments remains unclear. While animals may time events in artificial and highly controlled conditions, they may not necessarily use temporal information in natural environments where they have access to other cues that may have more relevance than temporal information. Herein we critically evaluate the ecological contexts where interval timing has been suggested to provide adaptive value for animals. We further discuss attributes of interval timing that are rarely considered in controlled laboratory studies. Finally, we encourage consideration of ecological relevance when designing future interval-timing studies and propose future directions for such experiments.
Collapse
Affiliation(s)
- Leslie Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jair E Garcia
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Adrian G Dyer
- Bio-Inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia.,Department of Physiology, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
24
|
Marconi MA, Nicolakis D, Abbasi R, Penn DJ, Zala SM. Ultrasonic courtship vocalizations of male house mice contain distinct individual signatures. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Proksch S, Comstock DC, Médé B, Pabst A, Balasubramaniam R. Motor and Predictive Processes in Auditory Beat and Rhythm Perception. Front Hum Neurosci 2020; 14:578546. [PMID: 33061902 PMCID: PMC7518112 DOI: 10.3389/fnhum.2020.578546] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022] Open
Abstract
In this article, we review recent advances in research on rhythm and musical beat perception, focusing on the role of predictive processes in auditory motor interactions. We suggest that experimental evidence of the motor system's role in beat perception, including in passive listening, may be explained by the generation and maintenance of internal predictive models, concordant with the Active Inference framework of sensory processing. We highlight two complementary hypotheses for the neural underpinnings of rhythm perception: The Action Simulation for Auditory Prediction hypothesis (Patel and Iversen, 2014) and the Gradual Audiomotor Evolution hypothesis (Merchant and Honing, 2014) and review recent experimental progress supporting each of these hypotheses. While initial formulations of ASAP and GAE explain different aspects of beat-based timing-the involvement of motor structures in the absence of movement, and physical entrainment to an auditory beat respectively-we suggest that work under both hypotheses provide converging evidence toward understanding the predictive role of the motor system in the perception of rhythm, and the specific neural mechanisms involved. We discuss future experimental work necessary to further evaluate the causal neural mechanisms underlying beat and rhythm perception.
Collapse
Affiliation(s)
- Shannon Proksch
- Sensorimotor Neuroscience Laboratory, Cognitive & Information Sciences, University of California, Merced, Merced, CA, United States
| | - Daniel C Comstock
- Sensorimotor Neuroscience Laboratory, Cognitive & Information Sciences, University of California, Merced, Merced, CA, United States
| | - Butovens Médé
- Sensorimotor Neuroscience Laboratory, Cognitive & Information Sciences, University of California, Merced, Merced, CA, United States
| | - Alexandria Pabst
- Sensorimotor Neuroscience Laboratory, Cognitive & Information Sciences, University of California, Merced, Merced, CA, United States
| | - Ramesh Balasubramaniam
- Sensorimotor Neuroscience Laboratory, Cognitive & Information Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
26
|
Pouw W, Paxton A, Harrison SJ, Dixon JA. Acoustic information about upper limb movement in voicing. Proc Natl Acad Sci U S A 2020; 117:11364-11367. [PMID: 32393618 PMCID: PMC7260986 DOI: 10.1073/pnas.2004163117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We show that the human voice has complex acoustic qualities that are directly coupled to peripheral musculoskeletal tensioning of the body, such as subtle wrist movements. In this study, human vocalizers produced a steady-state vocalization while rhythmically moving the wrist or the arm at different tempos. Although listeners could only hear and not see the vocalizer, they were able to completely synchronize their own rhythmic wrist or arm movement with the movement of the vocalizer which they perceived in the voice acoustics. This study corroborates recent evidence suggesting that the human voice is constrained by bodily tensioning affecting the respiratory-vocal system. The current results show that the human voice contains a bodily imprint that is directly informative for the interpersonal perception of another's dynamic physical states.
Collapse
Affiliation(s)
- Wim Pouw
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269;
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen 6525 HR, The Netherlands
- Max Planck Institute for Psycholinguistics, Max Planck Institute Nijmegen, Nijmegen 6525 XD, The Netherlands
| | - Alexandra Paxton
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269
| | - Steven J Harrison
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269
| | - James A Dixon
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
27
|
Baroni F, Morillon B, Trébuchon A, Liégeois-Chauvel C, Olasagasti I, Giraud AL. Converging intracortical signatures of two separated processing timescales in human early auditory cortex. Neuroimage 2020; 218:116882. [PMID: 32439539 DOI: 10.1016/j.neuroimage.2020.116882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neural oscillations in auditory cortex are argued to support parsing and representing speech constituents at their corresponding temporal scales. Yet, how incoming sensory information interacts with ongoing spontaneous brain activity, what features of the neuronal microcircuitry underlie spontaneous and stimulus-evoked spectral fingerprints, and what these fingerprints entail for stimulus encoding, remain largely open questions. We used a combination of human invasive electrophysiology, computational modeling and decoding techniques to assess the information encoding properties of brain activity and to relate them to a plausible underlying neuronal microarchitecture. We analyzed intracortical auditory EEG activity from 10 patients while they were listening to short sentences. Pre-stimulus neural activity in early auditory cortical regions often exhibited power spectra with a shoulder in the delta range and a small bump in the beta range. Speech decreased power in the beta range, and increased power in the delta-theta and gamma ranges. Using multivariate machine learning techniques, we assessed the spectral profile of information content for two aspects of speech processing: detection and discrimination. We obtained better phase than power information decoding, and a bimodal spectral profile of information content with better decoding at low (delta-theta) and high (gamma) frequencies than at intermediate (beta) frequencies. These experimental data were reproduced by a simple rate model made of two subnetworks with different timescales, each composed of coupled excitatory and inhibitory units, and connected via a negative feedback loop. Modeling and experimental results were similar in terms of pre-stimulus spectral profile (except for the iEEG beta bump), spectral modulations with speech, and spectral profile of information content. Altogether, we provide converging evidence from both univariate spectral analysis and decoding approaches for a dual timescale processing infrastructure in human auditory cortex, and show that it is consistent with the dynamics of a simple rate model.
Collapse
Affiliation(s)
- Fabiano Baroni
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland; School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Benjamin Morillon
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systémes (INS), Marseille, France
| | - Agnès Trébuchon
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systémes (INS), Marseille, France; Clinical Neurophysiology and Epileptology Department, Timone Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systémes (INS), Marseille, France; Department of Neurological Surgery, University of Pittsburgh, PA, 15213, USA
| | - Itsaso Olasagasti
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Pouw W, Dixon JA. Gesture Networks: Introducing Dynamic Time Warping and Network Analysis for the Kinematic Study of Gesture Ensembles. DISCOURSE PROCESSES 2019. [DOI: 10.1080/0163853x.2019.1678967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Wim Pouw
- Center for the Ecological Study of Perception and Action University of Connecticut
- Department of Psychology, Educational, and Child Studies, Erasmus University Rotterdam
| | - James A. Dixon
- Center for the Ecological Study of Perception and Action University of Connecticut
| |
Collapse
|
29
|
Ravignani A, Verga L, Greenfield MD. Interactive rhythms across species: the evolutionary biology of animal chorusing and turn-taking. Ann N Y Acad Sci 2019; 1453:12-21. [PMID: 31515817 PMCID: PMC6790674 DOI: 10.1111/nyas.14230] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
The study of human language is progressively moving toward comparative and interactive frameworks, extending the concept of turn-taking to animal communication. While such an endeavor will help us understand the interactive origins of language, any theoretical account for cross-species turn-taking should consider three key points. First, animal turn-taking must incorporate biological studies on animal chorusing, namely how different species coordinate their signals over time. Second, while concepts employed in human communication and turn-taking, such as intentionality, are still debated in animal behavior, lower level mechanisms with clear neurobiological bases can explain much of animal interactive behavior. Third, social behavior, interactivity, and cooperation can be orthogonal, and the alternation of animal signals need not be cooperative. Considering turn-taking a subset of chorusing in the rhythmic dimension may avoid overinterpretation and enhance the comparability of future empirical work.
Collapse
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence LabVrije Universiteit BrusselBrusselsBelgium
- Institute for Advanced StudyUniversity of AmsterdamAmsterdamthe Netherlands
- Research DepartmentSealcentre PieterburenPieterburenthe Netherlands
| | - Laura Verga
- Faculty of Psychology and Neuroscience, Department NP&PPMaastricht UniversityMaastrichtthe Netherlands
| | - Michael D. Greenfield
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
- Equipe Neuro‐Ethologie Sensorielle, ENES/Neuro‐PSI, CNRS UMR 9197Université de Lyon/Saint‐EtienneSaint EtienneFrance
| |
Collapse
|
30
|
Ordin M. Speech rhythm as naturally occurring and culturally transmitted behavioral patterns. Ann N Y Acad Sci 2019; 1453:5-11. [PMID: 31502260 DOI: 10.1111/nyas.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Abstract
Rhythm is fundamental to every motor activity. Neural and physiological mechanisms that underlie rhythmic cognition, in general, and rhythmic pattern generation, in particular, are evolutionarily ancient. As speech production is a kind of motor activity, investigating speech rhythm can provide insight into how general motor patterns have been adapted for more specific use in articulation and speech production. Studies on speech rhythm may further provide insight into the development of speech capacity in humans. As speech capacity is putatively a prerequisite for developing a language faculty, studies on speech rhythm may cast some light on the mystery of language evolution in the human genus. Hereby, we propose an approach to exploring speech rhythm as a window on speech emergence in ontogenesis and phylogenesis, as well as on diachronic linguistic changes.
Collapse
Affiliation(s)
- Mikhail Ordin
- Basque Centre on Cognition, Brain and Language (BCBL) and Ikerbasque - Basque Foundation for Science
| |
Collapse
|